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Most advanced prostate cancers progress to castration resistant prostate cancer (CRPC) after a few years of androgen deprivation
therapy and the prognosis of patients with CRPC is poor. Although docetaxel and cabazitaxel can prolong the survival of patients
with CRPC, inevitable progression appears following those treatments. It is urgently required to identify better or alternative
therapeutic strategies. The purpose of this study was to confirm the anti-cancer activity of zoledronic acid (Zol) and determine
whether inhibition of geranylgeranylation in the mevalonate pathway could be a molecular target of prostate cancer treatment.
We examined the growth inhibitory effect of Zol in prostate cancer cells (LNCaP, PC3, DU145) and investigated a role of
geranylgeranylation in the anticancer activity of Zol. We, then, evaluated the growth inhibitory effect of geranylgeranyltransferase
inhibitor (GGTI), and analyzed the synergy of GGTI and docetaxel by combination index and isobolographic analysis. Zol
inhibited the growth of all prostate cancer cell lines tested in a dose-dependent manner through inhibition of geranylgeranylation.
GGTI also inhibited the prostate cancer cell growth and the growth inhibitory effect was augmented by a combination with
docetaxel. Synergism between GGTI and docetaxel was observed across a broad range of concentrations. In conclusion, our results
demonstrated that GGTI can inhibit the growth of prostate cancer cells and has synergistic effect with docetaxel, suggesting its
potential role in prostate cancer treatment.

1. Introduction

In about 80% of men with advanced metastatic prostate can-
cer, androgen deprivation therapy leads to improvement
of symptoms and reduction of prostate specific antigen
level. However, prostate cancer cells progress to castration-
resistant prostate cancer (CRPC) in the vast majority of
patients. Docetaxel-based chemotherapy, for the first time,
demonstrated a prolongation of survival in patients with
CRPC [1, 2]. Therefore, a combination of docetaxel and
prednisone is current standard chemotherapy for CRPC.
However, inevitable progression occurs after docetaxel treat-
ment. TROPIC, a phase III clinical trial, demonstrated
survival advantage of cabazitaxel in patients who failed
prior docetaxel therapy. The median survival in cabazitaxel-
treatment group, however, was 15.1 months [3], and almost
all will progress. Thus, it is still urgently required to identify
better or alternative therapeutic strategies for improving
treatment outcome.

Bisphosphonates reduce skeletal complications in adva-
nced malignant diseases including prostate cancer [4]. In
addition, accumulated evidence has demonstrated that bis-
phosphonates have direct anti-cancer activities. Bisphospho-
nates are accumulated in the bone [5, 6] and high con-
centrations may be achieved in the bone. However, the con-
centrations of bisphosphonates in the extra-bone tissues are
very low. Anti-cancer activities of bisphosphonates may be
insufficient in cancers in the extra-bone tissues. In addition,
Zol causes serious adverse events like jaw osteonecrosis and
renal failure in some patients [7]. Bisphosphonates have
those limitations despite their potential role in cancer treat-
ment. To explore novel active agents, investigation of anti-
cancer activity of bisphosphonates may be an useful strategy.
Bisphosphonates exert the cellular activities by interference
with the mevalonate pathway. In this pathway, small GTPases
such as Ras, Rho, or Rac are modified with isoprenoid lipids,
farnesyl pyrophosphate or geranylgeranyl pyrophosphate, for
proper cellular localization and biological function. This
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post-translational lipid modification, prenylation, is per-
formed by farnesyltaransferase or geranylgeranyltransferase
(GGT). Prenylated GTPases play a pivotal 4 role in malignant
transformation and contribute to the inhibition of apoptosis,
and the induction of cell growth, invasion, and angiogenesis
[6, 8]. Although prevention of protein prenylation may be an
effective strategy for cancer treatment, its effects on prostate
cancer are largely unknown.

The purpose of this study was to confirm the anti-cancer
activity of zoledronic acid (Zol), one of the most potent
bisphosphonates, in androgen-sensitive and -independent
prostate cancer cells and evaluate the potential of geranylger-
anyltransferase inhibitor (GGTI) with or without docetaxel
as a treatment option for advanced prostate cancer.

2. Material and Methods

2.1. Prostate Cancer Cells and Agents. Androgen sensitive pr-
ostate cancer cell line, LNCaP, and androgen-independent
prostate cancer cell lines, PC3 and DU145, were maintained
in RPMI1640, MEM, and DMEM (Sigma Chemical Co, St.
Louis, MO), respectively. Those media were supplemented
with 10% fetal calf serum and 1% penicillin/streptomycin
(Gibco, Scotland, UK).

Zol was purchased from Novartis Pharma (Basel, Swit-
zerland) and dissolved in sterile water containing 1% albu-
min. Docetaxel was purchased from Sanofi Aventis (Tokyo,
Japan). Geranylgeraniol (GGOH; an analogue of geranyl-
geranyl pyrophosphate) was purchased from Sigma-Aldrich
Japan (Tokyo, Japan) and dissolved in 100% ethanol. Ger-
anylgeranyltransferase inhibitor (GGTI)-2147 was purchased
from Calbiochem (Darmstadt, Germany) and dissolved in
dimethyl sulfoxide.

2.2. Cell Growth Assay. Cells (2× 103) were seeded into each
well of a 96-well plate and incubated for 24 h in a humidified
environment containing 5% CO2 at 37◦C to allow the cells
to attach to the plate. Following attachment, the medium
was aspirated and the cells were treated with 6 × 10−7 M to
3 × 10−5 M of Zol or 1 × 10−6 M to 1 × 10−5 M of GGTI
for 72 h. The control medium was exactly the same as the
test medium but did not contain Zol nor GGTI. The cell
number was counted before (day 0) and after drug treatment
(day 3) using MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carbo-
xymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, Cell-
Titer 96 Assay (Promega, Madison, WI), according to the
manufacturer’s instructions. Briefly, 20 μl of CellTiter 96
solution were added to each well of the plate. After 60
minutes of incubation, the optical density of each sample
was measured at a wavelength of 490 nm. The experiment
was performed in triplicate and was replicated at least three
times.

2.3. Antagonism of GGOH against Zol. To examine the effect
of GGOH on the growth inhibitory effect of Zol, cells were
treated with 30 μM of GGOH in the presence or absence of
Zol (2 × 10−5 M). After 72 h incubation, the cell growth was

determined. The experiment was performed in triplicate and
was replicated at least three times.

2.4. Analysis of Combined Effect of GGTI and Docetaxel. To
assess the combined effect of GGTI and docetaxel, cells (3 ×
103) were exposed to 5× 10−7 M to 1× 10−5 M of GGTI and
1×10−10 M to 1×10−9 M of docetaxel. After 72 h incubation,
the cell growth was determined and used to analyze the
combination effect.

Synergism of drug combination was evaluated by iso-
bologram and combination index (CI) based on the multiple
drug-effect equation of Chou-Talalay model [8] using the
CalcuSyn software (Biosoft, Ferguson, MO). The isobolo-
gram method is formed by selecting a desired fractional cell
kill (Fa) and plotting the individual drug doses required to
generate that Fa on their respective x- and y-axes. A straight
line is then drawn to connect the points. The observed dose
combination of the two agents that achieved the particular
Fa is then plotted on the isobologram. Combination data
points that fall on the line represent an additive drug-drug
interaction, whereas data points that fall below or above the
line represent synergism or antagonism, respectively. The CI
method is a mathematical and quantitative representation of
a two-drug pharmacologic interaction. In this method, a CI
less than 0.9, 0.9–1.1, and greater than 1.1 indicates that the
combination effect is synergistic, additive, and antagonistic,
respectively.

2.5. Statistical Analysis. Groups were compared using the
analysis of variance, and Tukey’s test was used as the post hoc
test. P < .05 was considered statistically significant.

3. Results

3.1. Growth Suppression by Zol. The cell growth assays sho-
wed that Zol inhibited the growth of prostate cancer cells in
a dose-dependent manner (Figure 1).

Bisphosphonates exert biological activities by inhibition
of the synthesis of farnesyl pyrophosphate and geranylger-
anyl pyrophosphate, and inhibition of geranylgeranylation
seems to be important for the activity of Zol [9, 10]. To
evaluate a role of inhibition of geranylgeranylation, we inves-
tigated whether replenishing cells with geranylgeranyl pyro-
phosphate analogue, GGOH, could reverse the growth
inhibitory effect induced by Zol. Although GGOH itself
did not affect the growth, it almost completely restored the
growth inhibitory effect induced by Zol (Figure 2). These
observations suggest that geranylgeranylation seems to be the
main target of Zol in prostate cancer cells.

3.2. Growth Suppression by GGTI and Synergism with Docet-
axel. We investigated the effect of GGTI, a specific inhibitor
of geranylgeranylation, on the growth of prostate cancer cells.
As shown in Figure 3, 10 μM of GGTI inhibited the growth
of LNCaP, PC3, and DU145 cells by 45%, 37%, and 44%,
respectively (P < .05 versus control). These results suggest
that geranylgeranylation could be a molecular target and that
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Figure 1: Growth inhibitory effect by Zol. Cells were incubated in
the presence of Zol for 72 h, and the cell number was determined.
The cell number counted in the vehicle control was defined as being
equal to 100.

GGTI appears to be a potential agent for the treatment of
prostate cancer.

Since anti-cancer activities of bisphosphonates can be
augmented by cytotoxic agents [9–12] and we have observed
the combination effect of Zol and docetaxel (data not
shown), we examined whether docetaxel can also enhance
the effect of GGTI. As shown in Figure 4(a), the combination
of GGTI and docetaxel showed significantly stronger effect
than each drug alone. Regarding combination effect, isobolo-
grams were constructed for Fa values of 0.50, 0.75, and
0.90, representing 50%, 75%, and 90% growth inhibition,
respectively. All combination data points were below the line
except Fa 0.9 in PC3 cells (Figure 4(b)).

CIs of GGTI and docetaxel were less than 0.9 at
concentrations of Fa 0.02 to 0.95, 0.02 to 0.75, and 0.15
to 0.85 in LNCaP, PC3, and DU145 cells, respectively. Both
isobologram and CI methods indicated synergism of GGTI
and docetaxel across a broad range of concentrations in all
three prostate cancer cell lines.

4. Discussion

In addition to their effects on the bone, accumulating evi-
dence has suggested that nitrogen-containing bisphospho-
nates, including Zol, have anti-cancer activities in a variety
of cancer cells [6, 7]. In the present study, we confirmed
the growth suppression induced by Zol in androgen-sensitive
and -independent prostate cancer cells. Bisphosphonates are
accumulated and retained in the bone for a long time with
a half-life of about 200 days [13]. Thus, a high tumo-
ricidal concentration and the long-lasting accumulation
of bisphosphonates in the bone may contribute to their

efficacy against tumors located in bone tissues [6]. However,
the concentrations of bisphosphonates in the extraosseous
tissues are much lower than the effective concentrations in
vitro. For example, following the intravenous administration
of a conventional dose (4 mg) of Zol, concentrations of
higher than 10−6 M (required to exert a direct anti-cancer
activity) is hardly achievable in the plasma. Zol of higher
concentrations than 10−6 M remains in the plasma only
shorter than 1 h after injection [5]. Therefore, sufficient
concentrations for anti-cancer activity are hardly achievable
in cancers in the extra-osseous tissues. Thus, we investigated
the mechanisms of the anti-cancer activities induced by Zol
to explore the other active agents. In the present study, we
demonstrated that replenishing the cells with GGOH, which
restores geranylgeranylation, can overcome the effects of Zol
and that GGTI can inhibit the growth of prostate cancer
cells. Goffinet et al. [9] and Coxon et al. [10] showed that
Zol inhibited the growth and induced apoptosis in prostate
cancer cells through the inhibition of geranylgeranylation.
Those observations indicate that the inhibition of geranyl-
geranylation plays a pivotal role in the growth inhibition
and the induction of apoptosis and that geranylgeranylation
appears to be a molecular target of prostate cancer treatment.
GGT catalyzes protein geranylgeranylation, which is critical
for function of proteins. GGT substrates include Ras, Rac,
and Rho GTPases and the γ-subunits of most heterotrimeric
G-proteins [11]. Inhibition of GGT by GGTI can inactivate
CDK2/4 through the p21/p15 kinase inhibitors downstream
of Rho, resulting in cycle arrest at G0/G1 [12, 14]. GGTI
can also stimulate induction of apoptosis in both normal
[15, 16] and transformed cell lines including prostate cancer
cells [10, 17, 18]. GGTI also regulates cytoskeletal integrity
and motility of prostate cancer cells [19]. Those observations
raise the possibility of GGTI as a useful agent for the
management of prostate cancer.

The antiproliferative activity of bisphosphonates, includ-
ing Zol, is augmented by anticancer agents like doxorubicin,
taxanes, etoposide, cisplatin, irinotecan, or imatinib in
prostate, breast [20, 21], lung [22], or bladder cancer cells
[23]. Thus, we investigated whether the growth inhibitory
effect of GGTI was also augmented by docetaxel, a standard
cytotoxic agent for prostate cancer. As a result, the growth
inhibitory effect of docetaxel was augmented by docetaxel,
and we demonstrated for the first time that a combination
effect of GGTI and docetaxel is synergistic. Inhibition
of geranylgeranylation prevents the prenylation of Rac1,
resulting in decreased Rac1 activity. Docetaxel also prevent
Rac1 activation [24]. Therefore, GGTI and docetaxel may
work synergistically. However, the mechanisms by which
GGTI enhances the effect of docetaxel are largely unknown
and remain to be elucidated.

Taken together, GGTI with or without docetaxel may
be an useful treatment strategy for patients with CRPC,
even after progression on docetaxel-regimens. Recently, the
Phase 1 clinical trial of GGTI (GGTI 2418) was initiated
in patients with metastatic solid tumors for which standard
treatments have failed, or for whom standard therapies
are not available, and its safety and tolerability will be
evaluated.
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Figure 2: GGOH restored the growth inhibition induced by Zol. Cells were incubated in 2 × 10−5 M of Zol in combination with 30 μM of
GGOH for 72 h. The cell number counted in the vehicle control was defined as being equal to 100. Lane 1: control, lane 2: GGOH, lane 3:
Zol, and lane 4: Zol + GGOH.
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Figure 3: Growth inhibitory effect of GGTI. Cells were incubated in 1 μM–10 μM of GGTI for 72 h, and the subsequent cell growth was
determined. The cell number counted in the vehicle control was defined as being equal to 100.
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Figure 4: Combined effect of GGT and docetaxel. (a) Cells were exposed to GGTI (1 μM) in combination with docetaxel (10−10 M).
Following 72 h incubation, the cell growth was determined. Lane 1: control, lane 2: GGTI, lane 3: docetaxel, and lane 4: GGTI and docetaxel.
(b) Cells were incubated in the serial concentrations of GGTI, docetaxel, or combination of those agents for 72 h. Cell growth was determined,
and combination effect was analyzed by isobologram. The individual doses of GGTI and docetaxel to achieve 90% (dotted line) growth
inhibition (Fa = 0.90), 75% (hyphenated line) growth inhibition (Fa = 0.75), and 50% (straight line) growth inhibition (Fa = 0.50) were
plotted on the x- and y-axes. Combination index values are represented by points above (indicate antagonism between drugs) or below the
lines (indicate synergy). (X symbol) ED50, (plus sign) ED75, and (closed circle) ED90.
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