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Summary
Background T cells form the major component of anti-tumor immunity. A deeper understanding of T cell exhaus-
tion (TEX) heterogeneity within the tumor microenvironment (TME) is key to overcoming TEX and improving
checkpoint blockade immunotherapies in the clinical setting.

Methods We conducted a comprehensive pan-cancer analysis of TEX subsets from 9564 tumor samples across 30
bulk solid cancer types. Pan-cancer TEX subtypes were identified using literature-derived hierarchical TEX-specific
developmental pathway signatures. The potential multi-omics and clinical features involved in TEX heterogeneity
were determined.

Findings Our study yielded a dynamic, progressive roadmap and a hierarchical dysfunction landscape regarding
TEX within the TME. In total, we identified five pan-cancer TEX subtypes, revealing tissue/cancer type-specific TEX
patterns in low immunogenic tumors. By contrast, highly immunogenic tumors tend to harbor high frequencies of
progenitor TEX subsets. In addition, the TEX profile also revealed distinct prognoses, intrinsic molecular subtype
distribution, immune microenvironment and multi-omics features among the cancers. Network analysis identified
four previously unknown TEX-associated cancer genes (tolloid-like 1, myosin heavy chain 111, P2Y receptor family mem-
ber 8 and protein kinase D2), the possible association with anti-PD-1 immunotherapy response was validated using a
single-cell dataset. Finally, a machine learning-based gene signature was developed to model the hierarchical TEX
stages, verified in single-cell and immunotherapy patient cohorts.

Interpretation Our study provided a TEX-derived system that can be applied for the immune subtyping of cancers
and may have implications for the further optimization of personalized cancer immunotherapy.
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Introduction
CD8+T lymphocytes form a specialized population of
T cells and mediate adaptive cytotoxic T cell responses
against chronic infections and cancer.1 CD8+T cells
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responding to chronic infections or tumor antigens typi-
cally differentiate into the phenotype of exhaustion,
which is a mechanistically distinct lineage of differenti-
ated T cells.2,3 This process, known as T cell exhaustion
(TEX), is characterized by poor effector functions,
increased expression of inhibitory receptors (such as
programed cell death protein 1 (PD1), programmed
death ligand 1 (PD-L1), T-cell immunoglobulin and
mucin domain-containing protein 3 (TIM-3), T cell
immunoglobulin and ITIM domain (TIGIT) and
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Research in context

Evidence before this study

Accumulating evidence has indicated that T cell exhaustion
(TEX) is a dynamic process with a developmental hierarchy,
which contains a broad continuum of the phenotypic and
functional intermediate states. Therefore, the pool of
exhausted CD8+ T cells in the tumor immune microenvi-
ronment (TIME) at any given time should not be viewed
simply as extremes of this continuum (progenitor and ter-
minally). Instead, it should be considered to contain a
more heterogeneous and complex population of CD8+ T
cell subsets at different stages of TEX, each with distinct
functional and developmental properties. However, the
impact of this heterogeneous TEX landscape within the
TIME among different tumor types and among tumors aris-
ing from the same tissue on clinical outcomes and thera-
peutic efficacy remains poorly understood.

Added value of this study

Our study characterized the overall pattern of heteroge-
neous TEX subset distribution within the TIME among
different types of cancer whilst revealing the preferen-
ces and dependencies of the TEX subtypes in various
tumor types and among the same tumor types in other
individuals. A TEX-based immunotyping scheme was
proposed, which was used to predict prognosis, profile
the intrinsic molecular subtype distribution, characterize
the immune microenvironment and reveal various mul-
tiple omics features, to expand upon previously
reported systems for subtyping cancers. Furthermore,
the potential underlying genomic, transcriptional and
epigenetic mechanisms involved in mediating TEX het-
erogeneity was preliminarily investigated.

Implications of all the available evidence

The comprehensive characterization of these heteroge-
neous TEX subsets within the TIME provides insights
into cancer immunity and may have important implica-
tions for improving personalized cancer immunother-
apy by targeting T cells.
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cytotoxic T-lymphocyte associated protein 4 (CTLA4)),
altered usage of transcription factors (such as transcrip-
tion factors T cell factor (TCF1), thymocyte selection-
associated HMG BOX (TOX), and T-bet), metabolic dys-
function and impaired proliferative potential and
survival.4,5 Moreover, apart from the transformation of
the above molecular factors, TEX is characterized by
hierarchical dysfunction of some pathways, such as
interferon-g (IFN-g), tumor necrosis factor (TNF), cyto-
toxic potential (CTL) and interleukin 2 (IL-2) produc-
tion.4-6 Exhausted T cells were initially characterized
into two individual subtypes, namely the progenitor and
terminally-differentiated subtypes, based on the expres-
sion levels of TCF1 and PD1.7-9 The progenitor
exhausted T cell subtype includes those that are stem
cell-like or memory-like, with abilities of effective self-
renewal and transforming into the terminally differenti-
ated subtype.3,7-10 By contrast, the terminally differenti-
ated subtype cannot be functionally rescued and has
limited expansion capacity.11,12

The tumor immune microenvironment (TIME) has
been extensively recognized to be a crucial regulator of
cancer progression, clinical outcome and therapeutic
response.13,14 Tumor-infiltrating CD8+T cells form a
significant component of the TIME and serve a key role
in recognizing and killing tumor cells. However, the
majority of infiltrating CD8+T cells become ‘exhausted’
due to the triggering of a complex immunosuppressive
signaling network, leading to cancer immune eva-
sion.15-17 Accumulating evidence has indicated that TEX
is a dynamic process with a developmental hierarchy,
which contains a broad continuum of phenotypic and
functional intermediate states.4,18 Therefore, the pool of
exhausted CD8+ T cells presents within the TIME at
any given time should not be viewed simply as extremes
of this continuum (progenitor and terminally). Instead, it
should be considered to contain a more heterogeneous and
complex population of CD8+ T cell subsets at different
stages of TEX, each with distinct functional and develop-
mental properties. Furthermore, the heterogeneity of TEX
has been implicated in determining different clinical out-
comes and immunotherapy efficacy.19,20 However, the
impact of this heterogeneous TEX landscape within the
TIME among different tumor types and tumors arising
from the same tissue on clinical outcomes and therapeutic
efficacy remains poorly understood.

To address this, we conducted a comprehensive pan-
cancer analysis of TEX subsets from 9,564 tumor sam-
ples among 30 bulk solid cancer types. This revealed a
dynamic roadmap of progressive TEX development and
the hierarchical dysfunction landscape of TEX within
the TIME. Subsequently, we identified five pan-cancer
TEX subtypes on the basis of literature-derived and
TEX-specific hierarchical developmental pathway signa-
tures. This was applied to determine the potential
molecular and clinical features involved in TEX hetero-
geneity. Finally, a machine learning-based gene signa-
ture was developed to model the hierarchical TEX
stages and predict immunotherapy efficacy.
Methods

Molecular and clinical information of the tumor
datasets
The pan-cancer multi-omics data, including the clinico-
pathological information of 9564 tumor samples of 30
bulk solid cancer types excluding leukemia, pheochromo-
cytoma, and paraganglioma from TCGA, were downloaded
from the UCSC Xena Database (https://xenabrowser.net/
datapages/). They include data regarding copy-number
www.thelancet.com Vol 83 Month , 2022
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variation produced using the Illumina platform calculated
using the GISTIC221 method, somatic mutation produced
using the Illumina platform, RNA-sequencing (RNA-seq)
data produced using the HiSeq Illumina platform con-
verted through the log(x+1) method and DNA methylation
data produced using the Illumina Human Methylation
450K platform. Microsatellite instability data was obtained
from Bonneville et al.22 and TCR/BCR data was received
from Thorsson et al.23

The 10X single-cell RNA-seq data (GSE159251) of three
samples of advanced melanoma, which were comprised of
10518 cells before treatment, was downloaded from Gene
Expression Omnibus (GEO) from a previous study.24

Clinicopathological information and RNA-seq data
of patients with cancer who underwent anti-PD-1, anti-
PD-L1 and anti-CTLA-4 monotherapy produced using
the HiSeq Illumina platform were received from previ-
ously published prospective ICI clinical trials. They
include 41 patients with melanoma from Gide et al.
(referred to as the Gide cohort),25 26 patients with meta-
static melanoma from Hugo et al.26 49 patients with
advanced melanoma from Riaz et al. (referred to as the
HugoW/Riaz cohort),27 16 patients with metastatic clear
cell renal cell carcinoma from Miao et al. (referred to as
the Miao cohort),28 23 patients with glioblastoma from
Zhao et al. (referred to as the Zhao cohort),29 80
patients with metastatic urothelial cancer from Maria-
thasan et al. (referred to as the Mariathasan cohort)30

and 38 patients with melanoma from Van Allen et al.
(referred to as the VanAll cohort).31
Activity analysis of TEX pathways
The TEX signaling pathway signatures and hallmark
gene sets were received from Molecular Signatures
Database (MSigDB, V7.2).4,32 ssGSEA was used to esti-
mate the activity score of the TEX pathways in each
patient using the ‘GSVA’ R package.33
Computational index of cancer-related events and
immune microenvironment
Immune signatures of 28 immune cells were obtained
from a previous genotype/immunophenotype-related
study34 before the enrichment score was estimated for
each immune cell type and each patient using
ssGSEA.33 Infiltrating immune cell fractions were calcu-
lated in CIBERSORT using deconvolution methods
with the LM22 immune signature matrix.35 To quantify
stromal cell activity in solid tumors, the stromal score
was calculated using ESTIMATE36 in ssGSEA.37 To
characterize the stemness of the exhausted T cells, the
stemness activation score (33)was calculated based on
the system of stem signature previously obtained by
Miranda et al.38 using ssGSEA in each patient. The CYT
score33 was calculated to quantify immune effector activ-
ity in solid tumors as previously described.39
www.thelancet.com Vol 83 Month , 2022
Development of machine learning-based gene
signature for modeling hierarchical TEX stages
The 568 cancer driver genes were obtained from previ-
ous studies.40 To identify candidate driver genes
involved in TEX, differentially expressed (DE) mRNA
between each TEX subgroup were identified using a
false discovery rate (FDR)-adjusted P-value <0.01 as the
threshold of significance. Pearson's correlation coeffi-
cient was then used to measure the correlation between
DE mRNA expression and the extent of CD8+ T cell
fraction using the threshold of |r| >0.25. Deep neural
network modeling was performed using ‘Deep
Autoencoders’41,42 to feature selection by cycles of cod-
ing and decoding. For each layer, 'tanh' was used as the
activation function between the output and input layers,
where the hidden layer sizes were 150. Next, machine
learning-based gene signature used for predicting hier-
archical TEX stages were developed using five artificial
intelligence frameworks, including extreme gradient
boosting (XGBoost, R package ‘XGBoost’, V1.4.1.1,
https://xgboost.readthedocs.io/en/stable/index.html),
multi-logistic (R package ‘nnet’, V7.3-16, https://cran.r-
project.org/web/packages/nnet/index.html), random
forest (RF, R package ‘randomForest’, V4.6-14, https://
cran.r-project.org/web/packages/randomForest/index.
html), support vector machine (SVM, R package ‘e1071’,
V1.7-7, https://cran.r-project.org/web/packages/e1071/
index.html) and feedforward neural network (FNN, R
package ‘h2o’, V3.32.1.3, https://cran.r-project.org/web/
packages/h2o/index.html).
Single-cell RNA-seq analysis
The NormalizeData function was performed to normal-
ize raw counts and FindVariableFeatures function was
performed to select the highly variable genes in the R
package ‘Seurat’43 (V4.0.3) to address the batch effect
and tissue specificity of the single-cell RNA-seq data.
The principal component analysis (PCA) was used to
dimensionality reduction with the highly variable genes.
We used established cell markers44 from a previous
study to probe for cell subgroup information before
mapping the crucial driver signature genes of exhausted
T cells.
Statistical analysis
All statistical analyses were conducted using R version
4.0.3 (https://www.r-project.org/). Hierarchical cluster-
ing analysis was performed using the Euclidean distan-
ces and ‘Ward. D’ method with the R package ‘stats’
(V4.0.3, https://cran.r-project.org/web/packages/stats/
index.html). Wilcoxon rank-sum and Kruskal-Wallis
tests were used to estimate the differences between �
two groups for continuous variables, whereas Fisher's
exact test was performed to test the difference between
two categorical variables. The Kaplan-Meier curve and
3
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log-rank test were performed to compare survival differ-
ences between � two patient groups. Hazard ratios and
95% confidence intervals were estimated by univariate
Cox proportional hazard regression analysis using the R
package ‘survival’ (V3.2-13, https://cran.r-project.org/
web/packages/survival/index.html). Correlations
between two variables were measured using Pearson's
correlation coefficient and corresponding significance
was assessed using a two-sided hypothesis test. Receiver
operating characteristic curves and the AUC were
applied to assess the predictive performance using the
R package ‘pROC’ (V1.18.0, https://cran.r-project.
org/web/packages/pROC/index.html).45 Functional
annotation analysis of GO and KEGG revealed the
potential biological function using the R package
‘clusterprofiler4’ (V4.0.5).46 The protein-protein
interaction networks were constructed to show the
association among genes using the STRING database
(https://cn.string-db.org/). All P-values were two-
sided and P<0.05 was considered to indicate a statis-
tically significant difference.
Role of funders
The Funders had no role in study design, data collec-
tion, data analyses, interpretation, or writing of report.
Results

Dynamic progressive roadmap of TEX in pan-cancer
To quantify the degree of TEX in 9,564 bulk tumor sam-
ples from 30 solid tumor types in The Cancer Genome
Atlas (TCGA), we built a compendium of TEX-specific
pathways, including tumor necrosis factor (TNF), inter-
leukin (IL)-2, interferon-g (IFN-g) and cytotoxic path-
way, through literature mining. We then used single-
sample gene set enrichment analysis (ssGSEA) to
deconstruct the active TEX-specific pathway profiles
from the RNA-sequencing data of individual bulk tumor
tissue samples (Supplementary file 1). Hierarchical clus-
tering of the active TEX-specific pathway profiles
revealed five main TEX-driven pan-cancer clusters,
referred to here as C1-C5 (with 1667, 1401, 2475, 3303
and 718 cases, respectively; Figure 1a). These five resul-
tant patient clusters, named TEX subgroups thereafter,
can be characterized using a progressive activity profile
of TEX-specific pathways and other molecular pathways
implicated in TEX, such as transforming growth factor
b (TGF-b), IL-10, glycolysis and chemokine pathways
(Figure 1a). We next sought to examine the relationship
among the TEX subgroups and their immune cytolytic
activity (CYT). On progression from TEX subgroups C1
to C5, the CYT scores were found to be significantly and
progressively reduced, with the abundance of infiltrat-
ing T lymphocytes, such as CD8+ T cells, Th1, Th2 and
Th 17 CD4+ T cells, also decreasing at each advancing
stage of TEX from C1 to C5 (Figure 1b). A previous study
reported that transcription factors TCF1, T-bet and thy-
mocyte selection-associated high mobility group box
can all coordinate the dynamics underlying TEX subset
transitions.18 In the present study, we observed signifi-
cant differences in the expression pattern of TCF1 and
T-bet with a decreasing trend among the five TEX sub-
groups and TOX with a decreasing trend from TEX C1
to C4 but highest in C5 (Figure 1c). Additionally, T cell
antigen receptor (TCR) signals and B cell receptor
(BCR) signals were progressively increased at each stage
of TEX, which has been previously found to be a pri-
mary driver of TEX (Figure 1d). Collectively, these
results suggest that the five TEX subgroup derived from
the present study can accurately represent the biological
features of the hierarchical stages of TEX (Figure 1e).
Each of these five stages is referred to as ‘TEXprog’,
‘TEXint1’, ‘TEXint2’, ‘TEXint3’ and ‘TEXterm’ hereafter.

Further examination of the TEX subgroups in relation
to tumor types and existing molecular subgroups revealed
that although the TEX subgroups spanned various tumor
types and anatomical locations, diverse TCGA subgroups
and individual solid tumor types varied substantially in
their composition of TEX subgroups (Figure 1f-g). The
TEXprog and TEXint1 subgroups were particularly enriched
in cervical cancer (CESC), kidney renal clear cell carcinoma
(KIRC), lung adenocarcinoma (LUAD), head and neck
squamous cell carcinoma (HNSC), lung squamous cell car-
cinoma (LUSC) and stomach adenocarcinoma (STAD).
The TEXint2 subgroup was found to be enriched in breast
invasive carcinoma (BRCA), colon adenocarcinoma and
HNSC. In addition, the TEXint3 subgroup was enriched in
particular subgroups of BRCA, ovarian serous cystadeno-
carcinoma (OV), prostate adenocarcinoma (PRAD), thy-
moma (THYM), Kidney Chromophobe (KICH), skin
cutaneous melanoma (SKCM) and uterine corpus endo-
metrial carcinoma. The TEXterm subgroup, which repre-
sents a state of physical deletion and terminal
differentiation, was mainly found in lower-grade gliomas
(LGG), Uterine Carcinosarcoma (UCS), OV, PRAD and
adrenocortical carcinoma (ACC). Additionally, the CpG
island methylator phenotype (CIMP)-low, CIMP-interme-
diate, CIMP-high subtypes of GBM, LGG and ACC, pilo-
cytic astrocytoma-like subgroups of LGG and GBM were
found to be especially enriched of the TEXterm subgroup
(Figure 1h). To conclude, these five TEX subgroups repre-
sented a dynamic roadmap of hierarchical dysfunction
underlying the TEX process, which could be applied to
transect traditional cancer clinicopathological classifica-
tions to reveal more informative immunological sub-
groups.
Impact of the hierarchical dysfunction heterogeneity
of TEX on cancer prognosis
To examine the effects of hierarchical dysfunction of
TEX on clinical outcome, the prognostic value of the
www.thelancet.com Vol 83 Month , 2022
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Figure 1. Pan-cancer characterization of TEX heterogeneity within the tumor microenvironment. (a) TEX-specific pathway-
based hierarchical clustering of pan-cancer samples taken from TCGA was used to produce five distinct TEX subgroups. The heat-
map shows the normalized activity scores (ssGSEA) of four TEX-specific pathways and other molecular pathways implicated in TEX.
Curves in the middle represent the distribution of activity scores in the five TEX subgroups, with dashed lines displaying the median.
(b) Boxplots showing differences in the immune CYT scores, abundance of infiltrating T lymphocytes of various subsets, (c) expres-
sion of TCF1, T-bet, TOX, and (d) TCR and BCR signals among the five TEX subgroups. (e) Schematic description of the features asso-
ciated with the five pan-cancer TEX subgroups. (f) Bar charts showing the distribution of the five TEX subgroups among the
different tumor types. Each bar represents the relative composition of each TEX subgroup (columns) in each cancer type (row). (g)
Bar charts showing the distribution of tumor types among the five TEX subgroups. Each bar represents the relative composition of
each cancer type (rows) within each TEX subgroup (columns). (h) Overlay of the five TEX subgroups with existing TCGA molecular
subgroups. Each row indicated the distribution of TEX subgroups within each molecular subtype. Red revealed a higher proportion,
whereas blue revealed a lower proportion. TEX, T cell exhaustion; TCGA, The Cancer Genome Atlas; TCR, T cell receptor; CYT, cytolytic
activity; TOX, thymocyte selection-associated high mobility group box; BCR, B cell receptor.
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TEX subgroups was assessed on a pan-cancer level and
within each of the individual cancer types. Pan-cancer
survival analysis showed that tumors with different TEX
subgroups demonstrated significantly different overall
survival (OS) rates (Log-rank test P<0.001; Figure 2a).
In addition, the association between the TEX subgroups
and OS remained significant even after division into
specific subgroups according to different clinical fea-
tures (Figure S1). Cancer type-specific survival analysis
also revealed significant associations between the TEX
subgroups and OS in a number of cancer types. As
shown in Figure 2b, patients with the TEXprog sub-
groups have significantly improved survival rates com-
pared with those with other TEX subgroups in SKCM
and HNSC (Log-rank test P<0.001 for SKCM and Log-
rank test P=0.002 for HNSC). However, in other cancer
types, the opposite trend was observed. The TEXterm

subgroup was associated with a superior prognosis,
whereas TEXprog appeared to be associated with a poor
prognosis in LGG, pancreatic adenocarcinoma (PAAD),
uveal melanoma (UVM) and THYM (Figure 2b).

We then examined the impact of the potential interplay
between the TEX subgroups and infiltrating immune cells
on patient prognosis. As shown in Figure 2c, most of the
infiltrating immune cells were either positively or nega-
tively associated with survival for the different TEX sub-
groups except for the TEXterm subgroup. A total of five
immune cell subpopulations (Th1, Th2, Th17, monocytes
and M0 macrophages) were found to be significantly asso-
ciated with survival within the TEXterm subgroup. In partic-
ular, several immune cell subpopulations (plasma cell,
Th17 and monocytes) appeared to display dual prognostic
roles. For example, high infiltration of Th17 cells was found
to be associated with improved survival for the TEXprog,
TEXint1 and TEXint2 subgroups, but was associated with
poor survival for the TEX int3 and TEXterm subgroups
(Figure 2d).

Finally, we explored the impact of the interplay
between the TEX subgroups and hallmark cancer-asso-
ciated signaling pathways on patient prognosis. As
shown in Figure 2e, the crosstalk between the TEX sub-
groups and hallmark cancer signaling pathways can
mediate significant effects on the prognosis of patients
with cancer. The majority of the cancer-associated path-
ways tested in the present study demonstrated a signifi-
cant negative association with survival, whereas only
three pathways [oxidative phosphorylation, phosphoino-
sitide-3 kinase/protein kinase B/mammalian target of
rapamycin signaling and allograft rejection] were
revealed to associate positively with survival signifi-
cantly. For example, patients with highly active oxidative
phosphorylation pathways tended to exhibit a superior
prognosis for the different TEX subgroups (Figure 2f).

This apparent dual prognostic function was also
found for several other signaling pathways, including
apoptosis, xenobiotic metabolism, TGF-b and b-chemo-
kines. For example, patients with highly active TGF-b
and b-chemokine pathways tended to have a poorer
prognosis in the TEXprog subgroup (Figure 2g and h).
To conclude, these results suggest that heterogeneity in
the hierarchical dysfunction of TEX may impact cancer
prognosis, which can be exploited as a viable predictor
of outcomes in patients with cancer.
TEX-based subgroups show distinct immune
microenvironments
To investigate the stem cell-like properties in each of the
five TEX subsets of CD8+ T cells during the exhaustion
process, stemness cell signature gene enrichment
scores38 and CD69 expression levels were used to esti-
mate their progenitor-like phenotypes and proliferative
capacities in individual patients. We found a dynamic
decreasing in the gene enrichment scores of stemness
cell signature and CD69 expression levels from TEXprog

to TEXterm, suggesting that this hierarchical dysfunction
occurring during TEX is associated with reduced pro-
genitor-like characteristics and proliferative capacity
(Figure 3a).

Differences among the TEX subgroups distin-
guished were next examined in accordance with
immune cell types using the CIBERSORT cell deconvo-
lution method. Previously reported signatures from
Charoentong et al.34 were also applied to verify the
detection results for the composition of immune cells
among the TEX groups using the ssGSEA method
(Figure 3b). ssGSEA analysis revealed that most of the
immune cell types in the immune microenvironment
exhibited states of decline from immune-enriched to
immune-depletion as the hierarchical dysfunction from
TEXprog to TEXterm progresses (Figure 3b). As shown in
Figure 3c, the top three categories of immune cell types
included those from innate and adaptive immunity.
They were M2 macrophages, CD8+ T cells and resting
CD4+ memory T cells. TEXprog had the highest frac-
tions of CD8+ T cells, activated CD4+ memory T cells,
and the lowest fraction of M2 macrophages. The compo-
sition of the tumor-promoting M2 phenotype and mast
cells (Figure 3c and d) displayed a greater range in TEX-
term compared with that in other TEX groups.

Innate-immunity fraction (IF) varied substantially
not only among the TEX subgroups, but also among the
tumor types. Tumors in the bottom 33% of the IF
included tumors most responsive to immune check-
point inhibitors (ICI), such as LUSC, LUAD, bladder
cancer and in particular, LUAD.6 subgroup, LUSC of
the secretory subgroup and the BLCA.4 subgroup
(Kruskal�Wallis test P<0.001; Figure 3e). LGG and
glioblastoma multiforme had higher IF than other
tumor types, indicating the absence or presence of
microglia in these TIMEs (Figure 3e). In three represen-
tative cancer types ranking top, bottom and middle in
terms of the IF, named LGG, THYM and KIRC, respec-
tively, the fraction between innate immunity and CD8+
www.thelancet.com Vol 83 Month , 2022



Figure 2. Impact of hierarchical dysfunction heterogeneity during TEX on clinical outcome. The association between each TEX
subgroup and OS in (a) pan-cancer and (b) Kaplan-Meier survival plot in several representative tumor types. (c) HRs representing the associ-
ation between the 25 known immune cell types and OS in each TEX subgroup. Red showed higher risk, blue showed lower risk, whereas
white showed no association with risk. (d) Kaplan-Meier curves of OS among the five TEX groups stratified by the degree of type17 T helper
cell infiltration. (e) HRs representing the association between the enrichment scores (ssGSEA) of signature hallmark genes and OS in each
TEX subgroup. Red showed higher risk, blue showed lower risk, whereas white showed no association with risk. Kaplan-Meier curves of OS
among the five TEX subgroups stratified by (f) oxidative phosphorylation, (g) TGF-b and (h) b-chemokines. The P-values were estimated by
log-rank test. TEX, T cell exhaustion; OS, overall survival; TCF1, T-cell factor 1; HR hazard ratio; TGF-b, transforming growth factor b.
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Figure 3. Distinct immune microenvironments in the TEX-based pan-cancer subgroups. (a) Heatmap and Box plots showing
the stemness cell signature enrichment scores (ssGSEA) and CD69 expression levels among the five TEX subgroups. (b) Heatmap
showing the profiles of infiltrating immune cell types from the CIBERSOTR or Charoentong et al. pan-cancer datasets in the five TEX
groups. (c) Bar charts showing the proportion of the 22 immune cell types from the CIBERSORT dataset among the five TEX sub-
groups. (d) The bar chart in (c) was sub-divided into those belonging to innate immunity and adaptive immunity. (e) Box plots dis-
playing the innate immunity cell fraction among the tumor types, as ordered using their median values. (f) Box plots showing the
comparison in the fraction between CD8+ T cells and cells of innate immunity within the five TEX groups in three particular cancer
types. (g) Box plots displaying the stromal scores (ESTIMATE) among the tumor types were ordered using their median values. (h)
Correlation between the stromal scores and the fraction of CD8+ T cells in three selected cancer types. TEX, T cell exhaustion; THYM,
thymoma; KIRC, kidney renal clear cell carcinoma; LGG, low-grade glioma; PAAD, pancreatic adenocarcinoma; UVM, uveal mela-
noma.
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T cells was significantly different in each TEX sub-
group (Figure 3f).

The stromal score varied among the tumor types,
ranging from stroma-rich tumors, including sarcoma,
PAAD and KIRC, to stroma-poor tumors, such as LGG
and UVM (Kruskal�Wallis test P<0.001; Figure 3g). In
LGG, the stromal score displayed a negative correlation
with the quantity of CD8+ T cells (Pearson test r=�0.11;
P=0.014), whereas the opposite trend was revealed in
PAAD (Pearson test r=0.14; P=0.064) and UVM (Pear-
son test r=0.5; P<0.001; Figure 3h).
Multi-omic alterations in the pan-cancer subgroups
according to TEX classification
To investigate the molecular features underlying hierar-
chical dysfunction occurring during TEX, we performed
a comparative analysis of the genomic variation, gene
expression and DNA methylation profiles among the
five TEX subgroups. By comparing genomic alterations,
we observed that the TEXterm subset had a lower muta-
tion load, copy number alteration (CNA) burden and
genomic instability (Figure 4a-c). These results revealed
genomic alterations during hierarchical dysfunction
leading up to TEX.

We next probed the expression profiles of 568 cancer
driver genes in the TEX subgroups, which identified 40
cancer driver genes associated with TEX [false-discovery
rate (FDR)-adjusted P<0.01; Figure S2] (Supplementary
file 2). Among them, 31 of the 40 TEX-related cancer
driver genes showed progressively decreasing expres-
sion levels from TEXprog to TEXterm, which is coupled
with increasing frequencies of mutation, CNA and
DNA methylation. Simultaneously, 22 of the 40 TEX-
related cancer driver genes were found to be associated
with the ICI, 26 genes were closely related to immune
evasion and three genes were associated with anti-
tumor immunity (Figure 4d). Furthermore, expression
levels of these TEX-related cancer driver genes provided
additional prognostic value in the individual TEX sub-
groups. They were found to be significantly associated
with the quantity of CD8+ T cells and the expression of
immune checkpoint genes, such as PD1, PD-L1 and
CTLA4; Figure 4d).

Protein-protein interaction (PPI) network analysis of
the 40 TEX-related cancer driver genes identified a
TEX-associated subnetwork consisting of 28 TEX-
related cancer driver genes. They include tolloid-like 1
(TLL1), myosin heavy chain 11 (MYH11), P2Y receptor
family member 8 (P2RY8) and protein kinase D2
(PRKD2), the roles of which in cancer immunotherapy
and immune response regulation remain unknown
(Figure 4e). These four genes displayed significantly dif-
ferent expression patterns among five groups whilst
also being expressed at progressively decreasing levels
during hierarchical dysfunction when TEX occurs
(Figure 4f). Functional enrichment analysis of gene
www.thelancet.com Vol 83 Month , 2022
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) showed that this TEX-associated sub-
network was associated with T cell-mediated cytotoxic-
ity, T cell activation and T cell differentiation in addition
to viral infection (Figure 4g).

Apart from the broad multi-omic changes found
among the five TEX subgroups, downregulation of
inhibitory receptor expression was also found during
the TEX process, such as PD-1, PDL1 and CTLA4 (Krus-
kal�Wallis test P<0.001; Figure S3). Therefore, we
examined the roles of the four TEX-associated genes
found in the present study in mediating the response to
anti-PD-1 immunotherapy. Significantly different
expression levels for TLL1 with the highest expression
in the non-responder group, but for P2RY8 and PRKD2
with the highest expression in the responder group
(Figure 4h), suggesting that these genes can regulate
the anti-tumor immune response. Taken together, our
findings revealed the multi-omic profiles of TEX-related
driver genes underlying the hierarchical dysfunction in
CD8+ T cells. In addition, the effect of TEX-related can-
cer driver genes on patient prognosis was found to be
specific among the TEX subgroups. However, the TEX-
related cancer driver genes mediated inconsistent
effects on the tumor immune response.
A gene signature for modeling the hierarchical TEX
stages and predicting immunotherapy efficacy
To further explore the association between the 40 TEX-
related cancer driver genes identified and the five TEX
stages at single-cell resolution, we analyzed the single-
cell transcriptomic data of immune cells derived from
three patients with melanoma. After quality control,
batch effect correction and normalization, 10,518
immune cells were clustered into 17 major immune cell
clusters using tSNE. Using established TEX marker
genes to annotate the cell types such as PD-1, granzyme
A (GZMA), granzyme B (GZMB), C-X-C motif chemo-
kine ligand 13 (CXCL13) and so on, nine of the 17 major
immune cell clusters were identified to be associated
with TEX, termed TEX-C1-C9; Figure 5a-c). Expression
profiles of the TEX-related cancer driver genes displayed
hierarchical and differential compositions in these TEX-
related cell types (Figure 5c), which were applied to cate-
gorize these TEX-related cell types into five TEX sub-
groups (Figure 5d). A significant and dynamic decline
in TEX-related gene expression from TEXprog to TEXterm

was observed (Figure S4). These results demonstrated
the viability of using TEX-related cancer deriver genes
to model hierarchical dysfunction during TEX in the
TIME not only on bulk tissue levels but also on a single-
cell level. Subsequently, a deep neural network 'autoen-
coder' was used to evaluate the importance of each TEX-
related cancer driver gene. The significance of each
TEX-related cancer driver gene surpassed 75%
9



Figure 4. Featured multi-omic alterations in TEX-based pan-cancer subgroups. (a-b) Circular plots showing the differences in
single-nucleotide polymorphism and copy number variations among the five TEX subgroups. (c) Box plots displaying the differences
in mutation burden, CNA burden, MSI, BER, MMR, NHEJ, HR and NER among the five TEX subgroups. (d) Gene-level summary of the
multi-omics features in the pan-cancer samples. Bar plots show the expression, somatic mutation alterations, DNA copy number
alterations and DNA methylation of a list of crucial TEX-associated driver genes. Light gray represents low levels, whereas dark gray
represents high levels. Heatmap shows the hazard ratios of key TEX-associated driver genes, the correlation between the expression
of these TEX-related driver genes and the fraction of CD8+ T cells, PD-1, PD-L1 and CTLA-4 in the five TEX subgroups. (e) The pro-
tein�protein interaction network is formed using the key TEX-associated driver genes. (f) Box plots displaying the expression levels
of TLL1, MYH11, P2RY8 and PRKD2 among the five TEX subgroups. (g) Bar charts showing enriched gene ontology terms and KEGG
pathways. (h) Box plots showing the expression levels of TLL1, P2RY8 and PRKD2 in responders and non-responders following
immunotherapy in the datasets indicated. TEX, T cell exhaustion; CNA, copy number alterations; MSI, microsatellite instable; BER,
base excision repair; MMR, mismatch repair; NHEJ, non-homologous end joining; HR, homologous recombination; NER, nucleotide
excision repair; PD-1, programmed cell death protein 1; PD-L1, programmed cell death protein ligand 1; CTLA-4, cytotoxic T-lympho-
cyte-associated protein 4; TLL1, tolloid 1; MYH11, myosin heavy chain 11; P2RY8, P2Y receptor family member 8; PRKD2, protein
kinase 2; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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according to autoencoder, implying their indispensabil-
ity in defining the TEX subgroups (Figure 5e).

The pan-cancer data was randomly compartmental-
ized into the training and test cohorts using a ratio of
8:2 for each cancer type. We then developed a machine-
learning (ML)-based predictive model, referred to as
ML-TEX, to infer the hierarchical TEX stages in bulk
tumor samples using the 40 TEX-related driver genes
and state-of-the-art models, including XGBoost, multi-
logistic, random forest, support vector machine and
www.thelancet.com Vol 83 Month , 2022



Figure 5. Identification and evaluation of the machine learning-based gene signature for modeling TEX and predicting
immunotherapy efficacy. (a) t-SNE plot of 10,518 single melanoma cells sorted into their corresponding colored immune clusters.
(b) Bubble heatmap showing expression levels of the selected signature genes and established cell markers. (c) Bubble heatmap
showing expression profiles of key TEX-associated driver genes. (d) t-SNE plot of single cells isolated from the exhausted cell types
sorted into their corresponding color TEX clusters. (e) The Autoencoder architecture was used to calculate the importance of the
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www.thelancet.com Vol 83 Month , 2022 11



Articles

12
feedforward neural network, in the training cohort
(Figure 5f). Finally, ML-TEX based on XGBoost was
found to achieve superior performance for predicting
the hierarchical TEX stages in the training cohort, with
an area under the curve (AUC) of 1.0 and an AUC of
0.804�1.0 in the test cohort (Figure 5g). Furthermore,
there were significant differences in the OS of patients
with different predicted severity levels of TEX
(Figure 5g), suggesting that ML-TEX can be used to pre-
dict pan-cancer survival.

To determine if ML-TEX can be utilized to predict
response to immune checkpoint blockade (ICB) ther-
apy, we applied ML-TEX to the different immunother-
apy cohorts and classified the patients receiving ICB
therapy into different TEX subgroups. As shown in
Figure 5h, TEX-related cancer deriver genes exhibited a
continuous spectrum of transcriptional states in
patients in the different TEX subgroups, which were
also associated with the severity levels of TEX. Specifi-
cally, there were progressively decreasing expression
levels of PD-1, PD-L1 and CTLA4 during the transition
from TEXprog to TEXterm (Figure 5i). The percentage of
responders to ICB therapy differed significantly among
the different TEX subgroups, with the highest percent-
age of responders in TEXint2 and a decreasing trend of
responder percentage in the other four TEX groups
from TEXprog to TEXterm (Fisher's exact test P<0.001;
Figure 5j). Patients with early stages of TEX were associ-
ated with higher rates of favorable responses than those
with later stages of TEX. We subsequently evaluated
clinical outcomes of ICB therapy in each of the five TEX
subgroups and found that in groups showing responses,
specifically TEXprog, TEXint1 and TEXint2, longer OS was
observed compared with that in the non-responder
groups, namely TEXint3 and TEXterm (Log-rank test
P=0.05 for Gide cohort; P=0.03 for the HugoW/Riaz
cohort; P=0.01 for the Mariathasan cohort and P=0.02
for the VanAll cohort; Figure 5k). Taken together, these
results suggested a promising role of ML-TEX as a bene-
ficial tool for predicting responsiveness and survival of
patients following ICB treatment.
Discussion
Accumulating evidence suggests that TEX results
from a sustained state of hierarchical dysfunction in T
cells, which entails a continuum of phenotypic and
key TEX-related driver genes. (f) Comparison of multi-class AUCs c
training and testing cohorts. (g) Receiver operating characteristics o
maps showing the expression pattern of critical TEX-associated driv
ML-TEX model. (i) Box plots showing the expression of PD-1, PD-L1
notherapy dataset cohorts. (j) Proportion of responders in each TEX
the Gide, HugoW/Riaz, Mariathasan and VanAll cohorts. TEX, T cell e
AUC, area under the curve; SVM, support vector machine; FNN, feed
T-lymphocyte-associated protein 4; PD-1, programmed cell death pr
intermediate functional states, similar to other cellular
differentiation processes.4,6,16 Therefore, understand-
ing CD8+T cell dysregulation and exhaustion within
the TIME within the same cancer type or in different
cancer types is key to overcoming the TEX barrier and
improving immune checkpoint blockade therapies in
the clinic.47 However, a detailed characterization of TEX
dynamics and heterogeneity within the TIME across
various cancers is lacking. In the present study, we com-
prehensively characterized the heterogeneous TEX sub-
set landscape within the TIME of 9564 tumor samples
among 30 bulk solid cancer types using a five-stage tra-
jectory as measured using literature-derived, TEX-spe-
cific hierarchical developmental signaling pathway
signatures. Although expression of several inhibitory
receptors, such as TCF1, TOX, T-bet and PD-1, have
been reported to define TEX,11,18,48,49 they are not defin-
itive features of exhausted T cells as many highly func-
tional effector T cells also express inhibitory receptors.6

Furthermore, TEX develops with a continuum of phe-
notypic and functional intermediate states.6,50 There-
fore, the single gene-defined dichotomy for TEX
remained unsatisfactory, limited power for bulk tissue
RNA-seq data, and lacked quantitative indicators of TEX
progressive and hierarchical process. Our pathway-
based results demonstrated the extent of TEX heteroge-
neity in many different cancer types, verifying the
notion that TEX heterogeneity exists among patients
with the same cancer type and patients with other
tumor types.

Our study characterized the distribution of heteroge-
neous TEX subsets within the TIME among the differ-
ent cancer types and identified five de novo pan-cancer
immune subgroups characterized by distinct TEX sub-
sets, which represent another TEX-derived system that
can be used for the immune sub-typing of cancers. The
TEXprog subgroup was found to be particularly enriched
with TCF and T-bet in their constituent tumors and con-
ferred the best prognosis in SKCM, with higher CD8+ T
cell quantities and lower degrees of M2 macrophage
infiltration. However, a worse prognosis was found in
each transcriptional factors (TF) subset. By contrast, the
TEXterm subgroup, which was mainly lacking in TCF
and T-bet expression, had the most favorable prognosis
in terms of LGG, PAAD and UVM. In addition, TEXint1,
TEXint2 and TEXint3 demonstrated intermediate distri-
bution among the TF+ and TF- subsets, which further
alculated using five individual machine learning models in the
f the ML-TEX model in the training and testing cohorts. (h) Heat-
er genes among the five TEX subgroups as classified using the
and CTLA-4 in the five TEX subgroups in each of the four immu-
cluster. (k) Kaplan-Meier survival analysis of TEX subgroups in
xhaustion; t-SNE, t-distributed stochastic neighbor embedding;
forward neural network. ML, machine learning; CTLA-4, cytotoxic
otein 1; PD-L1, programmed death-ligand 1.

www.thelancet.com Vol 83 Month , 2022



Articles
revealed the pattern of dynamic dysfunction occurring
during T cell exhaustion in the intermediate active TF
subsets, with high M0 macrophage content. The TEX-
prog subgroup displayed the highest stemness signature
score and proliferative capacity, whereas the TEXterm

subgroup exhibited the lowest among the five subsets.
We further investigated the potential crosstalk among
the TEX subgroups, intrinsic molecular subgroups and
hallmark cancer signaling pathways, before analyzing
their effects on patient prognosis. It was found that this
system of TEX subtyping enabled the evaluation of dif-
ferences in OS among patients with cancer exhibiting
varying degrees of TEX within the TIME.

Increasing evidence shows that TEX heterogeneity
can be regulated by the TIME.16,51 The main compo-
nents, such as stromal and inflammatory cells in the
TIME play important roles in the TEX development.52

For example, a recent study reported that targeting sialy-
lation in tumor stromal cells could reverse TEX.53

Although recent multi-omics analyses also revealed dis-
tinct transcriptional, epigenetic and metabolic charac-
teristics in exhausted T cells, namely functional effector
or memory T cells,18,49,54,55 a more comprehensive
understanding of the molecular signature underlying
TEX heterogeneity within the TIME remained elusive.
The possible impact of copy number alteration, somatic
alteration and DNA methylation on T cell exhaustion
was also assessed in this study. Mutational burden,
CNA and methylation in the TEX-related driver genes
were abundant in the TEXterm subset but infrequent in
the TEXprog subgroup. These mutations in the TEX-
related driver genes may alter the immune cell land-
scape in the tumor through the production of neoanti-
gens. Some TEX-associated genes identified in our
study have recently been reported and validated to be
involved in T cell function and exhaustion by experi-
ments. Our analysis also constructed a TEX-associated
PPI subnetwork consisting of 28 cancer driver genes.
Most components in this network have already been
previously documented, apart from TLL1, MYH11,
P2RY8 and PRKD2. Since the roles in regulating the
mechanism of TEX within the TIME remain unknown,
additional in vitro and in vivo experiments are needed
for validation.

Immunotherapy has demonstrated great potential as
a novel clinical strategy for cancer treatment.56 How-
ever, responses to immunotherapy typically differ
among individuals with the same type of cancer,
whereas the circumstances also vary among the differ-
ent cancer types. Given the association between the
TEX subgroups and oncogenic states, the clinicopatho-
logical parameters among the TEX subsets in response
to tumor immunotherapy were investigated further. An
association was revealed between the TEX subgroups
identified using machine-learning and response profiles
of anti-PD1 immunotherapy for melanoma. In addition,
this TEX-derived gene signature displayed an accurate
www.thelancet.com Vol 83 Month , 2022
predictive capability compared with traditional immune
checkpoint markers (such as PD-1) in both independent
and external immunotherapeutic datasets. These find-
ings further demonstrated the robustness and potential
of this machine-learning model for the characterization
of dynamic dysfunction underlying TEX and prediction
of responses to tumor immunotherapy.

However, several limitations exist and should be
noted. Firstly, further molecular experiments should be
conducted to investigate the functional roles of other
candidates identified in the TEX. Second, we only tested
and compared several commonly used machine learn-
ing methods to infer the hierarchical TEX stages in bulk
tumor samples. The ensemble method may be an alter-
native approach and should be tested in the future.
Thirdly, considering the complex interplay between T
cell exhaustion and other biological traits across differ-
ent malignancies and studies, the proposed TEX-derived
predictor of immunotherapy efficacy, ML-TEX, should
be tested and validated in prospective studies and more
cancer types. Meanwhile, the classification of TEX
stages in our research was for bulk RNA-seq data, and it
was quite necessary to identify whether the expression
of TEX-associated genes particularly TLL1, P2RY8,
MYH11 and PRKD2 were transformed between non-
response and response groups in single-cell RNA-seq
data after ICB treatment.

In summary, our study characterized the overall pat-
tern of heterogeneous TEX subset distribution within
the TIME among different types of cancer while reveal-
ing the preferences and dependencies of the TEX sub-
groups in various tumor types and among the same
tumor types in other individuals. A TEX-based immuno-
typing scheme was proposed, which was used to predict
prognosis, profile the intrinsic molecular subtype distri-
bution, characterize the immune microenvironment
and reveal various multiple omics features, to expand
upon previously reported systems for subtyping cancers.
Furthermore, the potential underlying genomic, tran-
scriptional and epigenetic mechanisms involved in
mediating TEX heterogeneity were preliminarily inves-
tigated. The comprehensive characterization of these
heterogeneous TEX subsets within the TIME provides
insights into cancer immunity and may have important
implications for improving personalized cancer immu-
notherapy by targeting T cells.
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