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The links between microorganisms/viruses and autoimmunity are complex and

multidirectional. A huge number of studies demonstrated the triggering impact of

microbes and viruses as the major environmental factors on the autoimmune and

inflammatory diseases. However, growing evidences suggest that infectious agents can

also play a protective role or even abrogate these processes. This protective crosstalk

between microbes/viruses and us might represent a mutual beneficial equilibrium

relationship between two cohabiting ecosystems. The protective pathways might involve

post-translational modification of proteins, decreased intestinal permeability, Th1 to Th2

immune shift, induction of apoptosis, auto-aggressive cells relocation from the target

organ, immunosuppressive extracellular vesicles and down regulation of auto-reactive

cells by the microbial derived proteins. Our analysis demonstrates that the interaction

of the microorganisms/viruses and celiac disease (CD) is always a set of multidirectional

processes. A deeper inquiry into the CD interplay with Herpes viruses and Helicobacter

pylori demonstrates that the role of these infections, suggested to be potential CD

protectors, is not as controversial as for the other infectious agents. The outcome of

these interactions might be due to a balance between these multidirectional processes.

Keywords: celiac disease, bacteria, viruses, gut, microbiome, environmental inducer, environmental protectors

INTRODUCTION

Infection and Autoimmunity
The relationship between infections and autoimmunity is complex. Microbial and viral infections
might act as environmental triggers inducing or propagating autoimmune and inflammatory
processes, resulting in symptomatic presentation of a disease in genetically high risk individuals
(Lerner, 2015; Arleevskaya et al., 2017). An autoimmune disease onset following an infectious
agent exposure has been well-documented (Pordeus et al., 2008; Bogdanos et al., 2015; Sakkas
and Bogdanos, 2016). At least, for CD, the following infections were suggested to be associated
with the disease: viruses: enterovirus, Epstein-Barr virus (EBV), Cytomegalovirus (CMV),
hepatitis C virus (HCV), hepatitis B virus (HBV), and rotavirus, microbes: Bacteroides species,
Campylobacter jejuni, Pneumococcus,Mycobacterium tuberculosis, andHelicobacter pylori (Lerner,
2015). However, recent serological evidence suggests the opposite outcome, which is the protection
against autoimmune conditions following bacterial/viral exposure (Christen and von Herrath,
2005). At least the suggestive protector agents for CDwere CMV, EBV, Rubella, and Herpes simplex
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type 1 virus (HSV1) when compared to healthy people (Plot and
Amital, 2009; Jansen et al., 2016). According to the “hygiene
hypothesis,” the excessively sterile environment leads to the
enhanced incidence of autoimmune disorders, asthma, and
allergies, thus, associating surge of CD incidence with decreased
infectious environment (Lerner et al., 2015b,e; Bloomfield et al.,
2016).

Celiac Disease
Celiac disease is a life-long autoimmune disease (Lerner et al.,
1996) mainly of the proximal intestine, affecting genetically
predisposed individuals. Gluten, the storage protein of wheat,
is the environmental inducer of the disease in addition to
other structurally related molecules found in barley, rye, and
oat (Lerner, 2014). Many environmental factors were suggested
to induce or enhance the disease: multiple infections (Lerner
and Reif, 2015), early infections (Myléus et al., 2012), early
gastrointestinal infections (Beyerlein et al., 2017), lack of breast
feeding (Lerner and Matthias, 2016c), time and amount of gluten
consumption (Chmielewska et al., 2015), microbiome/dysbiome
repertoire (Lerner et al., 2015a; Lerner and Matthias, 2017a,b),
mode of delivery (Decker et al., 2011), early vaccination
(Kemppainen et al., 2017) or early consumption of antibiotics
(Canova et al., 2014) and geo-epidemiological influences (Lerner,
1994, 2015; Reif and Lerner, 2004b; Lerner and Matthias, 2015a).
The abnormal immune response is directed, in particular, against
tissue transglutaminase (tTG), representing the autoantigen,
(Reif and Lerner, 2004a; Lerner et al., 2015c) and the two main
autoantibodies, anti-endomysium and anti-tTG antibodies, are
the most prevalent serological markers used to screen for the
condition (Shamir et al., 2002; Lerner and Matthias, 2015d).
Recently, the list of CD serological markers was expanded by
two additional autoantibodies: anti-deamidated gliadin peptide
and anti- tTG neo-epitope antibodies, found to be reliable for
CD diagnosis (Rozenberg et al., 2012; Lerner and Blank, 2014;
Lerner et al., 2015e). As yet, HLA-DQ2 and HLA-DQ8 are
known predisposing genetic factors. The sequential events in
disease progression were unraveled in the last years and gave
rise to multiple future therapeutic strategies (Lerner, 2010).
Notably, its epidemiological, incidental, and clinical presentation
are changing continuously, and new clinical pictures are reported
and expand the abundance of clinical variance of the disease
(Lerner et al., 2015d). In fact, age of disease onset increases and
the traditional enteric presentation is more and more replaced
by extraintestinal manifestations. Skin (Lerner et al., 2015d),
endocrine (Lerner and Matthias, 2016d; Lerner et al., 2017),
hepatic (Anania et al., 2015), metabolic (Eliyah Livshits et al.,
2017), skeletal (Lerner and Matthias, 2016a), rheumatic (Lerner
and Matthias, 2015b), geriatric (Lerner and Matthias, 2015c),
hematological (Branski et al., 1992), neurological (Zelnik et al.,
2004; Lerner et al., 2012), gynecological and infertility (Mårild
et al., 2012; Casella et al., 2016), oral and dental (Cantekin
et al., 2015), hypercoagulability (Lerner and Blank, 2014), cardiac
(Lerner et al., 2015d), and behavioral abnormalities (Zelnik et al.,
2004) are often described. Those epidemiological and clinical
changes can explain why the disease is diagnosed during the
whole human life-span including in the elderly (Lerner and

Matthias, 2015c). There is no doubt that in the last decades its
incidence is constantly increasing, ranging between 1 and 3%
nowadays (Lerner, 2014; Lerner et al., 2015b). The present review
will concentrate, expand and update on the multiple faces of the
inductive/protective roles that infectious agents might play in CD
pathogenesis. This aspect is further interesting since pathogens
are the major drivers of human selective genetic adaptation
during evolution (Vatsiou et al., 2016), and the question of
microbes that are bugging the celiac patient “are they friends or
foes?” is the subject of the current review.

Infections and CD
It should be clarified that, although the trigger role of
microorganisms and viruses in the CD development was
undoubtedly traced in numerous investigations, it substantially
differs from other immune pathogenesis like rheumatoid arthritis
(as a classic model of an autoimmune disease; Arleevskaya et al.,
2016; Kemppainen et al., 2017).

The induction of rheumatoid arthritis most likely occurs
under the influence of the burden of many trivial infections,
influencing the patient’s immune system due to the frequent
and prolonged infectious episodes (Arleevskaya et al., 2014).
Individuals at CD risk apparently do not have such features in
their mucosal immunity, nor significant defects in systemic anti-
infective protection, impacting infection susceptibility. Since all
the CD studies are focused only on the disease link with various
gastrointestinal infections, such association is different fromwhat
was shown in rheumatoid arthritis (Riddle et al., 2012).

The number of infectious agents related to CD is continuously
increasing (Figure 1). Examples for viruses enterovirus, EBV,
Cytomegalovirus (CMV), HCV, HBV, and rotavirus And for

FIGURE 1 | Infectious agents that were suggested to induce (left side) or

protect against (right side) intestinal celiac disease.
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microbes Bacteroides species, C. jejuni, Pneumococcus, M.
tuberculosis, and H. pylori (Lerner, 2015). However, links
between CD and infections were more associative and less
causative, thus, far from being elucidated.Moreover, themutually
exclusive hypotheses about the provocative and protective role
of a particular microorganism/virus in CD pathogenesis were
suggested and discussed in various publications.

It appears that the essential condition for the CD induction is a
gastrointestinal infection (Kemppainen et al., 2017). Apparently,
the other major condition is an early childhood—namely
immature gastrointestinal tract, immature immune system, and
gastrointestinal microbiome at the early phase of formation. The
beginning of gut colonization bymicroorganisms set the stage for
the cross talks between the epithelium, enteric lymphoid tissue,
and microflora, all together establishing the intestinal barrier and
as a consequence, a strictly dosed delivery ofmacromolecules into
the internal environment and shaping of mucosal tolerance to
food antigens and normal flora (Makarova et al., 2014).

So, in the vulnerable infant period any gastrointestinal
infection, even a transitory one, is potentially able to disturb these
processes of gut microbiome maturation and the establishment
of local immunity and immune tolerance, including that against
food andmicrobial antigens. Apparently, deleterious coincidence
of these circumstances leads to an error in the negative selection
of gluten-reactive lymphocyte clones.

Thus, the community of microorganisms, being extremely
vulnerable during the ripening period, appears to be an inert
system in adults. For example, in adults it needs nomore than 30–
60 days to restore gut microflora after the exposure to antibiotics
(Spanhaak et al., 1998; Tannock et al., 2000). At the same time, a
weekly clindamycin treatment of a newborn reduces Bacteroides
diversity for the next 2 years (Jernberg et al., 2007). The same
infections, capable of altering the fate of a sick infant, are merely
a light ripples on the ocean surface for an adult microbiome.

In conclusion, there is an undoubted link between CD
development and microorganisms, and this link looks to be
rather specific. Gastrointestinal infections in predisposed infants
with an immature gastrointestinal tract and immune system
might shape gut microbiome in the immature and therefore
labile circumstances. Such an unfortunate combination could
trigger early CD development or becomes a ticking time bomb,
represented by the structural features of the gut microbiome
and persistence of gluten–reactive lymphocyte clones with latent
basal cell proliferation without overt disruptive inflammatory
activation.

GUT MICROBIOME SIGNATURE IN CELIAC
DISEASE

Gut microbiome analysis in the healthy adult human populations
revealed about 1150 bacterial species, the majority (50–75%)
being represented by Firmicutes, and then Bacteroidetes (10–
50%), Actinobacteria (1–10%), with fewer than 1% being
Proteobacteria (Manichanh et al., 2012). Apparently, the HLA
system, to a certain extent, shapes microbiome structure. Besides,
polymorphisms of some other non-HLA genes were found

to correlate with a certain microbiome structure (Spor et al.,
2011). Interestingly, in addition to the HLA system, microbiome
composition may be due to CD-associated polymorphisms
of defensin, some molecules of Toll-like receptor signaling
pathways and vitamin D receptor genes (San-Pedro et al.,
2005; Fernandez-Jimenez et al., 2010; Wang et al., 2016).
Whole genome study of 93 individuals and 16S rRNA gene
pyrosequencing of their body microflora revealed 83 alliances
between genetic variance in host sequence and plethora of
specific microbial taxa (Blekhman et al., 2015). In particular, the
links with CD-associated host genes were revealed. In addition
to the host genes related to immunity, a link was found between
the microbiome composition and SNP of the genes not related
to immunity. For example, the authors revealed an interesting
correlation between the abundance of Bifidobacterium in the
gastrointestinal tract and host genetic variation in LCT gene,
encoding the lactase enzyme hydrolyzing dietary lactose. This
gene SNPs are known to be associated with lactose intolerance,
which is frequently associated with celiac disease (Ojetti et al.,
2005). Bifidobacterium is able to metabolize lactose, and there are
some strains preferring lactose instead of glucose. The authors
suggested that the problems with individual’s consumption of
milk products might impact the richness of Bifidobacterium in
the gastrointestinal tract.

The results of gut microbiome structure investigations in
the infants at CD risk as well as in the therapy-naïve patients
at the disease onset are somewhat contradictory. Besides the
bulk of the results was obtained by study of feces, while the
principal for CD microbe community in the small intestine
boundary layers has its own peculiarities, although in a certain
extent it is associated with fecal microbes. However, a certain
tendency can be traced. A single and rather limited study
of mucosa-associated microbiota in the proximal gut—using
enteric samples from 45 children with CD and 18 clinical
controls born during the “Swedish CD epidemic”—demonstrated
only marginally differences between the groups. Enrichment
with Clostridium, Prevotella, and Actinomyces was revealed in
the most of the CD samples (Ou et al., 2009). Feces studies
demonstrated, that infants genetically predisposed to CD, had
significantly higher abundance of Firmicutes (Clostridium) and
Proteobacteria (Escherichia/Shigella) and desreased proportions
of Actinobacteria (Bifidobacterium) and Bacteroidetes compared
to low-risk infants (Sellitto et al., 2012; Olivares et al., 2015). In
a proof of concept study, Sellitto and co-workers have traced
the longitudinal changes in the microbial populations colonizing
from birth to 24 months in 30 genetically predisposed infants.
They demonstrated that even at 2 years of age their microbiota
do not resemble that of adults, while in not at-risk infants the
maturation was complete at 1 year of age. The group was divided
into an early and a late gluten exposure groups (17 and 13 infants,
respectively). The authors showed that genetically susceptible
infants may benefit from delayed gluten exposure not before 12
months of age. A hypothesis was forwarded that lack of maturity
of the enteric microbiota faced with early gluten consumption
can induce or accelerate the autoimmunogenetic process. Not less
interesting was the infant’s metabolome. When solid food was
introduced at 6 months of age, succinate, acetate, propionate, and
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butyrate accumulated in their stools. However, by 2 years of age,
butyrate, and acetate were the dominant short-chain fatty acids
(SCFA). Since bacteroidetes are associated most strongly with
propionate, while Firmicuters are negatively correlated to SCFAs
production (Koenig et al., 2011), Sellitto’s group envisioned
that the high Firmicutes and low Bactriodetes abundance in
CD infants results in down production of those protective
SCFAs, thereby abrogating enteric health and predisposing them
to autoimmune diseases. The decrease in Lactobacillus spp.
associated with lower lactate production, observed in between
6 and 12 months of age, accompanied by decreased SCFAs’
feces repertoire, during a vulnerable time of mucosal immune
maturation and microbiome compositional changes might lead
to loss of tolerance to non-self-antigens like gluten in those
CD genetically predisposed infants (Sellitto et al., 2012). Once
again it points to the important relations connecting nutrition to
microbiome composition and diversity, its metabolome and the
local maturation and functioning of the immune system.

From this perspective, it is interesting to compare the
composition of the gut flora in infants at CD risk and premature
babies with a priori immature gut. Arboleya and coauthors
compared the gradual establishment of the intestinal microbiome
in very-low birth-weight preterm infants with that of healthy
full-term, vaginally born, breast-fed neonates using 16S rRNA
gene profiling and quantitative PCR for the various microbial
taxa. It was demonstrated that preterm neonates sheltered a
higher relative proportion of Firmicutes at 2 days of age, and of
Proteobacteria in the later sampling times, compared to control
babies. Prematurity reflected reduced levels of Bacteroidetes
at day 2 and as well as in later sampling times together
with Actinobacteria (Arboleya et al., 2016). In addition, very-
low birth-weight preterm infants frequently displayed a lag in
establishing an adult microbiota compared to full-term children
(Weng and Walker, 2013). So, the parallels to the peculiarities
of the gut flora in CD prone individuals seem to be obvious.
Combining the results of Arboleya et al. and Sellitto et al. about
the enteric mucosal immaturity and the unbalanced microbiome
found early in life and in CD high-risk infants, it can be suggested
that by ingesting gluten peptides, the disease will progress in
these individuals, unlike in non-CD high-risk premature infants,
that will never develop CD. The features of CD gut microbiome,
incorporated in early childhood seem to persist in the adulthood
even despite gluten withdrawal (Nistal et al., 2012; Wacklin et al.,
2014).

Caminero and co-workers demonstrated that gluten amounts
in feces of healthy volunteers, CD patients and individuals
under risk receiving gluten-free or normal diet depended on
gluten intake. The greatest amount of gluten was found in fecal
samples from healthy volunteers being on normal diet, with
a significant decrease in the untreated CD patients and the
individuals under risk. It is noteworthy that in all the groups
fecal peptidase activity against the gluten-derived peptide 33-
mer inversely correlated with gluten amount in the samples
(Caminero et al., 2015). It looks like the increased functional
proteolytic activity of gut microflora in CD patients can affect
gluten excretion. The same research group isolated 144 strains
belonging to 35microbial species thatmight be involved in gluten

digestion in the human intestine. Most of the strains were part of
the phyla Firmicutes and Actinobacteria, mainly from the genera
Lactobacillus, Streptococcus, Staphylococcus, Clostridium and
Bifidobacterium (Caminero et al., 2014). Ninety-four of these
strains were capable to metabolize gluten, 61 of them showed an
extracellular proteolytic activity of gluten proteins, and several
strains showed a peptidase activity toward the “supra-molecule”
33-mer peptide, the luminal immunogenic molecule in CD
patients (Caminero et al., 2014). At the end of the day, there is
a certain difference in gluten proteolysis by various bacteria, and
the immunogenicity of the generated peptide fragments might be
different. It should be noted that these studies were carried out
in cultures, in which the glutenase activity of aggregate microbial
community as a whole (biofilm) in the gut boundary layer might
significantly differ from the isolated activity of the individual
members of this community.

It is known that the microbiome impact gastrointestinal and
systemic functions by its metabolome, the most studied one
being the short chain fatty acids (SCFA). Most recently, the topic
of nutrition, microbiome, and SCFA associations in CD was
updated (Lerner et al., 2016). Multiple beneficial effects to the
host were attributed to them. Changes in microbiota and their
SCFA production is clearly related to the pathogenesis of CD.
Interestingly, peculiar dysbiosis and significant changes in stool
SCFA profile were described in several autoimmune diseases,
one of those is in Behcet’s disease where decreased butyrate
production was suggested to play a role in its pathogenesis
(Consolandi et al., 2015).

Taken together, the microbiota/dysbiota disbalance may
present a risk factor for CD either directly by influencing the
mucosal immune responses or by intensifying inflammatory
responses to gluten. In contrary, several microbial species are
capable to break down gliadin and perhaps therefore decrease the
immunopathogenicity of consumed gliadin (Sjöberg et al., 2013;
Carding et al., 2015; Lerner and Matthias, 2015a; Rostami-Nejad
et al., 2015).

COEXISTENCE OF CERTAIN INFECTIONS
AND CD: A CRITICAL LOOK AT THE ISSUE

It is of interest how CD affected individuals survived
in the presence of harmful conditions (increased gluten
content and toxicity in wheat, increased gluten consumption
worldwide; Lerner et al., 2017) and despite them, thrived and
expanded? (Lerner, 2011; Lerner et al., 2015b). Despite being
underprivileged with nutritional deficiencies, failure to thrive
and high morbidity and mortality, a substantial increase in
the disease incidence is observed in the last decades. There
are several theories explaining this paradox. One is positive
evolutionary selection, in which the celiac patient accumulates
protective genes (Lerner, 2011). The other is due to some
pathogens which are the major drivers of human selective
genetic adaptation (Vatsiou et al., 2016) that could have been
beneficial environmental factors, protecting the CD populations.
Indeed, in contrast to the observations that infections may
induce CD, some infection agents were assumed to have a
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protective impact (Christen and von Herrath, 2005; Gaisford and
Cooke, 2009; Kivity et al., 2009; Plot et al., 2009).

This assumption was based in particular on a lower incidence
of the serum antibodies against Cytomegalovirus (CMV), EBV,
and Rubella in CD patients when compared to healthy people
(Plot and Amital, 2009). Another argument for the protective
effect is the inverse correlation between serum anti-CMV, -EBV,
and/or -Herpes simplex type 1 virus (HSV1) IgG levels and
anti-tTG antibodies (Jansen et al., 2016).

Viruses
It should be specified that Jansen and coauthors determined the
antiviral antibody levels in the sera samples of 6-year old children
(Jansen et al., 2016). CMV single infection and combined CMV,
EBV, and/or herpes simplex virus type 1 infection antibodies
were inversely associated with strongly tTg-IgA positivity. The
authors suggested that the serological profile may indicate a
protective effect of herpesvirus infections in the pathogenesis
of celiac disease autoimmunity. It is accepted that by this age
IgG and IgM production is close to that of the adults. However,
the immune system is still immature and its reaction is not
fully functional at this age even in healthy children, whereas the
immune system of CD prone children, at least, the local immune
defense, is somewhat delayed in the maturation. Thus, Jansen
et al. suggested explanation should be taken with a grain of salt.

In Plot’s publication, the age profile of the studied cohorts was
not presented (Plot and Amital, 2009). There are some curious
details in this publication which need to be interpreted. First,
while the prevalence of the anti-EBV capsid antigen and anti-
EBV nuclear antigen IgG in the CD patients was significantly
lower than that in the controls, the prevalence of the anti-EBV
early antigen IgG was comparable in the two groups and the
prevalence of anti-EBV capsid antigen IgM, though unreliably,
was more than twice higher in the CD group. In general, the
anti-EBV capsid antigen IgMs are known to be produced during
the acute phase (the first days—6 months from the onset of the
disease) or during acute exacerbation of chronic EBV infection
(http://www.tiensmed.ru/news/epstein-barr-bc1.html#nov1). In
addition, if the anti-EBV early antigen IgG is not concurrently
revealed, it may indicate incubation period or the very beginning
of the infection (up to 1 week of symptoms). So, either in the
CD patients this generally latent infection is apt to more frequent
exacerbations, or, given the reduced frequency of the studied IgG
antiviral antibodies, the existence of some features of the antiviral
antibody production in CD can be assumed. Secondly, revealed
by PCR, CMV DNA presence in the samples is not always
accompanied by the presence of serum specific antibodies. This
situation is typical in particular for the infants with immature
immune system (Dong et al., 2004, 2005).

A number of publications on the HBV vaccine non-
responsiveness in CD might attest for possible unique features
of the antiviral antibody response formation (Noh et al., 2003;
Park et al., 2007; Urganci and Kalyoncu, 2013), further criticizing
the assumption that decrease antibodies activities in CD patients
represent a protective effect.

As for the inverse correlation of the antiviral and anti-
tTG antibodies demonstrated by Jansen et al. (2016), similar

patterns are not uncommon in autoimmune diseases, and
this fact by no means demonstrates a lesser exposure to the
infections. For example, high levels of autoantibodies against
double-stranded DNA, reflecting the activity and severity of
systemic lupus erythematosus, are quite often combined with
lower levels of antibodies to particular bacterial DNA (Pisetsky
and Drayton, 1997). The inverse correlation of those indexes is
usually explained by a distorted immune humoral response.

Additionally, it should be specified that, in general,
in Herpesvirus infections and viral hepatitis the specific
antibodies are not the principal players in the antiviral
defense but are accepted to be the reliable serological
markers for an infection (Grinde, 2013). It is advisable to
note that caution should be used for the interpretation
of the protective role of these infections in CD, relying
only on data on the incidence of the corresponding
antibodies.

As for Rubella infection, the specific antibodies are the
major antiviral response players. However, the incidence of
CD in children vaccinated with inactivated rubella virus as
part of polio vaccine was close to that in the unvaccinated
children (Myléus et al., 2012). Thus, a reduced incidence of
the anti-rubella IgG antibodies demonstrated by Plot and co-
workers can mean an equally probable lower exposure of CD
patients to Rubella and the above-discussed features of the
specific IgG antibody production. Moreover, since the antiviral
immune response is always multi-componental, the disturbed
antibody formation, although being a weak link of an antiviral
defense, does not necessarily entail an increased susceptibility to
Rubella.

The data which might testify for the direct and reverse links
of CD to Herpes virus infection are summarized in Table 1.
The analysis of the data demonstrates that the links of CD and
herpes infections are multi-directional. On one hand there are
some peculiarities, which can promote the viral infecting: (1)
CD-associated DQA1∗0501/DQB1∗0201 genotype, which is also
due to the imperfect response against Herpes viral infection;
(2) the typical CD immature gastro—intestinal tract and the
delayed process of microbiome maturation, which might be
risk factors for the virus infecting; (3) the typical CD mucosal
overexpression of epidermal growth factor receptors, by which
Herpes viruses enter the cells; (4) increased expression of IL-33,
suppressing local antiviral immunity in CD patients. On the other
hand, the increased levels of several humoral factors with the
antiviral activity; increased expression of some cytokines, which
promote mucosa maturation and thus increase its’ resistance to
the viruses; as well as some potential features of CD microbiome
that might indicate a backward link between CD and Herpes
viral infection. The protective effect of the infection on atopic
manifestations was demonstrated in the case of the early (infancy
or early childhood) EBV exposure, while the later infection
predisposes to the atopic disease (Nilsson et al., 2005, 2009).
So, if to extrapolate the data on the links of herpes and atopic
diseases to CD, it is likely that the early (infancy or early
childhood) EBV exposure might play a protective role, while
the later infection might trigger CD or have no impact on it
at all.
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TABLE 1 | Direct (⇑⇑) and reverse (⇑⇓) links of CD and Herpes virus infections.

⇑⇑ ⇑⇓

Markedly impaired binding and presentation of some herpes antigens to the TCRs in

CD-associated DQA1*0501/DQB1*0201 carriers (Koelle et al., 1997; Reichstetter

et al., 1999) might be due to the imperfect antiviral immune response as well as to the

peculiarities of antibody production.

–

Increased HSV2, CMV and EBV DNA levels in the stool samples were observed

among premature neonates with intrauterine growth restriction compared with those

infants born appropriate for gestational age (Naing et al., 2013). The immature

gastro—intestinal tract and the delayed process of microbiome maturation might be

the typical signs of CD (Sellitto et al., 2012), that might be risk factors for the virus

infecting in infancy as well as for the higher rates of the clinical manifestations of the

infection.

Virus-shaped cytokine levels might to some extent promote the maturation

of the local immune system and intestinal tissues, lagging behind in the

CD-prone individuals: IL-6 promotes enterocyte differentiation and inhibits

enterocyte apoptosis, TNF-alpha promotes intestinal growth (Rollwagen

et al., 1998; Maheshwari, 2004), IFN-gamma increases macromolecular

transport in the immature gut particularly across Peyer’s patches. This

Peyer’s patch-targeted effect can be important for setting mucosal immune

responses against dietary antigens early in life and aiding their immune

exclusion (Sütas et al., 1997).

Herpes viruses were revealed in the inflamed gastrointestinal tract mucosa, but never

in the endoscopically healthy tissue (Ramanathan et al., 2000; Roblin et al., 2011). It

is unclear whether the inflamed mucosa is a consequence of the viral infection or the

inflamed tissues “draw” viruses, due to the expressing of the corresponding

receptors. Epidermal growth factor receptors, by which Herpes viruses enter the cells

are overexpressed in CD gut mucosa, that being due to gliadin stimulatory effect

(Barone et al., 2007; Juuti-Uusitalo et al., 2009).

In CD the level of various humoral factors with a pronounced diverse direct

and indirect antiviral activity in the inflamed intestinal tissues are increased

(defensins, IFN-gamma, IFN-alpha, TNF-alpha, IL-6, IL-15 the latter being

necessary for the development and function of NK/NKT cells and

maintenance of naive and memory CD8(+) T cells; (Forsberg et al., 2004;

Hazrati et al., 2006; Di Sabatino et al., 2007; Brottveit et al., 2013; Meresse

et al., 2015)), that might have a protective effect on the infection.

Microbiome features might impact antiviral immunity via stimulation of IL-33 (alarmin)

released by mucosal epithelium, which suppresses local antiviral immunity by

blocking the migration of effector T cells to mucosa, thereby inhibiting the production

of IFN-γ, a critical cytokine for antiviral defense, at local infection sites (Oh et al.,

2016). Serum levels and intestinal tissue expression of IL-33 and its receptor in CD

patients were found to be increased (López-Casado et al., 2015).

Pre-treatment of HeLa monolayer with inactivated Staphylococcus aureus

cells before HSV infection increases expression of TNF-a, IL-6, and IL-8

genes, that being due to the protection from the occurrence of virus

mediated cytopathic effect and to decrease of viral multiplication rate (Bleotu

et al., 2015). Vaginal Lactobacillus strains neutralize lactic acid and thus,

acidic pH values needed for the viral replication, as well as to macrophage

activation (Conti et al., 2009; Khani et al., 2012). Microbiota might impact

the antiviral defense via regulation of the natural killer T cells at the frontiers

of the mucosal immune system (Zeissig and Blumberg, 2014). So, certain

shifts in the structure of the microbiome mighty inhibit viral infection.

Helicobacter pylori (Hp)
The permanent interest in CD and Hp infection coexistence is
quite natural, due to the gut-stomach axis (Lerner and Matthias,
2016b). The infectious inflammatory process directly in the
gastrointestinal tract—CD epicenter, which might shape the local
immune system and microbiota, might obviously play a role in
CD pathogenesis. In addition, both CD and Hp infection in
a number of cases are associated with the diffuse lymphocytic
gastroenteropathy (Lynch et al., 1995; Broide et al., 2007;
Pai, 2014). However, diffuse lymphocytic gastroenteropathy
is far from being obligatory attributed only to both entities
(Wu and Hamilton, 1999; Nielsen et al., 2014). Besides,
lymphocytic gastritis and a subsequently villous atrophy are
accepted to be a non-specific manifestation of many pathological
conditions in the gastrointestinal tract, due to a wide variety
of infectious, immunologic or any inflammatory stimuli raising
intraepithelial lymphocyte numbers. Lymphocytic duodenitis
and increased intraepithelial lymphocytosis are known to be
associated with diseases that are completely different in their
pathogenesis, such as autoimmune disorders like CD (Broide
et al., 2007; Rostami et al., 2010), tropical sprue, food protein
intolerance, Hp-induced duodenitis, peptic duodenitis, parasitic,
and viral infections, intestinal lymphoma (Chang et al., 2005;
Brown et al., 2006; Pallav et al., 2012; Rosinach et al., 2012;
Shmidt et al., 2014) drugs’ induced duodenitis (non-steroidal

anti-inflammatory drug; Shmidt et al., 2014) and small-intestine
bacterial overgrowth (Lappinga et al., 2010). The differential
diagnosis of lymphocytic gastritis is not less restricted. CD
and HP are not the only ones. Various non-HP infections,
inflammatory conditions and several non-celiac autoimmune
diseases were described (Broide et al., 2007; Polydorides, 2014).

The interest in the CD—HP infection link is fueled by
the well-known data, indicating that childhood infection with
HP could protect against the development of Crohn’s disease,
severe gastric-reflux disease, Barrett’s esophagus and esophagus
adenocarcinoma (Chen and Blaser, 2008). Yet, as for the
protective role of Hp in CD, the available data are limited and
quite contradictory. The prevalence of CD among Hp-positive
adults was 0.05% compared with 0.09% among Hp-negative
individuals (statistically non-significant) while the prevalence
of Crohn’s disease among Hp–positive patients was 0.07%
compared with 0.24% among Hp-negative patients (Bartels et al.,
2016). Based on these data, at least in adults, the protective effect
of Hp on CD is minimal, if at all existing. However, given the
fact that in childhood gastrointestinal infection appears to be a
more important condition for CD triggering than in adults, this
conclusion is not necessarily true in the case of early exposure to
Hp (Kemppainen et al., 2017). Unfortunately, we failed to find
the similar data on the CD frequency in children infected with
Hp early in life.
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The incidences of Hp and CD worldwide vary enormously
(9–100%, 0.3–3.9%, respectively; Rostami-Nejad et al., 2016).
Most of the studies aimed to determine the ratio of Hp
infected individuals in CD and non-CD control groups. In
our opinion, this study design gives less information about
the inductive/protective effect of Hp infection on the CD
development as on the susceptibility of the CD patients for
the infection. The results of various studies on Hp both in
children and adults are contradictory (Table 2). The spread
in the ratios of both Hp infected CD patients and non-CD
controls in these publications might be due to the national
and age-related characteristics of the studied cohorts (Eusebi
et al., 2014). As for the diametrically opposed regularities of HP
incidence in CD and non-CD groups, a meticulously analysis
of these publications, did not lead us to any reason for the
conflicting results, but to the possible differences in the poorly
described clinical characteristics of the controls. In these studies,
the authors examined the collections of endoscopically obtained
biopsies and sera allocating the cases into CD and non-CD
(control) groups. It is obvious that the persons accepted as
controls underwent the relevant examination because they had
any gastroenterological problems associated or not associated
with HP infection.

The analysis of the literature data which might testify the
direct and reverse links of CD and Hp infection (Table 3) shows
that the interaction of the two diseases represents an interweaving
of differently directed processes. Perhaps the end result might
depend on the balance of these processes, being deeply individual
in each specific case. Important is the assumption that the direct
or reverse CD/HP link may depend on the age at which the
encounter with the bacterium occurred. At least, it is important
for allergies–Hp links. Our attempt to test this hypothesis failed,
because the literary data accumulated to the present moment are
largely insufficient.

POTENTIAL MECHANISMS FOR
BENEFICIAL BUGS’ EFFECTS IN CELIAC
GUT

Multiple potential pathophysiological avenues were suggested to
understand the microbial-gut cross-talks in CD.

Post-translational Modification of Protein
(PTMP) from Non-self- to Self-proteins
Endogenous and microbial enzymes are capable to generate
intestinal enzymatic neo-antigens via PTMP. The modifications
taking place in the intestinal lumen include peptides crosslinking,
de/amination/deamidation by the transglutaminases,
de/phosphorylation, a/deacetylation, de/tyrosination, and
many other enzymatic modifications exist (Lerner et al., 2016).
Related to the present topic, the human endogenous intestinal
enzymes, tTG and its family member, the exogenous microbial
transglutaminases, induce multiple neo-epitopes on the TG-
gliadin cross-linked complex resulting in the formation of
antibodies against the complexes in CD. CD is a classical disease
where luminal PTMP is driving the disease. It seems logical that

a microbial agent might modify non-self-peptide to self-one—
reducing its immunogenicity. Additionally, in CD, somemicrobe
strains might modify gluten in the lumen, thus preventing or
aggravating the inflammatory cascade and the intestinal damage
progression via PTMP (Caminero et al., 2016).

Horizontal Gene Transfer in the Human Gut
Lumen
Given the extensive influence of themicrobiota on human health,
the gut-microbiome integrity is of prime importance for host
health and survival. In this regards, our bodies’ “second genome”
cohabit with the human one to form a stable equilibrium for
the two kingdom’s long term survival. As opposed to long-
term evolutionary events, newer genetic manipulations with
microorganisms, plants, animals, or nutrients, applying new food
technologies and/or microbial engineered delivery systems or
novel mode of therapies are rapidly evolving.

Due to the close relationship and intimate cross-talks between
the human and the gut’s biospheres, consumption of themodified
genetic cargo into the human intestinal ecosystem might occur.
It was hypothesized that modern probiotic ingestion, genetically
manipulated food consumption and genetically manipulated
microorganism usage are potential genetic driving forces for
changing the evolutionary equilibrium established during the
last millions of years (Cho and Blaser, 2012). Horizontal gene
exchange is the ability to transfer genetic material between
contacting biological domains, including eukaryote (plants,
animals, and man), prokaryote (microbes), and viruses (Aminov,
2011; Ruggiero et al., 2015). Despite not being investigated
in CD, various virulent genes, the most studied one is
the antibiotic resistance gene, were described to be laterally
transferred. It is hypothesized that the opposite might occur. This
infectious genetic cargo might include anti-inflammatory/pro-
apoptotic/Treg or other immune-modulatory genes, attenuating
or abrogating autoimmunity.

Infections as Tight Junction Closure
Enhancers
The tight junction protein, Zonulin, is involved in the regulation
of the intestinal permeability between gut epithelial cells. Several
clinical trials with Zonulin antagonist (Larazotide acetate, AT-
1001, Alba Therapeutics, USA) demonstrated the promising
therapeutic effect in CD (Lerner, 2010; Khaleghi et al., 2016).
Larazotide acetate—an octa-peptide derived from a cholera toxin
ZO, antagonizing zonulin via receptor blockade—is aimed to
decrease the paracellular transport caused by gluten and thus
to suppress the activation of the pathological immune cascade.
In addition to the above mentioned cholera toxin derivative,
many other factors produced by microorganisms can improve
tight junction performance, modulating intestinal permeability.
Salmonella enterica serovar, Escherichia coli, and C. jejuni
modulated enteric epithelial barrier functions in chickens (Awad
et al., 2012, 2014, 2015), and the probiotics Lactobacillus casei
DN-114001 and E. coli strain Nissle 1917 decreased intestinal
epithelium permeability in human intestinal originated cell lines
(Parassol et al., 2005; Zyrek et al., 2007; Trebichavsky et al., 2010).
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TABLE 2 | The incidence of Helicobacter pylori infection (Hp-positive, %) in CD patients and non-CD controls.

Age characteristics of groups Hp-positive CD patients, % Hp-positive non-CD controls, % References

Adults 36% 41% Simondi et al., 2015

86% (82% untreated, 95% treated) 97% Diamanti et al., 1999

20.7% (Untreated) 32.4% (treated) 55.3% Ciacci et al., 2000

Frequency increased with age in groups.

12.5% 30% Lasa et al., 2015

Children (age, years) 21.8% (Median 8.2 years) 23.8% (Median 8.9 years) Aydogdu et al., 2008

18.5% (Median6.8 years) 17.3% (Median6.8 years) Luzza et al., 1999

5.4% (3–12 years) 6.8% (3–12 years) Jozefczuk et al., 2015

30.6 (<18 years) 33.8% (<18 years) Guz-Mark et al., 2014

2.7% (Median5.7 years) 15.6% (Median7.4 years) Nenna et al., 2012

11.4% (1–18 years) 50% (1–18 years) Narang et al., 2016

Taken together, modulation of gut permeability by infectious
agent, counteracting the breached tight junction integrity in CD,
might represent a protective pathway.

Molecular Mimicry between Infectious
Agents and Self-antigens
Generally, molecular mimicry between foreign
(infectious/environmental) and self-antigens is a well-described
pathway of autoimmune disease induction. Recently, it
was suggested that antigen mimicry between foreign and
self-antigens might be due to the long-term regulation of
inflammation (Pontes-de-Carvalho et al., 2013). In a cohort of
African patients, infected with Schistosoma it was found that the
parasite inhibited production of anti-nuclear antibodies (Mutapi
et al., 2011). More recently, apparent effectiveness of rotavirus
vaccination was found to prevent the onset of CD autoimmunity
(Silvester and Leffler, 2016). This finding gives indirect evidence
for the persistence of regulatory cells in the lack of stimulation of
the immune system by pathogen-derived processes. The strength
of the immune adjustment, however, may increase with the
uninterrupted presence of the pathogen or its antigens. Thus,
molecular mimicry can represent a protective mechanism of
autoimmunity.

Th2 to Th1 Shift
Inflammation, given rise by microbes, viruses and especially
by parasites such as helminths, can shift the Th1 pathway to
Th2 one, resulting in a more immunosuppressive state where
regulatory T cells might be induced or be activated (Shor
et al., 2013). Recent studies have supplied such an evidence for
pathogen-specific regulatory cells in Leishmania major, Herpes
simplex virus, and Friend retrovirus (murine leukemia virus)
infections (Christen and von Herrath, 2005). During the acute
phase of the infection this Th2 profile counter-regulates Th1-
driven autoimmune pathologies. Along the chronic stage of
infection, immune-regulatory networks arise, mainly led by
regulatory T cells. These cells produce IL-10 and TGFβ, which
has observative effect on Th1-related autoimmune diseases, such
type 1 diabetes mellitus or CD. In fact, several helminths were

tried in CDpatients with encouraging results (Croese et al., 2015).
Treatment with helminthes or helminthes ova ameliorated the
clinical pictures of several autoimmune conditions in patients as
well as in animal models (Smallwood et al., 2017). A major recent
contribution to the field is the helminth phosphorylcholine
proved to be an immunemodulatory molecule. Most recently,
tuftsin-phosphorylcholine, a novel helminth-based compound
was shown to reduce pro-inflammatory cytokine production and
induced anti-inflammatory cytokine expression and Treg and
Breg cell expansion in mouse models of rheumatoid arthritis,
lupus nephritis, and colitis (Bashi et al., 2015b, 2016; Shor et al.,
2015).

It is conceivable, that the ability of helminthic parasites
to attenuate host immune responses into an anti-
inflammatory/regulatory phenotype is attributed to the
endogenous component that the parasites secrete and/or
excrete interacting with immune effector cells to regulate their
function (Lund et al., 2014; Selmi, 2016).

An additional mechanism was suggested for the helminth’s
immunomodulation of autoimmunity, in addition to the Th1 to
Th2 shift. Accelerated T and B regulatory phenotypes, decreased
levels of the inflammatory cytokines like IFNg and Il-17 or vice
versa, promoting IL-4, IL-10, and TGF-β release (Bashi et al.,
2015a). Since CD is a Th1 profile disease, shifting the immune
pathway to Th2 profile might reduce the intestinal damage
(Lerner, 2010).

Immune Activation Induced Cell Death
Inflammation can cause a substantial hyperactivation of auto-
aggressive lymphocytes, leading to activation-induced cell death
and attenuate the systemic load of aggressive T cells. It
seems that repeated encounter with powerful antigenic stimuli
leading to restriction of an immune response is well-established
in viral infections, where the primary response undergoes
a major restriction after antigen elimination. EBV, HBV,
and CMV infections are some of the examples. Similarly,
administration of mycobacterial products, such as bacilli
Calmette-Guérin, prevented the onset and recurrence of type
1 diabetes mellitus in NOD mice by inducing apoptosis
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TABLE 3 | Direct (⇑⇑), reverse (⇑⇓) or no (⊗) links of CD and Hp infection.

⇑⇑ ⇑⇓ or ⊗

Clinic The cases of fresh HP infection in the CD patients and the reports

of CD onset right after the carried H. pylori infection both in

children and adults were described (Cârdei et al., 2003; Villanacci

et al., 2006).

The milder CD forms were found to be more prevalent in HP-positive

adults (Villanacci et al., 2006). The data, received in children are

contradictory (Guz-Mark et al., 2014; Narang et al., 2016). On a gluten

free diet the normalization of the duodenal mucosa was independent of

presence/absence of HP both in adults and children (Bardella et al.,

2007; Aydogdu et al., 2008).

Genetic DQA1*03:01 was found to be often in both CD and HP-positive

duodenal ulcer patients (Azuma et al., 1995; Mubarak et al.,

2013). TNF-308 (G > A) SNP increases risk of CD and persistent

HPinfection (Khan et al., 2016). The−336G CD209 allele#

associated with a higher HP infection severity/susceptibility might

be involved in CD susceptibility in HLA-DQ2 negative patients.

(Núñez et al., 2006).

DQA1*0201 allele associated with the high CD risk was significantly

rarer in the HP-positive duodenal ulcer patients than in the HP-negative

controls (Azuma et al., 1995; Lionetti et al., 2014). HLA-DRB1*0301

and DRB1*07 associated with high CD risk in some ethnic groups are

involved in the of some HPproteins recognition and in subsequent

activation of gastric T cells within the framework of antiinfective immune

response (Bilbao et al., 2002; talová et al., 2002; Bergman et al., 2005).

Gastrointestinal

functions

Hp infection leads to the abnormal gut permeability, due to

increased production of pro-inflammatory cytokines (Caron et al.,

2015). At that the subjects with latent CD have an abnormal

permeability (Peña and Crusius, 1998; Sapone et al., 2011) The

abnormal mucosal permeability increases the gluten availability for

the gluten-specific lymphocyte clones in the Peyer’s Plaques.

CD patients were found to have high basal and stimulated acid-forming

function, while a comfortable microenvironment for

HPincludeżIhypochlorhydria (Il’chenko et al., 1991; Savarino et al.,

1999; Krums et al., 2011; Harris et al., 2013). Indeed, HPcan only

survive for minutes in the stomach lumen (pH of 1–2) and must quickly

migrate to the gastric epithelial surface (Schreiber et al., 2005).

Innate immune – Hpcolonizes the gastric mucosa by adhering to the mucous epithelial

cells via the fucosylated blood group antigens H-type 1 and Leb

(Magalhães and Reis, 2010). In principle, the typical for CD immaturity

of the gastrointestinal tractincludes weak functions of the mucosal

barrier and a lack of bacteria colonization (Forchielli and Walker, 2005).

However, single publications indicated no features of the

glycocalyx/mucous layer carbohydrate structures in CD (Toft-Hansen

et al., 2013).

The inflammatory cells in the Hpinfection in epithelium and lamina

propria express inducible NO-synthase with excess free radicals

due to the alterations and exacerbation of inflammation with

impaired regeneration processes (Cherdantseva et al., 2014). The

similar events occur after gluten exposure in the gastrointestinal

mucosa of gluten-sensitive patients, being due to the in injury of

the small-intestinal tissue (Holmgren Peterson et al., 1998; Niveloni

et al., 2000).

Increased tissues concentration of nitric oxide metabolites in CD might

have a protective effect against Hp (Gobert and Wilson, 2016). At the

same time Hp uses diverse strategies to promote its survival. All

Hpstrains encode proteins important for detoxifying reactive oxygen

species and its arginase limits NO production by macrophage-,

neutrophil- and epithelial cell-derived nitric oxide synthase (Salama

et al., 2013). So, the passing suppression of CD- caused inflammation

by Hp is quite possible. Defensins’ levels are increased in CD mucosa

(Vordenbäumen et al., 2010). During Hp infections, these cationic

peptides with antimicrobial properties play a pivotal role in the innate

immune responses and are able to eradicate the bacteria (Pero et al.,

2017). It should be noted that according to some data, HP strains were

resistant to these factors (Nuding et al., 2013).

Hp induces apoptosis of gastric epithelial cells directly and via

modulation TRAIL-mediated apoptosis signaling (Tsai and Hsu,

2010). This effect might contribute to epithelial apoptosis and

villous atrophy—CD hallmark (Shalimar et al., 2013).

In Hp positive CD patients a significantly lower prevalence of atrophic

gastritis was observed when compared with Hp negative ones

(Santarelli et al., 2006). That might be due to the expression of several

DNA repair proteins in the inflamed tissue accumulating damaged host

DNA (Salama et al., 2013). On the other hand, Hp can gain a foothold

in gastrointestinal tract only in the mild CD cases. It is in line with the

data, demonstrating the higher inflammation in correlation with lower

bacterial upload (Salama et al., 2013).

Proinflammatory cytokine production in the framework of anti Hp

immune reaction might be due to CD triggering (Crabtree, 1996).

Increased local levels of proinflammatory cytokines in CD might have a

protective effect against the fresh Hp infection (Eiró et al., 2012; Di

Sabatino et al., 2016).

Gastroduodenal response to chronic Hp infection include

IL-8secretion, that being due to neutrophil migration and activation

(Crabtree, 1996). These events might trigger CD, as the cells play

important role in CD pathogenesis (Lammers et al., 2015).

The increased infiltration by activated neutrophil was demonstrated in

CD mucosa (Hällgren et al., 1989). That might have a protective effect

while HPexposure.

(Continued)
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TABLE 3 | Continued

⇑⇑ ⇑⇓ or ⊗

Adaptive immunity After the challenge of 4-weeks aged (infants) and 6-weeks aged

(adults) mice with HP strain T-cell activation in the gastric samples

was demonstrated including the pathways for pro-inflammatory

molecules (nitric oxide, iNOS), this effect increased over time

(Kienesberger et al., 2016).

Hp re-programs dendritic cells playing a crucial role in Hp recognition

toward a tolerance-promoting phenotype; HP-exposed DCs fail to

induce effector T-cell responses of the Th1 and Th17 type in vitro and

in vivo; instead, they preferentially induce the expression of the

Treg-specific transcription factor FoxP3, the surface marker CD25 and

the anti-inflammatory cytokine IL-10 in naive T-cells (Salama et al.,

2013). The role of this effect in protection from protection against

allergies, asthma and inflammatory bowel diseases, was demonstrated

(Oertli and Müller, 2012). Besides, at least two virulence factors are

known to inhibit human T-cells. VacAvia β2 integrin reception inhibits

T-cell proliferation and prevents nuclear translocation of the T-cell

transcription factor NF-AT and its subsequent transactivation of

T-cell-specific immune response genes. The other virulence

determinant—γ-glutamyl-transpeptidase blocks proliferation of T-cells

(Salama et al., 2013). As the interaction of the virulent molecules with

T-cells is non-specific, a bystander gluten-specific T-cell repression is

quite possible. It’s a purely speculativehypothesis. No one research

was published on this issue.

Microbiome Lactobacillus species (Lactobacillus johnsonii, Lactobacillus murinus, Lactobacillus reuteri) were able to inhibit Hpgrowth in vitro (Zaman

et al., 2014; Delgado et al., 2015). Streptococcus mitis, a commensal microorganism of the human stomach, was found to inhibit

Hpgrowth and to drive its conversion from a spiral to a coccoidal form (Khosravi et al., 2014). Just the same Lactobacillus and

Streptococcus species appeared to be ability to degrade and remove gluten derivatives (Fernandez-Feo et al., 2013; Duar et al., 2015).

The impact of these coincidences on both CD and Hp infection remain unclear because (1) the studies of activities were carried using

cultivated and then isolated microbes, whereas the glutenase activity of aggregate microbial community as a whole (biofilm) in gut

boundary layer may significantly differ from the isolated activity of the individual members of this community; (2) the immunogenicity of the

generated peptide fragments might be different that might be due to the opposite effect on CD.

#CD209 is a dendritic and macrophage surface molecule involved in pathogen recognition and immune activation, Hp infection in particular (Bergman et al., 2006; Núñez et al., 2006).

It was found to be overexpressed in the Hp infected gastric epithelial cells and to mediate Th1 differentiation, which may be involved in gastric mucosal injury (Wu et al., 2014).

of autoreactive T cells (Christen and von Herrath, 2005).
In view of the fact that viruses are inducers of immune
cells apoptosis while sparing the Treg cells (Che et al.,
2015) and apoptosis is enhanced in CD (Shalimar et al.,
2013), it is suggested that viruses, by abrogating immune
activation, might attenuate intestinal autoimmune progression
in CD.

Infection at Another Location might Keep
Auto-Aggressive Cells from Reaching the
Site of Autoimmune Destruction
As suggested by Christen (Christen and von Herrath, 2005),
an infectious inflammation elsewhere in the body might
keep auto-aggressive cells from arriving into the sites of
autoimmune destruction, that might be due to the abrogation
of type 1 diabetes in NOD mice after LCMV infection. The
authors suggested that this occurred because the “abrogative”
virus grew predominantly in peripheral lymphoid organs and
other sites rather than the pancreas or its islets themselves.
Thus, the sites of severe inflammation might act as a
filter for auto-aggressive T cells removing them from the
circuit and depriving them from homing the pancreatic
islets. Similar scenarios might operate where infection with
B. coxsackievirus or Salmomella typhi murium protected
against autoimmunity (Tracy et al., 2002; Raine et al.,
2006).

Immunosuppression by Extracellular
Vesicles
Release of extracellular vesicles is a natural phenomenon of
almost all cell types. They derive either from multivesicular
bodies or from the cellular plasma membrane. Those vesicles
contain a subset of cell derived proteins, lipids, including
nucleic acids. Extracellular vesicles regulate immune responses
against pathogens, as well as autoimmunity. It is suggested
that these suppressive vesicles would prevent peripheral self-
antigens and commonly encountered foreign antigens from
causing chronic inflammation and autoimmunity. Following
this lines, it is hypothesized that various infectious agents
can induce those regulatory extracellular vesicles, counteracting
autoimmune pathways, playing a protective anti-autoimmune
role (Robbins and Morelli, 2014; Robbins et al., 2016).

Infectious Agents’ Secretion of
Anti-Autoreactive T Cells Proteins
Infections with helminths can prevent or attenuate auto-
inflammatory/immune diseases. In addition to their Th1 to Th2
shift, most recently, Helminth secreted proteins were shown
to prevent autoimmunity. The excretory/secretory products of
Fasciola hepatica contain immune-modulatory molecules that
arbitrate protection from autoimmune diabetes via the activation
and provision of a regulatory immune environment (Lund et al.,
2014). Such a mechanism was not studied in CD, but might

Frontiers in Microbiology | www.frontiersin.org 10 August 2017 | Volume 8 | Article 1392

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lerner et al. Dual Function of Infections in Celiac Disease

explain the new potential therapeutic strategy to treat CD with
Necator Americanus larvae (Croese et al., 2015; Giacomin et al.,
2015).

CONCLUSIONS

The cross-talks between infections and autoimmunity
are complex (Figure 1). Most of the data indicate that
microbes and viruses are major environmental factors
in autoimmunity induction. However, growing evidences
conversely suggest that infectious agent can abrogate or
protect against autoimmunity. This protective evolutionary
cross-talks between microbes/viruses and us might represent
a mutual beneficial equilibrium relationship between two
cohabiting ecosystems. The protective pathways might
involve PTMP, decreased intestinal permeability, Th1 to
Th2 immune shift, induction of inflammatory immune cell
apoptosis, auto-aggressive cells relocation from the target organ,
immunosuppressive extracellular vesicles and anti-autoreactive
cell immune-regulatory proteins.

Yet, our analysis demonstrates that the interaction of
the microorganisms /viruses and CD is always a set of
multi-directional processes. With a detailed consideration

of possible mechanisms of CD and CMV, EBV, Herpes
simplex type 1, Rubella, H. pylori, it can be assumed that
the role of these infections suggested to be potential CD
protectors infections, is not so unambiguous positive and
the outcome of this interactions might be due to a balance
between these multi-directional processes. In summary, there
are more publications on the inducer role of infections
in CD, and the few ones advocating the protective role
should be further explored. The present review expend
on several avenues that can be studied to understand the
protective cross-talks between infectious agents and CD.
Apprehending them can potentially suggest new therapeutic
strategies for CD.
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