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ABSTRACT

Introduction: The current study aims to assess the
performance of data mining techniques in detecting
safety  signals for  adverse following
immunization (AEFI) using routinely obtained data in
China. Four different methods for detecting vaccine
safety signals were evaluated.

Methods: The AEFI data from 2011 to 2015 was
collected for our study. We analyzed the data using
four different methods to detect signals: the
proportional reporting ratio (PRR), reporting odds

events

ratio (ROR), Bayesian confidence propagation neural
network (BCPNN), and multi-item gamma Poisson
shrinker (MGPS). Each method was evaluated at 1-3
thresholds for positivity. To assess the performance of
these methods, we used the published signal rates as
gold standards to determine the sensitivity and
specificity.

Results: The number of identified signals varied
from 602 for PRR1 (with a threshold of 1) to 127 for
MGPS1. When considering the common reactions as
the reference standard, the sensitivity ranged from
0.9% for MGPS1/2 to 38.2% for PRR1/2, and the
specificity ranged from 85.2% for PRR1 and RORI to
96.7% for MGPS1. When considering the rare
reactions as the reference standard, PRR1, PRR2,
ROR1, ROR2, and BCPNN exhibited the highest
sensitivity (73.3%), while MGPS1 exhibited the
highest specificity (96.9%).

Discussion: For common reactions, the
sensitivities were modest and the specificities were
high. For rare reactions, both the sensitivities and
specificities were high. Our study provides valuable
insights into the selection of signal detection methods
and thresholds for AEFI data in China.

Data mining techniques have been widely employed
since the late 1990s for identifying safety signals in
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databases containing spontaneously reported adverse
reactions of drugs and vaccines (/-5). The primary
objective is to generate hypotheses for further
evaluation ~ of  potential  safety
Disproportionality analysis, a case/non-case method
that compares observed rates with expected rates, is the

concerns.

most commonly used technique for signal detection
(1-5). However, the performance of these methods
and the impact of different thresholds on their
performance in detecting safety signals in adverse
events following immunization (AEFI) reports in
China remain unknown. It is crucial to assess the
performance of each signal detection method to
establish a reference for routine vaccine safety signal
detection.

We evaluated the performance of safety signal
detection algorithms in detecting AEFI using data
collected in China from 2011 to 2015. The number of
signals detected and the operating characteristics of
these algorithms were analyzed. Sensitivity and
specificity were estimated using published data as gold
standards, with different threshold values for each
algorithm (2-7). The findings of this study can guide
the selection of suitable detection methods and
threshold values for vaccine safety surveillance in

China.
METHODS

Data Sources

The study utilized spontaneous AEFI reports from
the national AEFI information system (8) from 2011
to 2015. Data preparation involved several steps,
including the removal of confidential information (9)
and duplicate reports, as well as reports without valid
AEFI clinical diagnosis that would not contribute to
the vaccine-AEFI pair. Additionally, reports with
multiple AEFT clinical diagnoses or suspected vaccines
were separated into multiple individual reports, each
with a unique AEFI clinical diagnosis and suspected
vaccine (10). The AEFI clinical diagnoses were coded
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using the Medical Dictionary for Regulatory Activities
(MedDRA) dictionary, version 24.0 (/7). All vaccines
and AEFI clinical diagnoses were included in the
analysis.

Signal Detection Methods and Thresholds

Statistical signal detection was performed by
analyzing the reporting rates of specific adverse events
associated with specific vaccines. Four commonly used
methods for analyzing disproportionality were applied:
proportional reporting ratio (PRR) (4), reporting odds
ratio (ROR) (2-3), Bayesian confidence propagation
neural network (BCPNN) (7,3), and multi-item
gamma Poisson shrinker (MGPS) (5). PRR and ROR
are frequentist methods, while BCPNN and MGPS are
Bayesian methods. The computation techniques for
each method can be found in the supplementary table
S1 and relevant publications (1-5).

The disproportionality analysis is based on a 2x2
table (Table 1). In this table, cell a represents the

TABLE 1. Two-by-two contingency table for signal
detection.
AEFI of interest Other AEFIs  Total
Vaccine of interest a b atb
Other vaccines c d ct+d
Total atc b+d N

Note: "a" means number of reports containing both the vaccine of
interest and the AEFI of interest; "b" means number of reports
containing the vaccine of interest with AEFIs other than the AEFI
of interest; "c" means number of reports containing the AEFI of
interest with vaccines other than the vaccine of interest; "d" means
number of reports containing AEFIs and vaccines other than the
ones of interest.

Abbreviation: AEFI=adverse events following immunization.

number of reports containing both the vaccine of
interest and the AEFI of interest. Cell b represents the
number of reports containing the vaccine of interest
with AEFIs other than the AEFI of interest. Cell ¢
represents the number of reports containing the AEFI
of interest with vaccines other than the vaccine of
interest. Cell d represents the number of reports
containing AEFIs and vaccines other than the ones of
interest.

Table 2 presents the signal detection methods and
the threshold values to be assessed. Each signal
detection method was evaluated using up to three
signal threshold values. Vaccine-AEFI combinations
with statistical values exceeding the threshold values
were deemed as positive signals.

Performance Evaluation
We calculated the
(sensitivity and specificity) of each signal detection

operating  characteristics
algorithm to classify each vaccine-AEFI combination as
either a signal or a non-signal. We used published
reference standards as our gold standards (/4).

Two sets of reference standards based on the global
manual on the surveillance of adverse events following
immunization by the World Health Organization
(WHO) (15) and safety signals from previous studies
(16-20) were created (Table 3). Sensitivity and
specificity were determined and presented in Table 4.

Sensitivity = yi x 100%

+C

x 100%

D
Specificity = 25D

TABLE 2. Signal detection methods and thresholds to be evaluated.

Signal detection method Signal detection algorithm*

Threshold®

PRR1
PRR PRR2
PRR3
ROR1
ROR2
BCPNN
MGPS1

MGPS2
MGPS3

ROR

BCPNN

MGPS

Lower limit of 95% C/ of PRR > 1(7)anda >3
Lower limit of 95% C/ of PRR > 1(7) anda>5
PRR>2and x*>4and a>3(7)

Lower limit of 95% C/ of ROR > 1 and a>3 (7,12)
Lower limit of 95% C/ of ROR>1anda>5 (12)
Lower limit of 95% Cl of IC > 0 (12)

5" percentile of EBGM (EB05) > 2 (7)
5™ percentile of EBGM (EBO05) > 1.8 and EBGM > 2.5 (12)
EBGM > 2 (7,13)

Abbreviation: PRR=proportional reporting ratio; ROR=reporting odds ratio, BCPNN=Bayesian confidence propagation neural network;
MGPS=multi-item gamma Poisson shrinker; C/=confidence interval; IC=information component; EBGM=empirical Bayesian geometric

mean.
* The number refers to various thresholds.
T The variable “a”
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a” represents the number of reports that include both the specific vaccine being studied and the AEFI being investigated.
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TABLE 3. Reference standard for performance evaluation.

Reference standard Vaccine

AEFI

Reference standard 1 All vaccines (15)

(common events)

Live-attenuated Hepatitis A vaccine (16—-20)

Varicella vaccine (16-20)

Reference standard 2 BCG (15)

(rare events)

Measles containing vaccines (75)

Measles containing vaccines (75)

All injectable vaccines (15)

Live-attenuated oral Polio vaccine (15)

Fever (temperature >38.6 C)

Vaccination site erythema (diameter >2.5 cm),
Vaccination site induration (diameter >2.5 cm)

Anaphylactic shock
Anaphylactic shock

Vaccination site abscess, lymphadenitis,
disseminated BCG infection

Vaccine-associated paralytic poliomyelitis
Thrombocytopenic purpura

Rash morbilliform

Abbreviation: AEFI=adverse events following immunization; BCG=Bacillus Calmette-Guérin.

TABLE 4. Two-by-two contingency table for performance evaluation.

Reference standard

Test Positive Negative Total
Positive True positive (A) False positive (B) A+B
Negative False negative (C) True negative (D) C+D

Total A+C B+D N

Note: “A” means number of vaccine-AEFI combinations listed in reference standard and detected in this study; “B” means number of
vaccine-AEF| combinations not listed in reference standard but detected in this study; “C” means number of vaccine-AEFI combinations
listed in reference standard but not detected in this study; “D” means number of vaccine-AEFI combinations not listed in reference standard

and not detected in this study.

Analyses

The baseline characteristics of AEFI data were
analyzed to assess disproportionality. We examined the
number of signals detected by each signal detection
algorithm and calculated the cumulative distribution of
signals for each algorithm. The distribution of signals
was determined by dividing the number of signals with
a specific number of reports by the total number of
signals detected by each algorithm. Sensitivity and
specificity for each detection method were also
determined as described previously. Analyses were
conducted using R software (version 4.3.1, The R
Foundation for Statistical Computing, Lucent
Technologies, Auckland, New Zealand) and the
PhViD package (version 1.0.8, The R Foundation for

Statistical Computing, Lucent  Technologies,
Auckland, New Zealand).
RESULTS

The original dataset consisted of 587,149 reports
documenting AEFI. After removing 762 duplicate
records and 15,844 records without a valid AEFI
clinical diagnosis, these unique records were further
separated into individual reports, resulting in 871,647
records that contained both an AEFI and a suspected
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vaccine. After removing 485 records without a valid
vaccine name and 132 records with duplicate AEFI-
vaccine pairings, the final analyzable data set consisted
of 871,030 records. This data set included 41 different
vaccines, 771 specific AEFI events, and 3,893 unique
combinations of vaccines and AEFI events.

Table 5 presents the number of signals detected by
each signal detection algorithm. PRR1 and RORI1
identified the highest number of signals, while MPGS1
identified the lowest number of signals. MPGS
methods detected fewer signals compared to PRR,
ROR, and BCPNN.

PRR3, PRR1, RORI1, and MGPS3, exhibited the
highest number of signals detected when the number
of reports was five or fewer. Conversely, MGPS1 did
not detect any signals when the number of reports was
5 or fewer. Among the signals detected by PRR3,
38.9% had a number of reports equal to or less than 5,
while for MGPS3 this percentage was 33.7%. On the
other hand, PRR1, PRR2, RORI1, ROR2, and
BCPNN identified the greatest number of signals
when the number of reports exceeded five.

Algorithm Performance
Table 6 presents the sensitivity and specificity values
for each signal detection algorithm using two reference
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TABLE 5. Cumulative distribution of number of reports for signals detected by each signal detection algorithm using AEFI in

China from 2011-2015.

Number of PRR1 PRR2 PRR3 ROR1 ROR2 BCPNN MGPS1 MGPS2 MGPS3
reports* n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)
a<3 84 (14.0) 0 86 (18.3) 84 (14.0) 0 25 (5.0) 0 0 42 (12.0)
a<4 139 (23.1) 0 141 (30.0) 139 (23.1) 0 4 (14.8) 0 0 88 (25.1)
a<5 181(30.1)  42(9.1)  183(38.9) 181(30.1)  42(9.1) 106 (21.2) 0 0 118 (33.7)
a<6 217 (36.0)  78(16.8) 218(46.4) 216(35.9) 77 (16.7) 136 (27.1) 2 (1.6) 4(2.8) 146 (41.7)
a<7 241 (40.0) 102 (22.0) 242(51.5) 240(39.9) 101(21.9) 158 (31.5) 3(2.4) 6(4.2) 163 (46.6)
a<8 271(45.0) 132(28.5) 271(57.7) 270(44.9) 131(28.4) 182(36.3) 11(8.7) 19 (13.2) 184 (52.6)
a<9 284 (47.2) 145(31.3) 284 (60.4) 283(47.1) 144(312) 195(38.9) 16(12.6) 25(17.4) 194 (55.4)
a<10 300 (49.8) 161(34.8) 297 (63.2) 299 (49.8) 160 (34.6) 208(41.5) 21(16.5) 32(22.2) 201 (57.4)
a>5 421(69.9) 421(90.9) 287 (61.1) 420(69.9) 420(90.9) 395(78.8) 127 (100) 144 (100) 232 (66.3)
a>10 302 (50.2) 302 (65.2) 173(36.8) 302(50.2) 302(65.4) 293(58.5) 106(83.5) 112(77.8) 149 (42.6)

Note: %=Number of signals in each category divided by the total number of signals detected by each method multiplied by 100. The number

after each method refers to various thresholds.

Abbreviation: PRR=proportional reporting ratio; ROR=reporting odds ratio, BCPNN=Bayesian confidence propagation neural network;

MGPS=multi-item gamma Poisson shrinker.

* A represents the number of reports containing both the vaccine of interest and the AEFI of interest.

standards: reference standard one for common adverse
events and reference standard two for rare adverse
events. Based on reference standard one, the algorithms
PRR1 and PRR2 demonstrated the highest sensitivity
at 38.2%, closely followed by RORI and ROR2 at
37.3%. MGPS1 exhibited the lowest sensitivity at
0.9%. On the other hand, MGPS1 exhibited the
highest specificity at 96.7%, followed by MGPS2 at
96.2%. MGPS sensitivity was significantly lower than
that of PRR, ROR, and BCPNN, while its specificity
was higher than that of PRR, ROR, and BCPNN.

Based on reference standard 2, the diagnostic tests
PRR1, PRR2, ROR1, ROR2, and BCPNN exhibited
the highest sensitivity (73.3%), while PRR3, MGPS1,
MGPS2, and MGPS3 showed a lower sensitivity
(53.3%). Among the tests, MGPS1 demonstrated the
highest specificity (96.9%). Although MGPS had
lower sensitivity compared to PRR, ROR, and
BCPNN, its specificity was higher than those three
tests.

DISCUSSION

Our study aimed to assess the main features of
commonly employed algorithms for detecting signals
in spontaneous reporting datasets. Specifically, we
examined the performance of four signal detection
methods in identifying vaccine safety signals within
AEFI data collected in China from 2011 to 2015. To
do this, we analyzed the data using different thresholds
of signal positivity. In order to evaluate the accuracy of
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the algorithms, we compared their results to reference
standards from published scientific analyses, which
were considered as the gold standard. From these
comparisons, we calculated the sensitivities and
specificities of each algorithm.

The number of signals detected varied significantly
among the algorithms, which aligns with the findings
of Kubota and colleagues (27). The PRR and ROR
methods identified the highest number of safety
signals, while MGPS method identified the fewest
signals. Specifically, PRR1 found 475 more signals
than MGPS1. The distribution of signals differed
significantly among algorithms when the number of
reports was five or fewer, but not when the number
exceeded five. PRR1 and ROR1 demonstrated similar
performance in signal identification, as did PRR2 and
ROR2. The variation in the number of signals
identified by PRR1, ROR1, and PRR3 was related to
the variability in signals for more commonly reported
events (i.e., those with more than five reports). On the
other hand, the variability in PRR1 (ROR1) compared
to PRR2, ROR2, BCPNN, and MGPS was due to
differences in signal identification when the number of
reports was fewer than five.

The signal-finding algorithms showed considerable
variation in sensitivity and specificity. PRR1 and PRR2
demonstrated the highest sensitivity, followed by
RORI1, ROR2, and BCPNN, which were also sensitive
but to a lesser extent. However, MGPS1 exhibited the
highest specificity, but had the lowest sensitivity.
Further research is needed to investigate the reasons
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TABLE 6. Performance of each signal detection algorithm.

Signal detection No. of True positive  False positive False negative  True negative  Sensitivity  Specificity
method signals (A) (B) (C) (D) (%) (%)
Based on reference standard 1
PRR1 602 42 560 68 3,223 38.2 85.2
PRR2 463 42 421 68 3,362 38.2 88.9
PRR3 470 5 465 105 3,318 45 87.7
ROR1 601 41 560 69 3,223 37.3 85.2
ROR2 462 41 421 69 3,362 37.3 88.9
BCPNN 501 40 461 70 3,322 36.4 87.8
MGPS1 127 1 126 109 3,657 0.9 96.7
MGPS2 144 1 143 109 3,640 0.9 96.2
MGPS3 350 2 348 108 3,435 1.8 90.8
Based on reference standard 2
PRR1 602 11 591 4 3,287 73.3 84.8
PRR2 463 11 452 4 3,426 73.3 88.3
PRR3 470 8 462 7 3,416 53.3 88.1
ROR1 601 11 590 4 3,288 73.3 84.8
ROR2 462 11 451 4 3,427 73.3 88.4
BCPNN 501 11 490 4 3,388 73.3 87.4
MGPS1 127 8 119 7 3,759 53.3 96.9
MGPS2 144 8 136 7 3,742 53.3 96.5
MGPS3 350 8 342 7 3,536 53.3 91.2

Note: “A” means number of vaccine-AEFI combinations listed in reference standard and detected in this study; “B” means number of
vaccine-AEF| combinations not listed in reference standard but detected in this study; “C” means number of vaccine-AEFI combinations
listed in reference standard but not detected in this study; “D” means number of vaccine-AEFI combinations not listed in reference standard

and not detected in this study.

Abbreviation: PRR=proportional reporting ratio; ROR=reporting odds ratio, BCPNN=Bayesian confidence propagation neural network;
MGPS=multi-item gamma Poisson shrinker. The number after each method refers to various thresholds.

behind this finding. When using the reference standard
for rare side effects, PRR1, PRR2, ROR1, ROR2, and
BCPNN were more sensitive than PRR3, MGPSI1,
MGPS2, and MGPS3. MGPS1 was found to be the
most specific. In summary, our study indicates that
PRR, ROR, and BCPNN are more sensitive than
MGPS for detecting safety signals, while MGPS is
more specific. These findings align with previous
studies (12,21-22).

The initial analysis of our data highlighted the
significance of data preparation. The standardized
processing of data is crucial for ensuring consistent
signal detection analyses (9). In order to perform signal
detection analyses, it is necessary to preprocess
spontaneous AEFI reports. This involves eliminating
duplicate and invalid records, as well as separating
AEFI-vaccine pairs in reports that contain multiple
pairs.

Variations in the number of reports, as well as
sensitivity and specificity, can be attributed to several
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factors. First, computation methods differ when
dealing with a small number of reports (21-22).
Bayesian shrinkage calculations used by BCPNN and
MGPS result in more stable but conservative results
compared to PRR and ROR. Second, variations arise
from the different thresholds selected (21). Future
research should systematically evaluate the impact of
specificity.
Therefore, the variations observed in the number of

threshold values on sensitivity and
reports and sensitivity and specificity highlight the
importance of selecting appropriate signal detection
methods and threshold values based on specific use
case scenarios.

To the best of our knowledge, this is the first study
to investigate the reference standard for performance
evaluation. We systematically evaluated the variation in
the number of reports, as well as the sensitivity and
specificity of the signal detection method, using the
AEFI database in China. Our findings can offer
valuable insights for the selection of signal detection
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methods and corresponding threshold values for the
routine signal detection system in China's AEFI data.
It is important to strike a balance between sensitivity
and specificity when choosing signal detection methods
and threshold values, while considering factors such as
the ability to investigate detected signals (72), the
severity of the AEFI under investigation, and the
potential impact on public health if a true safety signal
is missed.

Based on our study and an extensive review of
relevant scientific literature, we propose different
approaches for the detection of AEFI, depending on
the severity and prevalence of the events, as well as the
type of vaccine. For common or mild AEFIs, we
recommend utilizing more specific signal detection
methods such as the BCPNN or the MGPS, along
with more stringent thresholds such as PRR2 or
ROR2. These methods and thresholds can effectively
reduce the number of false positives. In contrast, for
rare or severe AEFIs, or for new licensed vaccines, we
advise using more sensitive signal detection methods
like the PRR or the ROR, along with less stringent
thresholds. These approaches are designed to minimize
the risk of missing true signals.

This study has some limitations. First, there is no
universally accepted gold standard for evaluating the
performance of signal detection (72). In this study, we
used reference standards based on the World Health
Organization’s global manual on surveillance of
adverse events following immunization (75) and safety
signals identified in previous studies (16-20) as the
gold standards. Second, AEFI data are collected
through a passive surveillance system, and the quality
of the reports may affect the detection of signals.
Additionally, AEFI data is subject to
limitations, such as under-reporting,
reporting, or over-reporting (23). Therefore, safety
signals identified solely based on AEFI data in this
study cannot determine causality and should be
interpreted cautiously.

In our study, we conducted a comprehensive analysis
of the number of signals detected and the performance
of various methods for vaccine safety signal detection.
The analysis was based on data from a passive,
spontancously reported database of AEFI. We
recommend further research to evaluate the specific
characteristics of the identified signals and assess the
impact of different thresholds on signal detection
accuracy. This additional research will provide valuable
insights for enhancing the accuracy of vaccine safety
signal detection in the context of vaccines used in

known
selective
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SUPPLEMENTARY TABLE S1. Computation and application of each signal detection method.

Method Computation Advantages (1) Limitations (7)
PRR = ﬂ;g“ +j)) 1. Easily applicable: 1. Can not be calculated for all vaccine-
cflc+ . , .
) Sl AEFI pairs, e.g. PRR can not be
In +1.96; In :
PRR (2) 959 CJ = ¢ (PRRIE1-96XSEHInPRR) 2. Easily interpretable; calculated if cell ¢ is 0, 95% CI can not be

3. More sensitive as compared to

Bayesian method. calculated if cella or cis O;

1 1 1

_ eln(PRR)ﬂ%x i A 2. Low specificity .
ROR = alb _ad 1. Easily applicable; 1. Can not be calculated for all vaccine-
Td ke 2. Easily interpretable; AEFI pairs, e.g. ROR can not be
ROR (3-4) 95% CI = JMROR)E1.96xSE(IlnROR) 3. More sensmve as comf.Jared to calculated if cell b gnd care 0, 95% ClI cgn
Bayesian method ; not be calculated if cellaorb orcordis
,W(ROR)JIL%XW 4. Different adjustment for covariates in 0; )
=e b cd logistic regression. 2. Low specificity .
o 1. Always applicable; 1. Computation is complex;
BCPNN (4-5) logyax (a+b+c+d)f(a+b)x(a+c) 2. More specific as compared to the ' P S compiex;
. . 2. Low sensitivity .
frequentist method .
— 1. Always applicable; 1. Computation is complex;
MGPS (6) (a+b)x(ate) 2. More specific as compared to 7y Eow sensitivit nplex;
atb+c+d frequentist method". : Y-

*when commonly cited thresholds are used.
** Basic computation is listed here. More details regarding Bayesian shrinkage can be found in the paper (4-5).
*** Basic computation is listed here. More details regarding Bayesian shrinkage can be found in the paper (6).
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