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A B S T R A C T

Two-year toxicology and carcinogenesis rodent studies conducted at the National Toxicology Program (NTP) are
used to identify potential adverse health effects in humans due to chemical exposure, including cancer. Liver
tumor, the most frequently diagnosed tumor type of chemically induced neoplastic effects documented in NTP’s
carcinogenicity studies, is usually difficult to be detected at early stage due to the inconspicuous symptoms.
However, the abnormal growth of liver cells can lead to liver weight increase, so it is hypothesized that liver
tumor incidence is associated with early stage liver weight increase. In this study, the association between liver
weight increase and liver tumor incidence are quantified by (1) calculating the correlation coefficient of and (2)
building quantitative linear relationship between benchmark dose estimates derived from these two types of data
collected from NTP studies. Together with 151 chemical/species/sex combinations of liver tumor data showing
positive evidence collected from 76 NTP long-term studies, short-term liver weight data reported in the same
NTP report were extracted to be paired with the liver tumor data for the analyses. Results show that the esti-
mated correlation coefficients (as high as 0.78) along with the adequately fitted linear models suggest that the
association between relative liver weight increase and aggregated liver tumor incidence are relatively strong.
Additional analyses focused on some more specific situations (e.g., specific tumor type or specific strain/sex
combination) further confirmed the strong association. Given the design of this study, the interpretation of the
findings is not that liver weight increase can be used to predict liver tumor incidence, instead, evident increase in
liver weight might be used as a reason to prioritize the test article for a two-year toxicology and carcinogenesis
study.

1. Introduction

Two-year toxicological and carcinogenesis rodent studies conducted
at the National Toxicology Program (NTP) are often used to identify
chemical-induced adverse health effects in humans, including choric
diseases like cancer. In a traditional two-year bioassay study at NTP,
both sexes of rats (e.g., F344/N or Sprague Dawley rats) and mice (e.g.,
B6C3F1/N hybrid mice) are exposed to a chemical at a number of dose
levels (including an control group) in groups of 50 animals/sex/species
to elicit toxicological responses. At the end of the study, all of the tested
animals are sacrificed for a comprehensive pathological examination to
identify any non-neoplastic and neoplastic lesions. Due to the large
number of animals used in the experiments and time-consuming pro-
cedure, a typical two-year bioassay study can cost up to several millions
of dollars.

Primary liver cancer is the sixth most commonly occurring cancer in

the world and is among the leading cause of cancer deaths globally [1].
Studies have shown that a number of risk factors and comorbidities are
associated with hepatic carcinogenesis, such as non-alcoholic fatty liver
disease [2], and exposure to chemicals [3–5] and nanomaterials [6]. On
the other hand, liver tumor represents the most frequently diagnosed
tumor types of chemically induced neoplastic effects documented in
NTP’s carcinogenicity studies [7]. Consequently, a number of studies
have investigated the feasibility and reliability to use early stage tox-
icological or pathological effects as an indicator to predict liver tumor
incidences through the analyses of NTP data. Allen et al [8] assessed the
effectiveness of correlating the presence of sub-chronic liver lesions
with the occurrence of liver cancer by encompassing multiple NTP
studies. The study found that the integrated consideration of hepato-
cellular necrosis, hepatocellular hypertrophy, and hepatocellular cyto-
megaly could be a good predictor of carcinogenicity in the 2-year study.
Boobis et al [9], based on a retrospective analysis of sixteen chemicals
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with liver, lung, or kidney tumors in the NTP database, pointed out that
cellular changes indicative of a tumor endpoint could be identified
utilizing short-term conventional endpoints for many of the examined
chemicals. Particularly, this study found that the combined considera-
tion of the three liver lesions used in Allen et al. [8] together with
increase relative liver weight successfully identified eleven of eleven
liver carcinogens. Later, Ring and Eskofier [10] employed patterns re-
cognized by data mining methods to accurately predict over 80% of the
incidence of liver tumors using short-term liver weight data. However,
the extracted patterns simultaneously indicated potential bias in liver
tumor prediction which may depend on test agent and some other
factors in study design (such as species and sex). All the studies have
confirmed the feasibility to use early stage endpoints in liver to predict
the incidence of liver tumor in rodents, even though unbiased predic-
tion requires more detailed case-by-case analyses.

All the three studies focused on evaluating the correlation of short-
term liver effects and long-term liver tumors by measuring the agree-
ment between qualitative indicators (e.g., the presence of increased
liver weight vs. the incidence of liver tumor), but none took the dose of
test agent into account. As pointed out in Boobis et al [9], analyzing
dose response for these effects will be important for improving the
predictivitiy. Consequently, dose-response information is integrated
into the analyses performed in this study, with an aim to investigate the
correlation between the early-stage liver weight increase and liver
tumor incidence in the long-term NTP rodent carcinogenicity studies in
a more quantitative way. Benchmark dose (BMD) will be calculated for
these two focused endpoints (i.e., liver tumor incidence and liver
weight increase) and then the quantitative association between the
endpoints will be assessed at two levels: (1) estimate the correlation
coefficient of the dose levels that can cause critical effects (i.e., BMD) in
the two focused endpoints; and (2) perform a regression analysis to
predict long-term BMD based on the short-term BMD estimated from
liver weight increase. The novel and advanced aspect of this method is
two-fold: first, dose-response information (rather than dichotomous
indicator of with or without tumor) included in the data is better uti-
lized to identify changes in the endpoints; second, the prediction of
long-term of BMD using short-term BMD is more favored by regulatory
risk assessment than simply an indicator of correlation.

2. Methods

2.1. Data collection

The data of liver tumor incidence and liver weight were extracted
from National Toxicological Program (NTP)’s database1 . NTP is an
interagency program that generates, shares, and also interprets tox-
icological information about potentially hazardous substances in the
environment. Toxicological studies conducted at NTP meet all applic-
able health and safety requirements and are subjected to retrospective
quality assurance audits before publication [11], therefore, the data
published in NTP reports are of high quality. NTP provides a thorough
database of study reports in two main series: (1) technical report on
toxicology and carcinogenesis studies (TR series), which documents a 2-
year toxicological and carcinogenesis study and reports both non-neo-
plastic and neoplastic effects observed in the study. Commonly, short-
term studies (typically 2-week and 3-month) are conducted prior to the
2-year studies to determine the treatments to be used in the 2-year
study and to identify some potential organs or systems of interest. The
results of the short-term studies are usually available in the TR report.
(2) Technical report on toxicity studies (TOX series), which reports non-
neoplastic lesions and genetic toxicology observed in 2-week and 3-
month studies that are mainly used to characterize and evaluate the

toxicological potential of testing articles. In most cases, the test che-
micals in the TR and TOX reports do not overlap with each other.
Therefore, when searching for short-term liver weight data corre-
sponding to the liver tumor incidence, the data reported in the same TR
report are used as a preferred source. If no such data are available, then
equivalent data (i.e., exposure to the same chemical through the same
route) reported in the TOX report are considered.

Three steps were used to collect data for the analyses in this study,
and the steps are graphically shown using a flow chart in Fig. 1. First,
screening all 593 currently published TR reports using NTP’s Chemical
Effects in Biological Systems (CEBS)2 . According to the results reported
in the “Organ Sites with Neoplasia” section, there are 174 test articles of
which at least one chemical/species/sex combination is associated with
positive evidence (including clear and some evidence3) of liver carci-
nogenicity. Among these combinations, there are 50 combinations for
male rats, 55 for female rats, 99 for male mice and 122 for female mice.

Second, reviewing all of these 174 test articles to find short-term (in
this step, any duration shorter than or equal to 60 weeks was con-
sidered as short-term) liver weight data (including absolute liver
weight, relative liver weight, or both) from its own TR. Consequently,
adequate data for 71 test chemicals were collected from TRs. For the
chemicals whose short-term data cannot be found in its own TR reports,
we then attempted to find the corresponding liver weight data in the
TOX reports. In this study, five sets of liver weight data obtained from
the TOX reports were paired with long-term liver tumor incidence data.
Although the corresponding studies were conducted separately, all
these five TOX studies used the same treatment methods and strains of
rodents as the corresponding TR studies. Eventually, 76 test chemicals
including 153 chemical/species/sex combinations of long-term liver
tumor incidence data were identified. The main reason why a large
number of studies was screened out is that it was not a standard
practice to report short-term liver weight data in the TRs published
before 1990. There are a little more sets of liver weight data (261 sets in
total) corresponding to these combinations because for some chemicals
liver weights were measured at various time points. The identified 76
test chemicals are listed in Table 1 where the last column contains the
number of chemical/species/sex combinations with positive evidence
of liver tumor.

The third step is collecting and transforming the data to a consistent
format for the identified combinations, and preprocessing the data to
make them ready for analyses. For the liver tumor data, in addition to
the dose levels and number of total subjects in the dose groups, the
number of incidences of different types of neoplastic effects were re-
corded, such as hepatocellular adenoma, hepatocellular carcinoma,
hepatoblastoma, cholangiocarcinoma, hepatocholangiocarcinoma, and
hepatocholangioma, for each of the chemical/species/sex combinations
if the data are available. Besides the individual tumor types, we also
tried our best to record the number of animals with any of these types of
tumor in each dose group. When individual liver incidence status is
available in TRs, these number can be accurately counted (in majority
of the cases), however, when such information was not reported, we
then used the aggregated counts that cover most tumor types reported
in TRs (e.g., “Hepatocellular Adenoma, or Carcinoma, or
Hepatoblastoma” sometimes reported in TRs). Consequently, in our
analyses presented below, four different types of endpoints were con-
sidered, i.e., adenoma, carcinoma, adenoma or carcinoma (i.e., the two
most common types), and all neoplastic effects (i.e., number of animals
with any types of liver tumor considered in NTP study). The count of
individual and aggregated liver tumor incidence for each dose group
was recorded in different columns in the “longterm_livertumor.xlsx” file
as a supplemental material. Two combinations were removed because

1 All of the NTP long-term technical reports are available at: https://ntp.
niehs.nih.gov/results/pubs/longterm/reports/longterm/index.html.

2 Available at https://tools.niehs.nih.gov/cebs3/ui/.
3 The definition of clear evidence and some evidence is provided in each TR

report.
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only one exposure group (in addition to the control group) was used in
the test (in TR-508). Therefore, 76 test chemicals with 151 combina-
tions were eventually included in the final dataset for analyses. For liver
weight data, both absolute and relative live weight data were collected
if they are available (in some cases only one type was reported). The
weight data were mostly reported in summary data as mean ±
standard error. To make the datasets consistent, a few sets of data re-
ported as standard deviation were converted to standard error by di-
viding the square root of the sample size. A few relative liver weight
datasets expressed in percentage were converted to the unit of mg (liver
weight) / g (body weight) (i.e., ‰ body weight) by multiplying 10 to
make the data in the same unit (i.e., converting % body weight to ‰
body weight). Responding to the action taken in the liver tumor dataset,
the two corresponding combinations were excluded in the liver weight
data as well. The detailed liver weight data used in this study are stored
in “shortterm_liverweight.xlsx” available in the supplemental material.

2.2. Benchmark dose methodology

The benchmark dose (BMD) methodology originally proposed by
Crump in 1984 [19] is adopted in the study to estimate a toxicity value
(i.e., BMD) that induces a predetermined change in the response. The
BMD methodology has a few important advantages over the traditional
pair-wise comparison approach to determine the dose that causes
chemical-related adverse effect (i.e., the NOAEL/LOAEL method). For
the purposes of this study, the key features that make the BMD method
preferable are its ability (1) to take data at all dose levels into account
(so that background response and potency of response can be con-
sidered), (2) to sensitively detect the dose-response trend in the data,
and (3) to compare toxicity values among different studies and data
types. Because liver tumor incidence and liver weight are two different
types of endpoint data, i.e., dichotomous data and continuous data
respectively, the BMD method for these two data types is briefly in-
troduced below.

2.2.1. BMD analysis for dichotomous data
For dichotomous data (like the liver tumor incidence data indicating

whether liver tumor is present or not), a BMD based on the extra risk
definition (US EPA’s default option) is defined by the equation below:

=f BMD f
f BMD

BMR( ) (0)
1 ( ) (1)

where f ( ) represents an empirical dose-response model commonly
used in risk assessment. For dichotomous data, a benchmark response
(i.e., BMR) value is chosen to indicate a toxicologically meaningful
adverse change, typically on the lower end of response (such as 1% or
10%). Therefore, the estimated benchmark dose is the dose level that
satisfies the function above.

In risk assessment practice, a number of empirical models are fit to
dose-response data and then a BMD estimated from the most adequate
model [12] or a model averaged BMD estimated from a suite of models
[13] is chosen as the starting point for low dose extrapolation. In this
study, the recently developed model averaging BMD estimation ap-
proach [14] has been applied to take model uncertainty into account for
BMD estimation: eight dose-response models, including the Quantal-
linear model, Logistic model, Probit model, 2nd degree multistage
model, Weibull model, Loglogistic model, Logprobit model, and Di-
chotomous Hill model, are fit to the data individually, then a weight
(calculated based on how well the model fits the data) averaged BMD is
estimated by integrating BMD estimates from each individual model.
Please refer to Shao and Shapiro [14] for detailed description of the
format of the models, as well as the model averaging methodology. In
the present study, for dichotomous data, BMDs are estimated based on
two BMR values, i.e., 1% and 10% extra risk, for the reason that the
response in the low dose range is our main focus.

2.2.2. BMD analysis for continuous data
For continuous data (such as the liver weight data that are on a

continuous scale), the BMD is defined based on the relative change of
central tendency as expressed by the Eq. (2) below:

± =f BMD f
f

BMR( ) (0)
(0) (2)

where f ( ) is a continuous dose-response model to represent the central
tendency of response. Unlike the dichotomous data, continuous data
can either increase or decrease to be considered as adverse, conse-
quently there is a “±” sign in the numerator in Eq. (2). Given the re-
lative change definition, the BMR is commonly set at a small percentage
(e.g., 1% or 10%) to define adverse effect in the response in low dose

Fig. 1. The flow chart of the process of data collection.
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Table 1
Chemicals Selected for This Analysis.

TR Report
Year

Liver Tumor Data
Source

Liver Weight Data
Source

Test Article CAS No. Exposure Route Count of Combinations

1978 TR-027 TOX-49 1,1,2,2-Tetrachloroethane 79-34-5 Gavage 2
1983 TR-244 TR-244 Polybrominated biphenyl mixture 67774-32-7 Gavage 4
1986 TR-308 TR-308 Chlorinated paraffins: C12, 60% chlorine 108171-26-2 Gavage 4
1989 TR-349 TR-349 Pentachlorophenol 87-86-5 Feed 4c

1989 TR-351 TR-351 p-Chloroaniline hydrochloride 20265-96-7 Gavage 2
1989 TR-352 TR-352 N-Methylolacrylamide 924-42-5 Gavage 2
1990 TR-382 TR-382 Furfural 98-01-1 Gavage 2
1991 TR-390 TR-390 3,3'-Dimethylbenzidine dihydrochloride 612-82-8 Drinking water 2
1991 TR-395 TR-395 Probenecid 57-66-9 Gavage 1
1991 TR-405 TR-405 C.I. Acid red 114 6459-94-5 Drinking water 2
1992 TR-397 TR-397 C.I. Direct blue 15 2429-74-5 Drinking water 2
1992 TR-407 TR-407 C.I. Pigment red 3 2425-85-6 Feed 2
1993 TR-384 TR-384 1,2,3-Trichloropropane 96-18-4 Gavage 2
1993 TR-400 TR-400 2,3-Dibromo-1-propanol 96-13-9 Dermal 3
1993 TR-402 TR-402 Furan 110-00-9 Gavage 4
1993 TR-416 TR-416 o-Nitroanisole 91-23-6 Feed 2
1993 TR-420 TR-420 Triamterene 396-01-0 Feed 2
1993 TR-422 TR-422 Coumarin 91-64-5 Gavage 1
1993 TR-423 TR-423 3,4-Dihydrocoumarin 119-84-6 Gavage 2
1993 TR-434 TR-434 1,3-Butadiene 106-99-0 Inhalation 2
1993 TR-443 TR-443 Oxazepam 604-75-1 Feed 4
1994 TR-430 TR-430 C.I. Direct blue 218 28407-37-6 Feed 2
1995 TR-439 TR-439 Methylphenidate hydrochloride 298-59-9 Feed 2
1996 TR-383 TR-383 1-Amino-2,4-dibromoanthraquinone 81-49-2 Feed 4
1997 TR-450 TR-450 Tetrafluoroethylene 116-14-3 Inhalation 4
1997 TR-457 TR-457 Salicylazosulfapyridine 599-79-1 Gavage 2
1997 TR-461 TR-461 Nitromethane 75-52-5 Inhalation 1
1997 TR-463 TR-463 D & C yellow no. 11 8003-22-3 Feed 2
1998 TR-467 TR-467 Chloroprene 126-99-8 Inhalation 1
1998 TR-475 TR-475 Tetrahydrofuran 109-99-9 Inhalation 1
1999 TR-466 TOX-10 Ethylbenzene 100-41-4 Inhalation 1
1999 TR-478 TOX-20 Diethanolamine 111-42-2 Dermal 2
1999 TR-480 TR-480 Lauric acid diethanolamine condensate 120-40-1 Dermal 1
1999 TR-485 TR-485 Oxymetholone 434-07-1 Gavage 1
2000 TR-470 TR-470 Pyridine 110-86-1 Drinking Water 2
2000 TR-476 TR-476 Primidone 125-33-7 Feed 2
2000 TR-479 TR-479 Coconut oil acid diethanolamine

condensate
68603-42-9 Dermal 2

2000 TR-491 TR-491 Methyleugenol 93-15-2 Gavage 4
2001 TR-496 TR-496 Fumonisin B1 116355-83-0 Feed 1
2001 TR-499 TR-499 Indium phosphide 22398-80-7 Inhalation 2
2003 TR-503 TR-503 Chloral hydrate 302-17-0 Gavage 2
2003 TR-508 TOX-27 Riddelliine 23246-96-0 Gavage 4d

2004 TR-510 TR-510 Urethane 51-79-6 Drinking Water 6c

2004 TR-512 TR-512 Elmiron 37319-17-8 Gavage 2
2004 TR-515 TR-515 Propylene glycol mono-t-butyl ether 57018-52-7 Inhalation 2
2004 TR-516 TR-516 2-Methylimidazole 693-98-1 Feed 2
2005 TR-494 TR-494 Anthraquinone 84-65-1 Feed 3
2005 TR-527 TR-527 Leucomalachite Green 129-73-7 Feed 1
2006 TR-520 TR-520 PCB126 57465-28-8 Gavage 1
2006 TR-521 TR-521 TCDD 1746-01-6 Gavage 1
2006 TR-525 TR-525 Pentachlorodibenzofuran 57117-31-4 Gavage 1
2006 TR-526 TR-526 Mixture of TCDD, PeCDF, PCB126 1746-01-6

57117-31-4
57465-28-8a

Gavage 1

2006 TR-530 TR-530 Binary Mixture of PCB 126, PCB 153 57465-28-8
35065-27-1a

Gavage 1

2006 TR-531 TR-531 Binary Mixture of PCB 126, PCB 118 57465-28-8 31508-00-6a Gavage 1
2006 TR-533 TOX-61 Benzophenone 119-61-9 Feed 1
2007 TR-537 TR-537 Dibromoacetic acid 631-64-1 Drinking Water 2
2007 TR-543 TR-543 alpha-Methylstyrene 98-83-9 Inhalation 1
2008 TR-541 TR-541 Formamide 75-12-7 Gavage 1
2009 TR-542 TR-542 Cumene 98-82-8 Inhalation 1
2009 TR-549 TR-549 Bromochloroacetic acid 5589-96-8 Drinking Water 2
2010 TR-551 TR-551 Isoeugenol 97-54-1 Gavage 1
2010 TR-554 TR-554 5-(Hydroxymethyl)-2-furfural 67-47-0 Gavage 1
2010 TR-557 TR-557 beta-Myrcene 123-35-3 Gavage 1
2010 TR-558 TR-558 3,3',4,4'-Tetrachloroazobenzene 14047-09-7 Gavage 2
2010 TR-559 TR-559 PCB 118 31508-00-6 Gavage 1
2010 TR-560 TR-560 Androstenedione 63-05-8 Gavage 2
2010 TR-562 TR-562 Goldenseal root powder GOLDENSEALRTb Feed 3

(continued on next page)
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range. In other words, the BMD is the dose where the central tendency
of the response has changed a certain percent from its counterpart in
the control group [20]. 1% and 10% relative change are used as BMR in
this study. Model averaged BMD estimation techniques for continuous
data introduced in Shao and Shapiro [14] with the default settings are
applied as well to take model uncertainty into account.

2.2.3. Individual model BMD estimation
In addition to the model averaged BMD estimates, we also in-

vestigate the situation where the difference in the dose-response models
from which the BMDs are estimated can be mitigated as much as pos-
sible. Accordingly, only the Quantal-linear model, i.e.,

= + × ×f d a a b d( ) (1 ) [1 exp( )], for BMD estimation from di-
chotomous data, and the Linear model, i.e., = + ×f d a b d( ) , for BMD
estimation from continuous data were used. In both equations, d re-
presents dose as the independent variable. There are two main reasons
for this choice: (1) both models are one of the simplest models in the
corresponding category (each has only two parameters), so that they
have the adaptability to fit the data sets collected from the NTP studies,
including those with only three dose levels; and (2) these two models
have a similar shape (i.e., linear) in the low dose region, so that the
discrepancy in BMD estimation and further the disturbance in correla-
tion of BMD estimates caused by the formats of dichotomous and
continuous dose-response models can be minimized.

2.3. Quantitative measure the association

After the BMDs are estimated separately from the liver weight data
and liver tumor incidence data, the correlation and dependence of the
two sets of BMD estimates at two levels were quantified: (1) calculating
the Pearson correlation coefficient to measure how closely the BMDs
are associated; (2) applying linear regression to quantitatively describe
the relationship between the two sets of BMDs with the goal of pre-
dicting long-term liver tumor BMD using short-term liver weight BMD.
Such a procedure will help us establish the qualitative correlation re-
lationship between early stage liver weight increase and liver tumor
incidence, and potentially develop the quantitative connection between
short-term and long-term BMDs which may have significant impact on
reducing the burden of animal use for risk assessment of chronic effect.
The limitation of the analyses is discussed in Section 4.

For both the calculation of correlation coefficient and linear re-
gression, the BMDs are first converted to log scale. The doses ad-
ministered in short-term studies are commonly used to determine the
maximum tolerant dose to be used in long-term study, so the doses in
these two types of toxicological experiments often have differences
larger than one order of magnitude. Consequently, log-scale conversion,

a widely used operation in practice, is employed to mitigate the dif-
ference and to rationalize the analysis of the correlation of BMDs
[15,16]. The Pearson correlation coefficient is calculated as

=X Y
COV X Y

,
( , )

X Y
, where COV X Y( , ) is the covariance of the two vectors

of BMD estimates, and X and Y are the standard deviation of the first
and second vector of BMD estimates respectively. The correlation
coefficient is a number between -1 and 1. The correlation coefficient of
1, 0, and -1 respectively means two quantities are positively correlated
with each other perfectly, two quantities are completely random, and
two quantities are negatively correlated with each other perfectly. For
linear regression, the linear model, = +f x a bx( ) is fit to the two sets of
log-transformed BMDs where the short-term BMDs estimated from liver
weight data are considered as the independent variable and the long-
term BMDs estimated from the liver tumor data are considered as the
dependent variable. The coefficient of determination (also known as R-
square) is calculated to evaluate how well the linear model fit the data.
The R-square is a value between 0 and 1, with high values generally
suggesting a good fit and prediction capability. It is important to point
out that the linear model here has the same mathematical format as the
Linear dose-response model mentioned in Section 2.2.3, but the in-
dependent and dependent variables in these two scenarios are different.

3. Data analyses and results

The analysis results are presented in two subsections: (1) general
results derived from a relatively comprehensive set of available data;
and (2) a number of subsets of the data to illustrate the association in
those specific cases. The BMD analyses were conducted using the re-
cently developed Bayesian benchmark dose estimation system, i.e., the
BBMD system [14].

3.1. General comparison

For the general comparison, all of the available liver tumor data
(i.e., the aggregated liver tumor counts represented in the
“Neoplastic_effects” column) were one-to-one paired with the corre-
sponding relative liver weight data respectively through the following
three common steps:

(1) Remove liver weight data measured at extra time points. The liver
weight data measured at 13-week time point or closest to 13-week
were kept, and extras were removed. If the only available liver
weight data were from a study with shorter or longer durations
(e.g., 4-week or 52-week), then the liver weight data were still kept.
We didn’t exclude the chemicals that has liver weight measures at

Table 1 (continued)

TR Report
Year

Liver Tumor Data
Source

Liver Weight Data
Source

Test Article CAS No. Exposure Route Count of Combinations

2011 TR-561 TR-561 Tetralin 119-64-2 Inhalation 1
2011 TR-563 TR-563 Pulegone 89-82-7 Gavage 2
2012 TR-571 TR-571 Kava kava extract 9000-38-8 Gavage 2
2012 TR-575 TR-575 Acrylamide 79-06-1 Drinking Water 1
2012 TR-579 TR-579 N,N-Dimethyl-p-toluidine 99-97-8 Gavage 4
2013 TR-578 TR-578 Ginkgo biloba extract 90045-36-6 Gavage 2
2014 TR-580 TR-580 beta-Picoline 108-99-6 Drinking Water 1
2014 TR-587 TR-587 Tetrabromobisphenol A 79-94-7 Gavage 1
2016 TR-589 TR-589 Pentabromodiphenyl Ether Mixture 32534-81-9 Gavage 4

a. The testing articles are mixtures of multiple chemicals.
b. A CAS number was not assigned for Goldenseal Root Powder, so we labeled it “GOLDENSEALRT”.
c. Three different levels of Ethanol were mixed in the test article.
d. Two combinations in this test article were removed later due to the lack of dose groups.
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multiple time points, but excluded the extra measures that are far
away from the 13-week time point. The reason to choose 13-week
(or 3-month) is that this is the most commonly used study design to
investigate sub-chronic effects.

(2) Remove the combinations with inadequate liver weight data. There
are a few studies in which only mean value of liver weight was
reported (no standard deviation or standard error data) resulting
incomplete data for BMD modeling. Consequently, there are 144
combinations in the liver tumor paired with relative liver weight.
Given both toxicological and statistical considerations, we excluded
absolute liver weight from the correlation analyses and only fo-
cused on relative live weight.

(3) For correlation coefficient estimation and linear regression, the
BMDs estimated from liver tumor and weight data given
BMR=10% were paired, and the BMDs estimates based on
BMR=1% were paired.

To ensure the BMD estimates are reliable to be used in the analyses
performed in this study, the posterior predictive p-value [17], a good-
ness-of-fit indicator, is used to evaluate how well the dose-response
models fit the data. The posterior predictive p-values reported by the
BBMD system suggest that the Linear model for continuous data, the
Quantal-linear model for dichotomous data, and the model averaging
method for both types of data can produce valid BMD estimates given
adequate model fitting. The correlation coefficient estimates for the
BMDs from liver weight and liver tumor data are listed in Table 2, and

the corresponding linear regression results are graphically shown in
Figs. 2 to 5. The correlation coefficients listed in Table 2 as well as the
fitted linear curves indicate that the association between the two sets of
BMD estimates from the liver weight data and liver tumor data are
relatively strong.

Table 2
Correlation Coefficients of log-BMDs from Liver Weight & Liver Tumor
Incidence.

MA Continuous BMDs vs MA
Dichotomous BMDs

Linear BMDs vs Quantal
Linear BMDs

BMR=10% 0.740 0.784
BMR=1% 0.660 0.784

Fig. 2. Fitted linear model to the BMDs estimated using model averaging
method given BMR=10%. X-axis represents the log-transformed BMD esti-
mated from the continuous liver weight data, and y-axis represents the log-
transformed BMD estimated from the dichotomous liver tumor data. The red
line in the graph represents the maximum likelihood estimated linear model
with the 95th confidence interval represented by the two blue dashed lines. The
equation of the fitted linear model and estimated R2 are shown on the lower
right corner.

Fig. 3. Fitted linear model to the BMDs estimated using the Linear and Quantal-
linear model for continuous data and dichotomous data respectively, given
BMR=10%. X-axis represents the log-transformed BMD estimated from the
continuous liver weight data, and y-axis represents the log-transformed BMD
estimated from the dichotomous liver tumor data. The red line in the graph
represents the maximum likelihood estimated linear model with the 95th con-
fidence interval represented by the two blue dashed lines. The equation of the
fitted linear model and estimated R2 are shown on the lower right corner.

Fig. 4. Fitted linear model to the BMDs estimated using model averaging
method given BMR=1%. X-axis represents the log-transformed BMD estimated
from the continuous liver weight data, and y-axis represents the log-trans-
formed BMD estimated from the dichotomous liver tumor data. The red line in
the graph represents the maximum likelihood estimated linear model with the
95th confidence interval represented by the two blue dashed lines. The equation
of the fitted linear model and estimated R2 are shown on the lower right corner.
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3.2. Specific comparison

A few specific situations were explored to investigate the liver
weight / tumor association in some subgroups of interest: (1) a) asso-
ciation between hepatocellular adenoma incidence and liver weight
increase, b) between hepatocellular carcinoma incidence and liver
weight increase, and c) between hepatocellular adenoma or carcinoma
and liver weight increase; (2) association in subgroups male rats, female
rats, male mice and female mice. The same 3-step procedure was em-
ployed to preprocess the BMDs from various subsets of liver tumor data
for the correlation coefficient calculation. The results of tumor type
specific correlation coefficient are shown in Table 3 below.

For the species/sex specific correlation coefficient calculation, we
basically use the BMDs calculation from the relative liver weight and
liver tumor incidence data (the same as the BMDs used in Table 2) and
separate them into four subgroups for calculating the correlation
coefficients. The results are presented in Table 4 below.

In addition to the correlation coefficients, linear regression has also
been conducted for these specific cases mentioned above, and the
parameter estimates of the linear model and R2 estimates are listed in
Table A1 in the Appendix. The results shown in the Tables 3, 4 and A1
demonstrate that in some cases (e.g., male mice) the association might

be a little stronger, but the general pattern of associations illustrated in
these specific cases is very similar to the overall situation discussed in
Section 3.1.

4. Discussion

This study innovatively applied the benchmark dose methodology
to extract valuable information from short-term liver weight data and
long-term liver tumor data: the BMD estimated based on fitted dose-
response curve contains toxicological information (e.g., background
response and potency) and is more sensitive to detect biological
changes induced by chemical exposure. Given the quantification of the
toxicity value of the short-term endpoint (i.e., liver weight increase)
and long-term endpoint (i.e., liver tumor incidence), we are able to not
only assess the concordance between the sub-chronic effect and the
chronic effect in a relatively qualitative manner like what many pre-
vious studies did [8,10,18], but also build the quantitative relationship
of the two sets of BMD estimates as a first step to predicting long-term
toxicity value using short-term counterpart in support of human health
risk assessment. The estimated correlation coefficients ranging from
0.627 to 0.842 together with the linear regression results confirm that
the quantitative association between liver weight increase and liver
tumor incidence is relatively strong, and also suggest that the estimated
association indicators depend on a number of factors.

Model uncertainty is an important factor that can substantially in-
fluence the correlation estimation. The results listed in Tables 2 to 4
show that the correlation coefficients estimated from model averaged
BMDs are consistently lower than the counterparts estimated using
BMDs from the Linear and Quantal-linear model. The main reason is
that the model averaged BMD estimation takes model uncertainty into
account by integrating individual BMDs estimated from different dose-
response models, consequently, the heterogeneity becomes larger due
to the uncertainty and variability in the model-dependent BMD esti-
mates. In addition, the results show that the correlation coefficients are
generally lower at the BMR=1% level than at the BMR=10% level.
This situation is mainly caused by the fact that the dose-response

Fig. 5. Fitted linear model to the BMDs estimated using the Linear and Quantal-
linear model for continuous data and dichotomous data respectively, given
BMR=10%. X-axis represents the log-transformed BMD estimated from the
continuous liver weight data, and y-axis represents the log-transformed BMD
estimated from the dichotomous liver tumor data. The red line in the graph
represents the maximum likelihood estimated linear model with the 95th con-
fidence interval represented by the two blue dashed lines. The equation of the
fitted linear model and estimated R2 are shown on the lower right corner.

Table 3
Correlation Coefficients of BMDs from Relative Liver Weight & Adenoma/Carcinoma Incidence.

MA Continuous BMDs vs MA Dichotomous BMDs Linear BMDs vs Quantal Linear BMDs

hepatocellular adenoma (130) 0.726 / 0.644 0.766 / 0.766
hepatocellular carcinoma (129) 0.767 / 0.674 0.740 / 0.740
Hepatocellular adenoma or carcinoma (144) 0.725 / 0.627 0.759 / 0.759

Note: the numbers in the first column are the numbers of combinations used to calculate the correlation coefficient; two correlation coefficients given BMR=10%
(left) and BMR=1% (right) are listed in each cell.

Table 4
Correlation Coefficients of BMDs from Relative Liver Weight & Liver Tumor
Incidence in four species/sex groups.

MA Continuous BMDs vs MA
Dichotomous BMDs

Linear BMDs vs Quantal
Linear BMDs

Male Rats (15) 0.775 / 0.807 0.835 / 0.835
Female Rats (27) 0.766 / 0.758 0.798 / 0.798
Male Mice (49) 0.842 / 0.780 0.830 / 0.830
Female Mice (53) 0.776 / 0.705 0.808 / 0.808

Note: the numbers in the first column are the numbers of combinations used to
calculate the correlation coefficient; two correlation coefficients given
BMR=10% (left) and BMR=1% (right) are listed in each cell.
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relationship is getting more and more uncertain as the dose level get-
ting lower. On the other hand, BMDs estimated from the Linear model
and Quantal-linear model are more closely correlated when model
uncertainty is excluded from the analysis. It is worth mentioning that,
because of the linear shape of the Linear model and Quantal-linear
model in the low-dose region, the estimated correlation coefficients are
the same at the BMR levels of 10% and 1%.

The graphical results of linear regression demonstrated in Figs. 2–5
together with the estimated R2 statistic suggest that a linear model can
generally effectively describe the quantitative relationship between log-
transformed BMD estimates from the liver weight and liver tumor in-
cidence data: most of the dots are within the 95th confidence interval
and the R2 is within the range from 0.435 to 0.614. Similar to the
reason for the relatively low correlation coefficient mentioned in the
previous paragraph, model uncertainty also disturbs the performance of
linear regression. Consequently, the R2 estimates are a little smaller for
the situations where model averaged BMD estimates were used. The
fitted linear model also allows us to approximate the chronic BMD using
a short-term BMD estimate. For example, for the data sets analyzed in
the present study, the sub-chronic BMD is about 2.69 (with a 90th

percentile interval from 0.51 to 5.69) times higher than the liver tumor
BMD. It is still too premature to use the developed linear model predict
chronic toxicity value using a short-term toxicity value, but the analyses
and practice performed in this study can be a value first step towards
that direction.

The correlation coefficients presented in Table 3 are relatively close,
within the range from 0.644 to 0.767, indicating a relatively strong
association between the early stage liver weight increase and three
common categories of liver neoplastic effects used in risk assessment,
hepatocellular adenoma, hepatocellular carcinoma, and hepatocellular
adenoma or carcinoma. The hepatocellular adenoma illustrated a little
stronger correlation with liver weight increase than hepatocellular
carcinoma. One possible explanation is that adenomas usually appear
earlier than carcinomas, which is consistent with the general belief that
hepatic tumors in rodents progress from adenomas to carcinomas. Ac-
cordingly, the correlation coefficients estimated from adenoma or car-
cinoma are generally between the counterparts estimated from ade-
noma and carcinoma individually. All the three sets of correlation
coefficients are quite close to the results presented in Table 2, which is
consistent with the fact that in most of the combinations investigated,
the aggregated tumor incidences are mostly composed of adenoma and
carcinoma.

Results in Table 4 shown that male rats and male mice (especially
male rats) might be a more reliable predictive model. In other words,
the toxicological changes in short-term studies might be more con-
sistent with the changes in long-term studies in male rats and male
mice. This finding can have potential implications for future toxicity
study design and the interpretation of short-term study findings: for
example, to reduce the cost, male rats or male mice can be chosen as the
default animal model to be tested first; and the liver weight increase
observed in short-term studies in those rodents can be given a little
more attention and serve as an indicator for a lifetime carcinogenicity
study. Among these four species/sex combinations, a slightly weaker
association has been observed in female rats, which might be mainly
due to the facts that multiple strains of female rats have been used in
recent NTP two-year carcinogenicity studies (mainly after 2005). Due

to the limited number of studies using rats as the animal model (15 and
27 combinations for male and female rats respectively) included in the
analysis, additional data analyses are needed to confirm the above
findings.

It is also very important to understand the limitations of this study.
The analyses in this study started with the collection of NTP studies
with positive evidence of liver tumor, and followed by matching early
stage liver weight data with these tumor incidences. Therefore, the
positive correlation coefficients calculated and linear regression per-
formed in this study are based on one important prerequisite: liver
tumors exist. However, there are a few situations in NTP study where
showed liver weight increase leads to no clear evidence of liver tumor,
which may result in bias or false positives in short-term to long-term
prediction as pointed out in a few previous studies [9,10]. Therefore,
instead of asserting that liver weight increase can be an early stage
indicator for liver tumor development, the study emphasizes that evi-
dent increase in liver weight might be used as a reason to prioritize the
test article for a two-year toxicology and carcinogenesis study. Simi-
larly, the linear equations illustrated in Figs. 2 to 5 should not be used
as a model for quantitative prediction of chronic toxicity values, but for
a rough approximation when chronic liver tumor data are missing or
very limited for dose-response assessment. Our next step is to expand
the database to investigate the association between early liver weight
increase and no clear evidence of liver tumor formation, and the as-
sociation between non-evident liver weight change and liver tumor
development. Once the next step is finished, it will be more appropriate
and plausible to use liver weight change as a predictor for liver tumor
incidence. It is worth mentioning that the utility of the results is also
limited by some other factors, such as the relatively small number of
chemicals/combinations available for the data analyses (especially for
the species-sex specific categories).

5. Conclusion

This study investigated the quantitative association between liver
tumor incidence and early stage liver weight increase by innovatively
calculating the correlation coefficient of and establishing linear model
for BMDs estimated from toxicological data collected from NTP studies.
The results suggest that early-stage liver weight increase has evident
association with liver tumor formation, but this association can be af-
fected by a number of factors such as the dose-response model used for
the analysis and the specific tumor type of interest. Given the limita-
tions in the design of this study, results suggest that early-stage liver
weight increase can be considered as a risk factor for liver tumor de-
velopment in rodents and as a reason to prioritize the research re-
sources for two-year toxicology and carcinogenesis study, but not ready
to be used as a qualitative or quantitative predictor for liver tumor.
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Table A1
Parameter and R2 Estimates in Linear Regression Analysis for Specific Cases.

Specific Case BMR BMDs a b R2

hepatocellular adenoma (130) 10% MA vs MA 0.668 0.762 0.528
Lin vs QL 0.22 0.782 0.586

1% MA vs MA 0.788 0.712 0.415
Lin vs QL −0.33 0.782 0.586

hepatocellular carcinoma (129) 10% MA vs MA 1.154 0.782 0.588
Lin vs QL 0.679 0.833 0.548

1% MA vs MA 1.469 0.74 0.455
Lin vs QL 0.248 0.833 0.548

Hepatocellular adenoma or
carcinoma (144)

10% MA vs MA 0.628 0.735 0.525
Lin vs QL −0.191 0.796 0.577

1% MA vs MA 0.714 0.669 0.393
Lin vs QL −0.708 0.796 0.577

Male Rats (15) 10% MA vs MA 1.559 0.785 0.601
Lin vs QL −0.384 0.963 0.698

1% MA vs MA 1.845 0.834 0.652
Lin vs QL −0.516 0.963 0.698

Female Rats (27) 10% MA vs MA 0.747 0.889 0.587
Lin vs QL −0.263 0.958 0.638

1% MA vs MA 1.341 0.915 0.575
Lin vs QL −0.407 0.958 0.638

Male Mice (49) 10% MA vs MA −1.089 0.913 0.71
Lin vs QL −0.994 0.824 0.689

1% MA vs MA −1.114 0.886 0.609
Lin vs QL −1.448 0.824 0.689

Female Mice (53) 10% MA vs MA 0.157 0.754 0.603
Lin vs QL −0.418 0.772 0.654

1% MA vs MA 0.183 0.696 0.496
Lin vs QL −0.99 0.772 0.654

Note: The seven specific cases in this table are corresponding to the cases shown in Tables 3 and IV. The abbreviations in the column named “BMDs” represent how
the BMDs used in linear regression were estimated: “MA vs MA” means that both short-term and long-term BMDs were estimated using model averaging method, and
“Lin vs QL” means that the short-term and long-term BMDs were estimated from the Linear model and Quantal-linear model respectively. “a” and “b” are the
estimated intercept and slope parameter in the linear model, and the coefficient of determination estimates, R2, are listed in the last column.
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