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In the past decade, cancer research has seen an increasing trend towards high-throughput techniques and translational
approaches. The increasing availability of assays that utilise smaller quantities of source material and produce higher volumes of
data output have resulted in the necessity for data storage solutions beyond those previously used. Multifactorial data, both large
in sample size and heterogeneous in context, needs to be integrated in a standardised, cost-effective and secure manner. This
requires technical solutions and administrative support not normally financially accounted for in small- to moderate-sized research
groups. In this review, we highlight the Big Data challenges faced by translational research groups in the precision medicine era;
an era in which the genomes of over 75 000 patients will be sequenced by the National Health Service over the next 3 years to
advance healthcare. In particular, we have looked at three main themes of data management in relation to cancer research,
namely (1) cancer ontology management, (2) IT infrastructures that have been developed to support data management and (3) the
unique ethical challenges introduced by utilising Big Data in research.

In the past decade there has been an unprecedented volume of data
generation in cancer research. The emphasis on translational
approaches in research, brought on by the need for accelerated,
cost-effective research solutions has spurred a host of initiatives
towards integration of multi-disciplinary clinical and research data
to better inform research questions, including the Center for
Advancing Translational Science under the National Institutes of
Health (NIH, 2011) and the Cancer Research UK’s Stratified
Medicine Programme (Cancer Research UK, 2013). Furthermore,
the development of high-throughput methods for genome inter-
rogation, such as microarrays and next-generation sequencing
(NGS), have allowed more in-depth study of tumour biology at the
genetic and genomic level, leading to better targeted and
personalised healthcare solutions for cancer patients. Taking breast
cancer as an example, the ‘Big Data’ revolution has given rise to a
multitude of genome-driven molecular signatures with the
potential to further personalise diagnosis and treatment
(Dawson et al, 2013). An increasing number of signatures are
being validated and adopted into standard practice such as the

Oncotype DX (Paik et al, 2006) and Mammaprint (van’t Veer et al,
2002) gene expression scores.

Although these developments have been crucial to improved
cancer healthcare, they have presented a quandary to those at the
heart of the growth of Big Data. Biological and clinical researchers
now face increasingly large and complex data sets. Although a
standard genomic microarray may profile a genome for hundreds
to thousands of features per sample, current next-generation
sequencers can produce over 100 GB of raw sequence reads per
genome. These data, coupled with a plethora of clinical and
phenotypic attributes, have the potential to significantly expand
our understanding of disease. However, they also present non-
trivial issues in data storage and analysis, issues which are relatively
new in biomedicine compared with fields such as commerce and
finance, where industrial-scale analyses of Big Data have been
established for many years.

The relative lag in adopting Big Data in biomedicine can be
attributed to three main factors: First, much of healthcare still relies
on paper records and manual recording of data, despite increasing
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digitisation of health records, thereby leading to non-standardised,
error-prone data recording (MacRury et al, 2014). Second, clinical
and research data often exist in islands, separated by legal and
intellectual property requirements, as well as security and
confidentiality restraints (GA4GH, 2013). Third, the IT infra-
structures available to researchers are ill-equipped to handle the
integration and capture of heterogeneous and large-scale data, an
issue that was acknowledged in a study of 17 leading academic
health centres in the US (Murphy et al, 2012). At present, the real
value lies not in reporting on data from these individual silos of
information, but rather in the ability to bring these data together to
find meaningful associations across multiple sources (Costa, 2014).

Overcoming these barriers requires the development of efficient
database management systems (DBMS) that provide a centralised
data source to consolidate disparate data sets. Such an example of
large-scale, collaborative genomics study is the 100 000 Genomes
Project, recently introduced by the Department of Health with the
goal of sequencing the entire genomes of over 75 000 patients by
2017 to advance medical research and integrate genomics into
healthcare (Genomics England, 2014). The project will leverage on
collaboration between academic and commercial researchers
registered in the Genomics England Clinical Interpretation
Partnership (GeCIP) programme. However, such ventures raise
ethical concerns regarding the flow of data and patient samples
across the healthcare-research spectrum. Research groups involved
in such studies will need to re-evaluate their current data
management systems to adapt to these unique set of technical
and ethical challenges.

DATA HETEROGENEITY: ONE SIZE DOES NOT FIT ALL

Data standards in cancer research have evolved considerably in the
past decade. Rapid developments in tumour classification and drug
discovery are now overtaking the rate at which they are adopted
into traditional vocabularies such as the International Classifica-
tion of Diseases for Oncology (ICD; Mirnezami et al, 2012). The
evolution of clinical data standards has been taxonomised by
medical informaticians from as early as the 1990s, covering a broad
range of semantic and syntactic transitions; examples of these are
pre-coordination (from ‘Carcinoma in situ of the breast’ in the
ICD-9 to the child concepts of ‘Intraductal carcinoma in situ of
unspecified breast’, ‘Intraductal carcinoma in situ of right breast’
and ‘Intraductal carcinoma in situ of left breast’ in the ICD-10) and
obsolescence of redundant concepts (Cimino, 1996). As databases
rely on the accurate classification of data, these changes have
substantial effects in the way databases are modelled and
structured, and subsequently in how they are queried. Therefore,
current databases have a strong need for cancer ontologies that can
standardise data accurately.

The ISO/IEC 11179 standards for electronic data recording
provide the basis for standard medical ontologies including the
Systematised Nomenclature of Medicine Clinical Terms and the
Health Level Seven International (HL7) protocol as well as cancer-
specific ontologies such as the NIH Cancer Data Standards
Registry and Repository (caDSR) and the National Cancer Institute
(NCI) Thesaurus. To conform to these standards, a metadata
model is typically constructed for the data set. This can be in the
form of a hierarchical data structure such as the Unified Medical
Language System (Humphreys et al, 1998) which is an NIH-based
medical data structure that maps data to established ontologies like
HL7 and ICD-10. Metadata can also be represented through an
entity-attribute-value model, which classifies concepts into an
element (e.g., patient), attribute (e.g., tumour grade) and a value
domain defining the range of permissible values for the element
(e.g., grade 1–3). The construction of metadata is an often

laborious, costly and time-consuming step in database develop-
ment and requires careful planning, evaluation of the research
protocols involved in the study, consultation with end-users of the
database, and in the case of multi-institutional studies, examina-
tion of the legacy data models already in place in each institution.
For this reason, well-curated metadata models are characteristic of
large, long term clinical studies including those developed for the
Surveillance, Epidemiology and End Results Program (SEER, 2008)
and the NCI’s Clinical Trials Cooperative Group (Komatsoulis
et al, 2008).

An alternative method which may be more suited to smaller or
short-term studies, is the alignment of data sets to widely available
common data element (CDE) models that have been readily
mapped to the ontology of choice, for instance the LexEVS model
referenced upon the Enterprise Vocabulary Services (Ethier et al,
2013), and the caGRID CDE referenced upon the caDSR metadata
model (Papatheodorou et al, 2009). These models serve as a
‘mediator’ by allowing different data sets to retain their legacy
terms, while providing a unifying data model for the purposes of
the study. Many other CDE mappings to ontologies have been
developed and are summarised in the NIH BioPortal, which uses
pattern-matching algorithms to generate mappings across 4400
biomedical ontologies (Salvadores et al, 2013). The advantage to
small research groups in this approach is the continuous,
community-driven curation of these mappings, thus assuring
ISO-compliant standardisation of their data sets at a cheap cost.

Besides manual curation of metadata, a common approach is
the alignment of data sets to an ontology using natural language
processing methods. Examples are the Dice and Dynamic
algorithms that match element attributes to CDE element-attribute
pairs (Ghazvinian et al, 2009) and the Apriori algorithm for
automated identification of CDEs in medical records, as trained by
human use (Luo et al, 2013). These methods, although dependent
on established computing facilities, aid in automating the
processing of free text into standardised classes of information,
thereby reducing manual abstraction and human error.

Many of the proposed solutions have been generated through
open-source initiatives and have been instrumental to the
development of cancer databases and ontology-based applications,
especially for smaller research groups. However, previous audits of
commonly used cancer ontologies like the NCI Thesaurus have
shown that they are far from perfect. A number of CDE’s may be
misclassified when matched to other ontologies (Jiang et al, 2012),
and when a CDE model is rigidly enforced, may introduce
inaccurate semantic mapping (Schulz et al, 2010). On one hand,
this issue emphasises the requirement for periodic quality
assurance of metadata models to maintain accuracy; on the other,
it has prompted the practice of using less rigid data models where
the database architecture is less sophisticated, as is the case in
small-scale research. Community-driven efforts to develop
and maintain the ontologies have been vital in keeping them
up-to-date, and in sharing best practices for applying CDE
normalisation to data sets (de Coronado et al, 2009). These
approaches have shown that the over-arching goal is not to enforce
an all-encompassing rule for the definition of data across studies,
but rather to achieve a harmonisation of the consolidated data sets
for the purposes of interoperability.

TECHNICAL INFRASTRUCTURE—THE BASE OF THE
ICEBERG

NGS technologies are producing data faster than most underlying
IT infrastructures can support and store (Mardis, 2011). NGS data
require disk storage several orders of magnitude larger than
standard biomedical data. Each step of NGS analysis generates
large intermediate files, often requiring 5–10 times as much storage
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during the analysis phase than is required for the raw data itself.
Moreover, scientists are reluctant to discard raw data, due to the
continuous development of new algorithms that depend on
extraction of further information from these data. Next-generation
sequencing data storage and management, especially for small
research groups, continue to be a major issue, due to rapidly
evolving technologies producing larger and more complex
data sets.

In the past, the requirement for databases in medical research
confined them to traditional models of data storage that were
adequately equipped for storing heterogeneous data sets. Indeed,
the relational database structure represents a mature DBMS model
and at the peak of its development in the 1990s was the preferred
structure for some of the earliest biological databases such as the
BLAST sequences and transcription factors database (Ghosh,
1990), and for clinical trial purposes the Southwest Oncology
Group trials database (Blumenstein, 1989). Commercial models of
relational databases including Microsoft Access (Bulusu et al,
2013), MySQL (Mosca et al, 2010) and hybrid object-relational
databases such as postgreSQL and SPARQL have been widely
employed in translational cancer research settings due to their

open-source availability and ease of implementation (Table 1).
However, relational DBMS have inflexible schemas, are not well
designed for rapid growth and are prohibitively expensive for Big
Data, thus their utility for NGS derived data is questionable.

In contrast to relational DBMS, non-relational database models
such as NoSQL (Not Only SQL) offer high query performance,
flexibility of database schema and the capacity for file-transfer
across networks, albeit requiring extensive maintenance and
computing power (Manyam et al, 2012). Different types of NoSQL
databases, including document-based (e.g., MonoDB), column-
family based (e.g., Cassandra or HBase) and graph-based
(e.g., Bio4J) databases, have been implemented to integrate NGS
with metadata. Despite their heightened requirements, NoSQLs
have shown to fare better in performance tests for scalability and
extensibility, as well as query retrieval times when compared with
relational data models (Wang et al, 2014) and have, therefore, been
employed for many Big Data projects.

To accommodate these database models across networks, recent
years have seen the rise of cloud computing through the
employment of remote or third party servers to store and process
data on the Internet. Cloud-based solutions offer the advantage of

Table 1. Published integrative databases for cancer research

Name of DB Institution Diseases
No of
cases DBMS Authors

Breast Cancer Surgical Outcomes Research
Database (BRCASO)

Group Health Cooperative, Kaiser
Permanente Colorado, Marshfield
Clinic

Breast 6095 SQL Server Aiello Bowles et al. (2012)

Pancreatic Expression Database (PED) ICR, QMUL Pancreas 7636 MySQL, MartView
(BioMart), Perl

Chelala et al. (2007)

Breast Information Core (BIC) International Agency for Research
on Cancer

Breast — Sybase Server, SQL, PERL Szabo et al. (2000)

Pathology Analytic Imaging Standards (PAIS) Emory University Breast, brain 4740 IB DB2 Server, SQL, XML Wang et al. (2011)

Breast Diseases Registry System (BDRS) Middle East Technical University Breast — SQL Server, XML Kocgil and Baykal. (2007)

Cooperative Prostate Cancer Tissue
Resource (CPCTR)

University of Pittsburgh Prostate 46000 Oracle, PL/SQL Patel et al. (2006)

Pennsylvania Cancer Alliance Bioinformatics
Consortium (PCABC) Biorepository

University of Pittsburgh Melanoma, breast,
prostate

411 000 NCI Cancer Biomedical
Informatics Grid (caBIG),
Java

Patel et al. (2007)

METABRIC Repository Cambridge University Breast 2000 CancerGrid, SQIV,
SPARQL, XML

Papatheodorou et al. (2009)

Genes-to-Systems Breast Cancer (G2SBC)
Database

Institute for Biomedical
Technologies

Breast cancer 42000 MySQL, PHP, JavaScript Mosca et al. (2010)

SPORE Head and Neck Neoplasm Database University of Pittsburgh Head and neck 6553 Oracle, PL/SQL, Java Amin et al. (2009)

GEM Registry Cambridge University GI — MS Access, SQL Bulusu et al. (2013)

Cancer Gene Expression Database (CGED) Nara Institute of Science and
Technology

Breast, GI 4400 — Kato et al. (2005)

OncomiR Database (OncomiRdbB) Council of scientific and Industrial
Research, India

Breast 782 MySQL, Perl Khurana et al. (2014)

Stanford Translational Research Integrated
Database Environment (STRIDE)

Stanford University Various 1.3 m Oracle, XML Lowe et al. (2009)

Thoracic Oncology Program Database
Project

University of Chicago Thoracic — MS Access Surati et al. (2011)

Georgetown Database of Cancer (G-DOC) Georgetown University Breast, GI 43000 Oracle, Java Madhavan et al. (2011)

Breast Cancer Gene Expression Miner
(bc-GenExMiner)

Centre de Lutte Contre le Cancer
Rene Gauducheau

Breast 43000 MySQL, PHP, Java Jezequel et al. (2012)

Data Warehouse for Translational Research
(DW4TR)

Windber Research Institute Breast 45000 Oracle, AJAX Hu et al. (2011)

Danish Centre for Translational Research in
Breast Cancer (DCTB)

The Danish Centre for Translational
Breast Cancer Research

Breast — — Celis et al. (2003)

Cancer Genomics Hub National Cancer Institute Various 411 000 XML, Apache Solr Web Wilks et al. (2014)

Catalogue of Somatic Mutations in Cancer
(COSMIC)

Wellcome Trust Sanger Institute Various — Oracle, Biomart Forbes et al. (2011)

Abbreviations: DB=database; DBMS¼Database Management System; GI¼gastrointestinal cancer; ICR¼The Institute of Cancer Research, London; QMUL¼Queen Mary University London.
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heightened security, rapid scalability, dynamic allocation of
services, and flexible costing, and can in principle ease collabora-
tion between dispersed located research groups by using a shared
environment on a ‘pay-as-you-go’ basis (Zhao et al, 2013). The
1000 Genomes Project, which catalogues human sequence
variation through deep sequencing of the genomes of over 1000
individuals worldwide, uses a 200 TB Amazon cloud-based data
repository solution (Clarke et al, 2012). Commercial cloud storage
solutions are also provided by Google and Microsoft, and have
been used by many research institutes worldwide, namely the NIH
and the European Bioinformatics Institute.

These novel storage solutions have increased the availability of
cancer genomics data sets. For example, the International Cancer
Genome Consortium (ICGC, 2010) and The Cancer Genome Atlas
(TCGA, 2006) each store over two petabytes of genomic data
across 34 cancer types. Their application to the clinic through the
Mutational Signature Analysis (Alexandrov et al, 2013) and
Pan-Cancer analysis (The Cancer Genome Atlas Research
Network et al, 2013) studies have provided the essential link
between large-scale genomics and translational research. These
data sets can often be downloaded in a smaller manageable
intermediate format. Services like Cancer Genomics Hub (Wilks
et al, 2014), the Database of Genotypes and Phenotypes (NIH,
2007), the European Genome Archive (Lappalainen et al, 2015)
and the European Nucleotide Archive (Leinonen et al, 2011), allow
users to access, query and download regions of interest from raw
large-scale sequencing data sets, whereas databases like the
Catalogue of Somatic Mutations in Cancer (Bamford et al, 2004)
and the cBioPortal for Cancer Genomics (Cerami et al, 2012)
provide curated published data. Efforts to make these data publicly
available, most notably a recent decision by the NIH to lift its
restriction on the use of cloud computing (Stein et al, 2015), have
enabled greater access to these valuable data resources by small
research groups that do not have the sequencing facilities to
generate these data.

Finally, cloud compute models have provided cost-effective
solutions for small research groups looking to conduct sequencing
analysis. These can be broadly separated into three groups, those
that (1) run applications on the cloud and hide infrastructure
implementation from the user; (2) provide infrastructure as a
service; or (3) provide database and software as a service. One
example of the latter is the Globus Genomics System (Madduri
et al, 2014), which is an Amazon cloud-based analysis and data
management client built on the open-source, web-based Galaxy
platform (Goecks et al, 2010). The advantage of such a platform is
its use of elastic scaling of compute clusters, multi-threaded
parallelism of workflows and a secure file-transfer system. These
features, coupled with its intuitive interface and the continuous
reduction of cloud-computing costs, make it an attractive option
for small research groups looking to perform short-term or
modest-sized NGS projects. Alternative data management systems
that allow users to integrate large-scale genomics data and various
metadata are TranSMART (Athey et al, 2013), BioMart (Kasprzyk,
2011) and the Integrated Rule-Oriented Data System (iRODS,
2015). These platforms provide extensive modules for data
integration, and have been employed globally for cost-effective,
collaborative data storage for small-scale research settings.

ETHICS OF GENOMIC RESEARCH: PERSONALISATION VS
EXPOSURE

The increased adoption of genomic research in personalised
medicine, particularly with the recent 100 000 Genome project, has
stirred strong public debate. Genomic research poses new
challenges for tissue banks and research ethics committees that
may not necessarily be addressed by existing guidelines, such as the

use of a tumour sample from one patient for multiple studies
(due to assays now requiring smaller quantities of tissue) and
the appropriate protocol for feedback of results to patients.
Furthermore, studies have demonstrated the ‘re-identifiability’ of
apparently anonymised samples of single nucleotide polymorphism
data from genome-wide association studies (GWAS). This has been
achieved by searching Y-chromosome genotypes and matched
demographic information in recreational genetic genealogy
databases (Gymrek et al, 2013) or the extrapolation of individual
patient disease states by matching a patient’s genotype to the
cohort’s aggregate association results, both of which are commonly
published in GWAS studies (Lumley and Rice, 2010). Coupled with
the growing use of cloud-based storage systems that have eased
accessibility of data on the Internet, these have led to ethical
concerns surrounding the nature of participant consent in genomic
research and the adequacy of current systems in protecting privacy
and security.

In the UK, the NHS Health Research Authority applies
legislative checkpoints governing the use of patient data or
specimens, which have been adhered to through various methods.
For example, biobanks use a ‘broad consent’ format to address the
complexity of genomic studies and to enable research use over a
long time period (Hansson, 2009). The capture of tiered or
selective consent has been attempted through coding systems to
maximise use of data between research groups and to provide
assurance that the appropriate consent has been given for their
study (Ohno-Machado et al, 2012). Alternatively, the ‘honest
broker’ model has been used, in which an impartial third party
performs the collection, de-identification and provision of patient
data to researchers. Health information is stripped of identifiable
items within the honest broker environment and assigned a
research identifier, which then allows updating of clinical
information as well as feedback of results to patients wherever
necessary. Through the honest broker system, researchers are
granted more independence and consistency in data sharing,
however this comes at a logistical cost to the biobank and limits the
speed at which data requests can be managed.

In the case of research databases, several methods have been
used to conform to regulatory frameworks. One example is the
development of de-identification algorithms that scan free-text
reports and remove or encrypt identifiable information (Schell,
2006; Fernandes et al, 2013). These algorithms have been widely
reviewed (Dhir et al, 2008). Another example is the linkage of a
research database to the honest broker environment through their
research identifiers, thus reducing the delays associated with
updated data requests (Segagni et al, 2012). For multi-institutional
databases, system-generated identifiers have been proposed to
allow for institutions to use their own consent language and ethics
procedures (Patel et al, 2007). Finally, customised user interfaces
have been developed to allow users to view descriptive statistics of
aggregate data according to level of authorisation – one such
application is used by the Pennsylvania Cancer Alliance Bioinfor-
matics Consortium, with views divided into ‘public query’,
‘approved investigator query’ and ‘data manager query’ (Patel
et al, 2006).

On-going discussions between healthcare providers, patients
and government have indicated that a consensus has yet to be
reached regarding best practices in governance of patient data
(POST Report 474, 2014). It is however agreed that the use of the
national healthcare data resource requires transparency and
constant engagement with the public, as illustrated by the
Department of Health’s consultation for proposing new regulations
of data use (Department of Health, 2014). Although this continues
to be debated, research groups should operate on robust regulatory
procedures that protect patient privacy, while not being overlaid
with obstructive administrative barriers that may be prohibitive to
research (Karp et al, 2008).
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AN INTEGRATIVE RESEARCH DATABASE SOLUTION FOR
SMALL-TO-MODERATE-SIZED RESEARCH GROUPS

The Department of Research Oncology (RO) at King’s College
London, UK is a typical example of a moderate-sized research
group working at the translational interface in breast cancer
research. Over the years, a rich resource of research data has been
generated from a multitude of sources, including medical records,
histopathology, genomics, imaging and so on (Figure 1), as a result
of its extensive involvement in experimental studies across a wide
variety of platforms such as in vitro, in vivo and in silico
(microarray and NGS) models, as well as cancer clinical trials.

Given the RO’s physical location within an NHS healthcare
centre, our research has also leveraged on the integration of
associated patient and sample data from collaborations with the
King’s Health Partners Cancer Biobank (KHP-CB) and Clinical
Genetics Department at Guy’s Hospital. In light of a growing
number of integrative projects across the department, notably the
RO’s forthcoming participation in the GeCIP programme, a
researcher-driven database was created to facilitate the interoper-
ability of our research. We employed a previously described CDE
model (Papatheodorou et al, 2009) based on ISO-compliant data
formats recommended by the caDSR. To conform to the data
model, data normalisation was carried out on over 2000 records
spanning over 200 attributes including clinical, pathological,
genomic, transcriptomic, mouse model and imaging data. Normal-
isation involved standardisation of data formats and semantic
transformation of attributes, after consultation with clinical
specialists. The description of each CDE is stored in a data
dictionary, which forms the ‘minimum required set’ of any new
data to be entered in the database. To comply with security
standards, access tier was recorded to reflect the level of consent
given by the patient for data use, with consent procedures set by
the KHP-CB through an honest broker system. The database uses
an open-source relational MySQL platform and front-end utilities
for ease of querying. For larger high-throughput data from
microarray and sequencing platforms, the files are stored as links
in the database for querying and association with clinical data,
which point to directories in our storage servers.

Taking the necessary precautions in mapping these diverse data
sets to the data model and ensuring compliance with ethical
standards, we believe our database presents a cost-effective,
interoperable solution for the transformation of complex,

heterogeneous data into actionable information for translational
research from which to build a solid foundation for participating in
the GeCIP endeavour.

HARNESSING BIG DATA IN SMALL-SCALE RESEARCH

The move towards high-throughput translational research in
cancer has led to an explosion of genomic Big Data. However,
the adoption of robust yet accessible storage systems and
informatics workflows in parallel with this data growth, particu-
larly among small-to-moderate-sized research groups, has not been
well documented. In this review, we have highlighted the main
issues introduced by Big Data and provide a summary of potential
solutions adopted by researchers to address them.

The problem of data heterogeneity has largely been dealt with by
using in-house models of standardisation to fit the distinct
requirements of individual research groups. These have been aided
by the publication of comprehensive guides for adaptation of
legacy data with modern concepts, ranging from common classes
of evolution in medical vocabularies to guide data transformation
(Cimino, 1998) and ways to address conceptual gaps and
redundancies in data models (Richesson and Krischer, 2007). In
recognition of the labour and financial costs associated with data
storage, small research groups have moved toward open-source,
community-driven initiatives for data management. The utility of
these solutions for researchers in the Genomics England era cannot
be understated, and will be instrumental for harnessing genomic
Big Data in small research groups.

On-going debate about ethical use of genomic data emphasises
the need for transparency in communicating genomic research to
patients. Recent concerns raised by the public in response to the
NHS ‘care.data’ scheme exemplify the need to regain public trust
on the collection and security of data for healthcare (Nature, 2014).
Although previous studies have illustrated the difficulty in
extracting privacy risk in genomic data, the last decade has
seen renewed efforts to quantify the likelihood of an individual
being identified through their genomic data using simulation tests
to assess re-identifiability of data sets. This has led to the
development of algorithms to prevent re-identification (Benitez
and Malin, 2010) as well as stricter guidelines on the publication of
GWAS data to reduce re-identification without compromising the
reproducibility of the studies (Lumley and Rice, 2010). Biobanks will

Translational research
group 

Institutional biobank Genomics England

Clinical data

Treatment
• Chemotherapy
• Radiotherapy
• Surgery

Demographics
• Age
• Ethnicitiy
• Family history

In vitro modelsMouse models FLIM/FRET imaging
Tumour

immunoenvironment

Genetics HistopathologyGenomics

Pathology

• Lymph node status
• Tumour size
• Immunohistochemistry
• Histological grade

Follow-up
• Recurrence
• Metastasis

Genomics
England

Figure 1. Translational research data in the era of Genomics England. Research data from multi-disciplinary fields such as genomics,
histopathology, mouse models and fluorescence imaging as managed by a typical translational research group will be integrated with their
associated clinical data managed by the institutional biobank and healthcare centre, encompassing features such as treatment, follow-up,
demographic and diagnostic data. In alliance with the Genomics England project, these data and their associated biosamples will be used in
GeCIP studies and fed back to both healthcare and on-going translational studies within the research group.
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need to adapt to the evolution of genomic Big Data by supporting a
consent infrastructure that can proactively audit donor-sharing
policies and continuously track privacy risks incurred for individuals
while maximising the sharing of information.

Finally, the rise of genomic data availability prompts the
reminder that genomic studies and biomarkers, however advanced
they may be, should be subject to the same rigorous standards and
inference as any other scientific investigation. Studies of the impact
of an individual characteristic or exposure, such as ethnicity,
histopathological tumour type or chemotherapy on an outcome
require a careful definition of the population studied, comparison
groups, measurements, interventions and all other elements
of a scientific clinical study, and no amount of precision or detail
can correct for bias and confounding factors (Prudkin and
Nuciforo, 2015). The lack of a firm strategy and well-planned
study design has hindered the translation of biomarkers to clinical
utility, and a growing number of publications and institutional
initiatives aim to improve this issue (Staratschek-Jox and Schultze,
2010; Poste et al, 2015). One effective infrastructure to support a
shorter way between first discovery and clinical application is a
truly multi-disciplinary and multi-professional collaboration from
the planning stage through to analysis and interpretation (Poste
et al, 2015).

The decreasing cost of sequencing has improved the financial
feasibility of large-scale studies such as the 100 000 Genomes
Project, yet it is estimated that the cost of storing these data is not
decreasing in parallel (Stein, 2010). The onus will be on individual
research groups to equip themselves with the appropriate
infrastructure necessary to accommodate these data. The success
of these projects will in turn depend on the establishment of
frameworks that incorporate accurate cancer ontology, proper
study design, appropriate ethical standards and robust IT
infrastructure. Overall, the challenges brought on by Big Data will
enforce stronger interaction within the scientific community in
using these resources effectively for translational cancer research.
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