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Amino acid “little Big Bang": Representing amino
acid substitution matrices as dot products of
Euclidian vectors
Karel Zimmermann1,2*, Jean-François Gibrat2

Abstract

Background: Sequence comparisons make use of a one-letter representation for amino acids, the necessary
quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding
a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the
substitution matrices.

Results: We present a Euclidian vector representation of the amino acids, obtained by the singular value
decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of
amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid
physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and
BLOSUM series substitution matrices.

Conclusions: This vector encoding introduces a Euclidian metric in the amino acid space, consistent with
substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino
acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine
learning algorithms such as Support Vector Machine and Neural Networks algorithms.

Background
Methods for analyzing protein sequences rest on the
underlying amino acid representation. For many pur-
poses, such as sequence comparisons, amino acids are
represented by a one-letter code and their similarity is
“summed up” in substitution (scoring) matrices.
Elements of these matrices represents the score of

substituting an amino acid by another one in homolo-
gous proteins. It has been shown [1] that the general
form of such an element is:

s ln
Pab

PaPb
ab  

where sab is the matrix element corresponding to
amino acids a and b, Pab is the probability to find these
amino acids aligned together in known protein families,
and Pa, Pb are the corresponding background frequen-
cies. l is a scaling factor. PAM [2] and BLOSUM [3]

matrices are computed accordingly. Such a ratio com-
pare the probability of an event under two alternative
hypotheses: i) the amino acids are aligned because the
two sequences are evolutionary related or ii) the align-
ment is due to a chance occurrence. Adding such scores
when comparing two sequences therefore amounts to
maximizing the probability that the two sequences are
evolutionary related.
Protein substitution matrices play a central role in

sequence comparisons. They permit to align and com-
pare quantitatively any two protein sequences, but they
do not provide a description of the individual amino
acids themselves.
Some analyses require taking into consideration the

intrinsic properties of the sequences. For instance, this
is the case of the prediction of signal peptide cleavage
sites [4], disordered regions, low complexity zones,
transmembrane segments, secondary structures, etc.
The idea of numerical encoding of the individual amino

acids is not new. As far as we are aware, Swanson was the
first to propose a representation of amino acids by vectors* Correspondence: Karel.Zimmermann@jouy.inra.fr
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[5]. [4] addressed the issue of the best amino acid encod-
ing to be used with machine learning algorithms. Some
approaches are based on various properties of amino acids
[5-8]. Other approaches start from the substitution
matrices. However, with few exceptions, e.g., [9], most
authors start by transforming them into distance matrices
[4,10-14]. This approach is not devoid of difficulties. First,
such a conversion is not unique and it is not known which
one is the most appropriate, if any. Second, it is intuitively
assumed that the distance is some inverse of the similarity,
i.e., when the similarity is large the distance should be
small and vice versa. However, the diagonal of a substitu-
tion matrix contains very different values (measuring the
“mutatibility” of amino acids), but the diagonal of a dis-
tance matrix is always zero by the very definition of the
distance. Despite these known difficulties, we will briefly
allude to distance matrix approaches in the discussion.
Thus, on the one hand, there exist substitution

matrices but no corresponding representation of indivi-
dual amino acids and on the other hand there are various
amino acid (vector) codings, which, at best, correspond
very indirectly to any current substitution matrix.
This paper deals with the problem of finding amino

acid Euclidian vectors corresponding to current substi-
tution matrices. These vectors are obtained by the sin-
gular value decomposition of the matrices. The
substitution matrix entries correspond to the dot pro-
duct of the corresponding amino acids vectors. As an
example of application of this representation, we study
the significance of various amino acid physicochemical
properties upon the corresponding substitution matrices.

Methods
Singular value decomposition of the substitution matrix
The singular value decomposition (SVD) method is a
standard matrix factorization method [15]. SVD is
related to Principal Component Analysis [16]. It has
been used in the field of bioinformatics to, e.g., analyze
protein sequence alignment score data [17], expression
data [18] and position-specific scoring matrices [19].
Any square N × N symmetric matrix (N = 20 for pro-

tein substitution matrices) S can be expressed as a series
of N Cartesian vector products ranked according to the
decreasing singular values wK:

S w U Vk K K
T

K

N

 

  

1

(1)

where

U K are column N-dimensional unit vectors,

VK
T are row N-dimensional unit vectors (T indicates the

transpose) and ⊗ represents the Cartesian vector pro-
duct (the result of which is an N × N matrix). The vec-
tors


U and


V form orthonormal sets. The singular

values are linked to the square of the Frobenius matrix
norm by the following equation:

S s wab

a b

K

K

2 2 2  
,

(2)

where a and b represent amino acids and sab is the
corresponding substitution matrix element. When the
series in Eq. 1 is truncated, or some terms are omitted,
the remaining terms still yield S , a more or less accu-
rate representation of the original matrix S.
For a square symmetric matrix either

 
V UK K or 

V UK K  . Omitting in Eq. 1 the terms for which 
V UK K  , any entry Sab of the matrix S can be writ-
ten as a dot product 


a b of the amino acid vectors,

where:

 a w U w U w Ua a R Ra ( , ),1 1 2 2 (3)

where UKa is the a - th component of vector UK and
the dimensionality R ≤ N is the number of conserved
terms in the series (Eq. 1). By convention, for SVD, the
singular values are always positive and ranked by
decreasing values. Components for which

 
V UK K 

correspond to negative eigenvalues, the sign having been
“transferred” to one of the singular vectors. This can be
easily verified by performing an eigenvalue analysis of
the substitution matrix. Notice that SVD and an eigen-
value analysis give the same results for symmetric,
square matrices. In Eq 3 we cannot use negative singular
values, since this would result in complex amino acid
vectors. However, omitting these negative components
is also troublesome, since the negative eigenvalues can
have large absolute values indicating that their contribu-
tion to the matrix is important. This problem is particu-
larly acute for matrices characteristic of short
evolutionary distances. For instance, as will be described
later, the agreement between the reconstructed matrix
and the original is only 28.5% for the PAM10 matrix,
whilst it is 94.7% for the PAM500 matrix.
To improve the approximation matrix, we tried the

following formula:

    
s a T b T shiftab    ( )( ) (4)

where

T is an adjustable translation vector and shift

is an adjustable constant.

T and shift can be obtained

by minimizing the following expression:

min ( )
,
 
T shift

ab ab

ab

s s 2
(5)

From the minimum condition it can be easily shown
that the shift is linked to


T by a relation:
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shift T s t tT   
 2 2

2

where s is the matrix arithmetic mean (over all its
400 elements) and


t is the geometric center of all the

amino acid vectors

a . The components TL of the vector

T are obtained by solving a system of linear equations:

T N a a N t t s ab a b N t stL K L

a

K L

L

R

ab K K

a b

( ) ( )( ) (
,

2 2 22

1

2 2      


 
KK K R), , 1 2

where aL is the L-th component of the amino acids
vector


a , tL is the L-th component of the amino acids

geometric center

t and N = 20.

To measure the agreement between S and S, we use a
quality index (in %) defined as:

100 1

2

2
*( )

S S

S


(6)

We also use the correlation coefficient between the
210 upper triangular entries sab and the corresponding
approximations Sab . Though the correlation coefficient
is insensitive to systematic errors (see legend of Fig. 1),
it provides a good complementary view.
In order to compare, analyze and visualize the SVD

results obtained with different substitution matrices, we
need to express them in some standard form. To do
that, we center each amino acid vector set, i.e., from
each “raw“ vector set (obtained directly by SVD - Eq. 3)
we subtract its geometric mean


t . If we liken the

amino acids to “stars” and the corresponding vectors to
their position vectors, the amino acids vector set can be
regarded as a “galaxy” and we will herafter refer to it in
this way. Each galaxy is characterized by its radius, Rg

measured as the mean distance of the amino acids from
the galaxy center


t . The different galaxies can then be

superimposed by a multidimensional rigid body fit, as
described in [20].
Here we need to introduce the concept of “shifted“

matrices. Shifting a matrix means to add to all matrix
elements the same constant. Among all the shifted
matrices, we are specially interested in the “centered“
ones. Centering a matrix consists in subtracting the
arithmetic mean of all its 400 elements from each entry,
i.e., shifting the matrix of its negative mean.
Mapping physicochemical properties of amino acids
The Euclidian vector representation of the amino acids
allows the mapping of miscellaneous amino acids physi-
cochemical properties into the corresponding multidi-
mensional space. Starting from 28 properties collected
in the amino acid index database AAindex [21] and
other references we finally kept 17 of them. Nine of
them were those of Kidera et al. [6], the others come

from various other sources, e.g., [22]. The properties are
described in further detail in the Supplementary Table
S1 [See Additional file 1].
Amino acids properties are expressed in various scales

and units. We thus systematically centered and normal-
ized them. To appreciate the significance of the results,
we have compared them with the results obtained for a
randomly generated “pseudo-property” (also centered
and normalized).
The amino acid physicochemical properties (hydropho-

bicity, charge, etc.) are scalars, aligned on some line

P in

the amino acids space. If the substitution matrix were
“explained” by a single scalar property, amino acid vec-
tors would have the dimensionality R = 1 and the amino
acids would all lie on a straight line and should be found
with the same order and spread (up to a multiplicative
factor) as the property. Of course, this is never the case.
To obtain the best projection of a given property in

the amino acids space, it is necessary to find the orien-
tation of the “property axis”


P that minimizes the dis-

tances between the scaled amino acids properties on

P

and the corresponding amino acid points in space:

min
,


 

P
a

a

a p P 2
(7)

where a is an amino acid, pa is the value of the scalar
property for amino acid a and l is a scaling factor. The
condition for the minimum yields for the K-th compo-
nent of


P :

P
paaKa

paa
p aK a K

a

 


2 (8)

Where aK is the K-th component of vector

a . Expres-

sion paa
2 in the above equation is equal to 1 since

the properties are centered and normalized.
The “contribution” of a given property to the scoring

matrix can be measured as the ratio of the overall
spread of the property scalar values pa on the line


P to

the spread of the amino acid points in space:

100

2

2

paPa

aa







. (9)

This expression, between 0% and 100%, indicates how
well the property “explains” the variance of the amino
acids in the Euclidian space and thus how much the
property contributes to the substitution matrix. Notice
that the first components of the amino acid vectors
represent the best linear approximation of the amino
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acid spread. Thus, the ratio
w

S

1
2

2
(see Eq. 2) represents

the upper limit of such a contribution.

Results and Discussion
BLOSUM matrices
We studied 16 BLOSUM matrices (from BLOSUM30 to
BLOSUM100 by increment of 5, plus BLOSUM62), in
their non-rounded form (BLOCKS database: [23]) as well
as in their standard form (rounded to integer), usually
employed for sequence alignments [See Additional file 2].

Rounding results in some numerical problems so we
start the discussion with the results obtained with the
original, non-rounded, matrices. We will briefly mention
rounding effects afterwards.
The top panel of Fig. 1 shows the result for the non-

rounded BLOSUM62 matrix. The entries of the dot pro-
ducts matrix S of the “raw” non-centered vectors (Eq.
3) systematically overestimate the corresponding entries
of the original matrix. This difficulty increases with the
matrix index, i.e., with decreasing evolutionary distance,
as indicated by the quality index (Eq. 6) that decreases
from 93.6% for BLOSUM30, through 75.7% for

Figure 1 Top panel: the blue curve is the plot of the substitution matrix elements (210 elements of the lower triangular BLOSUM62,
non-rounded, expressed in bit units) sorted by increasing value; the red curve is their approximations, Sab , obtained as the dot
products of the raw, non-centered, vectors. Bottom panel: the blue curve is the same as above but with centered matrix elements (i.e., the
mean of the shifted BLOSUM62 matrix is zero), the red curve is the approximation computed with the centered vectors, as described in the text.
The x-axis corresponds to the sorted 210 lower triangular matrix elements, e.g., the 210th element is the diagonal element corresponding to the
tryptophan, sWW - the largest element in the BLOSUM62 matrix. The y-axis corresponds to the values of the matrix elements. Notice that
correlation coefficients are very similar in both cases (0.989 for the curves of the top panel vs 0.998 for the curves of the bottom panel).
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BLOSUM62 to 57.3% for BLOSUM100. However, we
observe that the corresponding correlation coefficients
between S and S are close to one: 0.997, 0.989 and
0.982 respectively. When we repeat the same procedure,
starting from the centered matrices, the results are sig-
nificantly improved (as shown on the bottom panel of
Fig. 1). The quality index (and correlation coefficient)
vary from 99.6% (0.999) for BLOSUM30 through 98.9%
(0.998) for BLOSUM62 to 98.3% (0.997) for BLO-
SUM100. It is interesting to observe that the dimension-
ality of the centered matrices is, with very few
exceptions, the same as that of non-centered ones. The
number of negative eigenvalues remains the same but
their absolute value is much smaller for centered
matrices. A slightly larger (by about 50%) positive shift
of the matrices would even yield quality indices of
100.0% and correlation coefficients of practically 1.000
for all matrices. The latter would, thus, be perfectly
represented by dot products. How can we explain such
an improvement and what is the effect of the matrix
shift on the results?
Fig. 2 shows that the matrix mean becomes increas-

ingly negative with increasing BLOSUM indices. We
could thus view the BLOSUM matrices as originally
centered but undergoing an increasingly negative shift.
As mentioned above, it is easy to obtain, even for a
moderately positive shift of the matrix, quality indices
close to 100%. In the limiting case of a very large posi-
tive shift all matrix entries tend to the same value (equal
to the shift) and all the corresponding amino acid vec-
tors tend to the same vector, the norm of which is

equal to the square root of the shift. On the other hand,
for a sufficiently negative shift, we observe that the qual-
ity index can decrease to zero. This is the case when,
e.g., the shift is such that even the matrix diagonal ele-
ments become negative. Negative diagonal elements
cannot be represented by the square of vectors and the
dot product matrix representation breaks down.
Let us now consider a centered vector set. The corre-

sponding matrix of dot products will be centered, too,
and its SVD will yield back the same vector set (possibly
rotated). As described earlier, the amino acids can be
likened to a “galaxy”. If a positive shift is applied to the
matrix of dot products, the SVD of this shifted matrix
will yield exactly the same galaxy, but having undergone
a rotation and a translation in the direction of positive
coordinates. The situation is not symmetric when a nega-
tive shift is applied to the matrix, since, as mentioned
above, the dot product representation is no longer valid
when diagonal elements become negative. Thus, the
more negative the shift the worse the dot product repre-
sentation. However, the SVD of a negatively shifted dot
products matrix will still yield exactly the same galaxy,
except that it cannot be symmetrically translated to the
negative coordinates. This causes a systematic overesti-
mation of the matrix entries by the dot products, as is
observed in Fig. 1. Let us emphasize that the essential
point, here, is the fact that the amino acid galaxy is shift-
invariant. It is exactly the same galaxy which yields poor
quality indices with the non-centered matrices and much
better ones with the centered matrices. This observation

led us to represent the approximate matrix S by Eq. 4

Figure 2 Plot of the matrix mean (blue), matrix relative entropy (red) and amino acid galaxy radius, Rg (black), for the BLOSUM matrix
series (solid for rounded and dashed for non-rounded matrices). The x-axis corresponds to BLOSUM matrix indices, from 30 to 100 by
increment of 5, the y-axis corresponds to the values.
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above. Omitting

T in formula (4) has a limited effect, the

shift is much more important. With

T and shift both

obtained by the minimization (Eq. 5) above, quality
indices for all the substitution matrices analyzed (BLO-
SUM and PAM) are systematically better than 99.0% and
the correlation coefficients better than 0.990. The curves

corresponding to S and S in Fig. 1 are, in this case,

hardly distinguishable.
In any case, our objective in this work is to obtain the

best amino acid vectors corresponding to a given substi-
tution matrix, and the centered vectors obtained by
SVD fulfill this role perfectly. These centered vectors
characterize the amino acids individually, the translation

T and the shift being the same for all amino acids.

The galaxy corresponding to the matrix BLOSUM62 is
shown in Fig. 3. A movie (animated gif images) showing
the evolution of the galaxy for the complete BLOSUM
series can be found at the Web address [24] One
observes that with increasing matrix indices, the galaxy
shows a tendency to swell and gains about 64% in radius
(a sort of “little Big Bang” - see Fig. 2 and [24]). How-
ever, besides this monotonous, and nearly linear, expan-
sion the global shape of the galaxy does not change
much. To analyze the shape variations, we have super-
imposed all the galaxies, allowing for size scaling. The
result (an animated gif image) can also be seen at the
previously given Web address. The animation shows
that the main, but still not very important, differences
occur for matrix indices ≤ 40 (this might correspond to
the transition found by Kinjo and Nishikawa [25]). For
larger indices, the variations of the galaxy shape are
minute. A visual inspection of Fig. 3 reveals that amino
acids can be grouped in about six clusters: i) a cluster of
aliphatic amino acids: L, I, V, M; ii) a cluster of aromatic
amino acids: F, Y, W; iii) a cluster of small, polar or
neutral, amino acids: T, S, G, A, P; a cluster grouping
positively charged amino acids K, R, negatively charged
amino acids E, D and associated amino acids Q, N; v) H
and vi) C. To obtain a less subjective clustering we used
the k-means algorithm to classify the amino acids into
groups using the 20 dimensions. Table 1 shows the
results for an increasing number of classes k.
The first partition (k = 2) separates polar and non-

polar amino acids. The next partition separates the lat-
ter group into aliphatic and aromatic amino acids. The

following partition splits the polar groups into charged
(and associated) amino acids and small, polar and neu-
tral, ones. The next partition isolates Histidine from the
charged group. Finally the small, non polar and neutral,
amino acid group splits into A, T on one side and S, P,
G on the other side (the clustering of A and T is notice-
able in Fig. 3). The latter splitting is somewhat surpris-
ing since one would think that S and T, that are very
similar polar residues just differing by a methyl group,
would tend to remain together. The amino acid cluster-
ing shows only marginal variations with different BLO-
SUM matrices (data not shown).
We may thus conclude that matrices of the BLOSUM

series are characterized by a shift (the negative matrix
mean) that increases with the matrix index and an amino
acid galaxy with a nearly constant shape, which only
shows an expansion with increasing matrix indices. The
swelling of the galaxy, i.e., the fact that amino acids are
more separated when the matrix index increases, makes
sense since for BLOSUM100 the chance of mutating a
given amino acid into some other is smaller than the cor-
responding mutation, for instance, in BLOSUM30.
Two interesting observations are the existence of i) a

large correlation (0.977) between the radius of the
galaxy, Rg and the matrix entropy and ii) a nearly perfect
anti-correlation (-0.9999) between the matrix mean and
the matrix entropy. As we shall see with the PAM
matrices, these observations are not fortuitous and so
we defer the discussion regarding these points until the
PAM result section.
Physicochemical properties
Fig. 3 illustrates the orientation of the physicochemical
property vectors,


P , in the three-dimensional projection

of the amino acid space for the BLOSUM62 matrix.
The contributions of the different properties (Eq. 9)

to three BLOSUM matrices are summarized in Table
2. Properties that contribute the most to BLOSUM
matrices are aromaticity (5arom) hydrophobicity
(6hdrp, 9khdr3, 10khdr4), beta-propensity (11kbpr1)
and, to a lesser extent, properties proportional to the
size of the residue: volume (1rsvol), bulkiness (7kbulk)
and molecular mass (17mass). It is a little bit surpris-
ing to observe that the contribution of the charge is
not significantly higher than that of a random prop-
erty. A possible explanation for this fact is twofold i)
the distribution of values for the charge is peculiar: R,

Table 1 Clustering of amino acids for BLOSUM62 matrix by the k-means algorithm.

2: C I L M V F W Y • A G P S T D E N Q K R H

3: F W Y • C I L M V • A G P S T D E N Q K R H

4: F W Y • C I L M V • A G P S T • D E N Q K R H

5: F W Y • C I L M V • A G P S T • D E N Q K R • H

6: F W Y • C I L M V • A T • G P S • D E N Q K R • H
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K have a charge of +1, D, E have a charge of -1, all
other amino acids have a charge of 0 and ii) charged
residues cluster with other polar residues (see Fig. 3).
It is likely that the conjunction of these two character-
istics makes it difficult to find a line representing well
the charge property. Aromaticity exhibits a similar
value distribution (F, Y and W have a value of 1 and
all other residues have a value of 0) but, unlike
charged amino acids, aromatic amino acids are well

separated from other amino acids in the space. Even
though the contributions may seem low, the largest
ones are close to the upper limit of about 20% set by
w S1

2 2
/  . Nevertheless, this indicates that the hydro-

phobicity (or any other scalar characteristics) repre-
sents the “tip of the iceberg” only and thus provides a
very partial description of the amino acid properties.
The vector representation constitutes a much more
comprehensive description.

Figure 3 Three-dimensional projection of the (non-rounded) BLOSUM62 amino acid galaxy together with its physicochemical
characteristics. Property vectors are projected on the left, bottom and rear faces of the parallelepiped. The values on the X, Y, Z axes
correspond to the first 3 components of the 20 amino acid vectors.

Table 2 Contributions of the physicochemical properties to BLOSUM matrices.

Properties 1rsvol 2chrg 3achrg 4awrat 5arom 6hdrp 7kbulk 8khdr2 9khdr3

BLOSUM30 12.0 5.7 5.4 10.9 13.4 12.0 11.8 12.7 11.7

BLOSUM62 12.7 6.0 7.6 9.6 14.2 17.7 12.1 15.6 17.1

BLOSUM100 12.0 6.4 7.5 8.9 13.1 16.6 11.4 14.7 16.2

Properties 10khdr4 11kbpr1 12kbpr2 13kaprf 14kbnd1 15kbnd2 16hydro 17mass 18rand

BLOSUM30 11.5 12.3 9.2 5.3 7.2 9.7 10.6 11.6 5.2 ± 1.4

BLOSUM62 17.2 15.5 12.5 5.6 9.0 12.8 13.9 11.6 5.2 ± 1.4

BLOSUM100 16.2 14.9 12.4 5.6 8.8 12.2 13.2 10.8 5.2 ± 1.3

(Contributions are in % see Eq. 9). The property categories are: volume (1rsvol), charge (2chrg, 3achrg), aromaticity (5arom), hydrophobicity (6hdrp, 8khdr2,
9khdr3, 10khdr4, 16hydro), bulkiness (7kbulk), mass (17mass), a-propensity (13kaprf), b-propensity (11kbpr1, 12kbpr2). The last column 18rand is a simulated
“random” property.
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Though the values change slightly from one matrix to
the other along the BLOSUM series, the above observa-
tions remain valid for all matrices.
Other groups have studied the relationship between

amino acid properties and various substitution matrices.
Tomii and Kanehisa [26] have shown, for instance, that
PAM matrix elements are correlated with the volume
and hydrophobicity of amino acids. Kinjo and Nishikawa
[25] performed an eigenvalue analysis of substitution
matrices computed from structure-based alignments for
different intervals of sequence similarity. They showed
that the first eigenvalue for matrices corresponding to a
percentage of sequence similarity larger than 30% is cor-
related with the relative mutability whereas it is corre-
lated with hydrophobicity below 30%. Our results are
consistent with these findings. Notice that we did not
consider relative mutability in the physicochemical
properties we selected since it bears a direct relationship
with the matrix elements.
Substitution matrices are currently used for sequence

alignments in their rounded-to-integer form. We
observe that the rounding disturbs the results (compare
the evolution of the mean and the galaxy radius for the
rounded and non-rounded matrices in Fig. 2). The cor-
responding movie (see the Web page [24]) is also much
more chaotic. Thus, although the rounding is probably
of no consequence upon the alignments results, one
should refrain, when possible, to use rounded matrices
to compute amino acid vectors. Notice that the matrix
entropy, often provided with the rounded matrices, is in
reality that of the non-rounded ones.

PAM matrices
For the PAM series, unfortunately, we were not able to
obtain the original, non-rounded, matrices. We thus
analyzed 50 rounded matrices, from PAM10 to PAM500
by increments of 10 [See additional file 3].
As with the BLOSUM series, the difficulty of repre-

senting the PAM matrices by the dot products of the
“raw” vectors (Eq. 3 increases with decreasing matrix
indices (recall that the PAM numbering runs opposite
to the BLOSUM numbering, i.e., small indices represent
short evolutionary distances). In particular the quality
index (Eq. 6) decreases from 94.7% for PAM500 through
70.6% for PAM160 to a mere 28.5% for PAM10. Using
the centered matrices, the corresponding values (and
the correlation coefficients) are 96.8% (0.985), 89.5%
(0.943) and 93.9% (0.923). However, as for the BLOSUM
matrices, using the same (centered) vector set and the
procedure described in Eq.(5), the quality indices
approach 100% and the correlation coefficients is very
close to 1.000.
As for the BLOSUM series, each PAM matrix is char-

acterized by the matrix shift and the centered amino
acid galaxy. The galaxy expands by about 75% from
PAM500 to PAM10 (see Fig. 4). Although galaxies cor-
responding to the PAM matrices have a larger radius
than those of the BLOSUM series, they nevertheless
bear a close resemblance with the latter. The evolution
of the galaxies for the whole PAM series is presented at
the Web address [24]. Likewise the BLOSUM series, the
shape of the PAM galaxy is quite stable. It is known
that there exists a correspondence between the BLO-
SUM and PAM series. For instance, the EBI Web site
[27], gives the following correspondences: PAM100 ↔

Figure 4 Plot of the matrix mean (blue), matrix relative entropy (red) and amino acid galaxy radius, Rg (black), for the PAM matrix
series. As explained in the text, the observed lack of monotonicity of the matrix mean and galaxy radius curves, is probably due to the fact that
rounded PAM matrices were used. The x-axis corresponds to PAM matrix indices, from 10 to 500 by increment of 10, the y-axis corresponds to
the values.
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BLOSUM90, PAM120 ↔ BLOSUM80, PAM160 ↔
BLOSUM60, PAM200 ↔ BLOSUM52, PAM250 ↔
BLOSUM45. We have scaled and fitted the amino acid
galaxies of the PAM matrices to their homologs of the
BLOSUM series, and then used a linear interpolation to
obtain a kind of “morphing” between the corresponding
galaxies. One observes that the corresponding galaxies
are very similar, at least in their main features (see [24]).
However, having only the rounded PAM matrices, we
are not able to discriminate, when differences are
observed, which ones are real and which ones are due
to the rounding effect. The latter can have a noticeable
influence.
Supplementary Table S2 [See Additional file 1] pre-

sents the contributions of the physicochemical properties
to different PAM matrices. Roughly speaking, we find the
same trends that were observed for the BLOSUM series.
Relative entropy, galaxy radius and matrix mean
On Fig. 2 the matrix mean, galaxy radius and matrix
relative entropy curves for the BLOSUM series appear
more or less linear. For the PAM series (see Fig. 4) the
corresponding curves, clearly, are not linear. It should
be noted, though, that the range of the PAM series is
far wider than that of the BLOSUM series since the
range BLOSUM90-BLOSUM45 corresponds to the
range PAM100-PAM250. Focusing only on the latter
range for the PAM series, the curves might very well
appear linear. Nevertheless, even if we consider the
complete range for the PAM series, there is still a strong
anti-correlation, -0.978, between the matrix mean and
the relative entropy and a strong correlation, 0.959,
between the relative entropy and the galaxy radius. We
assume that, without the rounding effect, the calculated
correlations would even be better, close to -1, for the
anti-correlation between the entropy and the matrix
mean, as we observe with the BLOSUM matrices. The
relative entropy provided with the substitution matrices
is given by the following formula:

M q s q log
qab
papb

ab ab

a b

ab

a b

  
, ,

2

where pa, pb are the background probabilities for
amino acids a and b and qab is the probability of amino
acids a and b to appear in columns of the multiple
sequence alignments that were used to compute the
substitution matrix. sab is the matrix element for amino
acids a, b. As described by [1], “M measures the average
information available per position to distinguish the
alignment from chance”. Notice, as pointed out by Bas-
tien et al. [28], that the alignment score between two
sequences can be considered as the estimated mutual
information between them. It measures how much
knowing one of the sequence reduces our uncertainty

about the other (more precisely, about the fact that the
two sequences are evolutionary related).
The expected score for a given substitution matrix 〈s〉

= ∑a, bpapbsab is negative (otherwise the matrix could
not be used to perform local alignments since, on aver-
age, it would always be favorable to extend the local
alignment) whilst the mutual information is always posi-
tive. M is the average score per residue pair when these
residues are related by some evolutionary model,
whereas 〈s〉 is the average score for a random model.
The mutual information is maximal when amino acids a
and b always covary (see [29]). For this situation we
have M = H = -∑apalog2pa the entropy of the amino
acid distribution (corresponding to about 4.2 with the
current amino acid probability distribution). The mutual
information is minimal (zero) when qab = papb, implying
that amino acids are independent.
We observe, for both the PAM and BLOSUM series

that the mutual information decreases when the evolu-
tionary distance increases. The interpretation of this fact
is that the constraints existing on amino acid mutations
become weaker and weaker when the evolutionary dis-
tance increases, i.e., it is increasingly probable of repla-
cing an amino acid by any other one. Let us emphasize
that this is not to say that amino acid physicochemical
properties become irrelevant at large evolutionary dis-
tances, but that, in the long run, the protein structure
has enough time to adapt locally and accommodate
mutations that would be extremely unfavorable at
shorter evolutionary distances. In the limiting case,
when the mutual information becomes 0, there is no
longer any constraint on amino acid mutations and they
occur in columns of multiple alignments with a prob-
ability equal to the product of their background fre-
quencies. In this regime (known as the twilight zone)
sequence alignments do not bring any information
regarding a possible homology and other methods, such
as fold recognition techniques that take into account the
protein structure, should be used [30].
With this picture in mind, the correlation between the

galaxy size and the mutual information could be explained
as follows: for small evolutionary distances amino acids
are far apart in the multidimensional space - they have a
definite individuality. When the evolutionary distance
increases they get closer to each other - they are less dis-
tinguishable, implying that it becomes easier to inter-
change them. The anti-correlation between the matrix
mean and the mutual information is more difficult to
explain. We have performed simulations that randomly
generated qabdistributions from which we computed
pseudo substitution matrices (data not shown). These
simulations have shown that there is indeed an anti corre-
lation between the matrix mean and mutual information,
although weaker than the one we found for substitution
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matrices, but we were not able to arrive at a satisfactory
explanation of the underlying reason for this observation.
Distance matrix approach
For the sake of comparison, we also considered the dis-
tance matrix approach propounded by a number of
groups for obtaining the amino acid vectors. We started
with the simple formula:

d s s sab aa bb ab   2

that is used by a number of authors, e.g., [10]. It
should be noted that for the BLOSUM or PAM matrices
this distance very often violates the triangle inequality.
To obtain the amino acid vectors, we tried several
approaches: i) we used the Torgerson’s matrix of dot
products; ii) we minimized directly the differences
between the distance matrix entries and the vector dis-
tances; iii) we maximized the negative correlation
between the substitution matrix entries and the vector
distances. [See Additional file 4].
The third approach seems to be the best in the given

context, the results obtained with the Torgerson’s
matrix approach are the worse. We develop this in
more detail in the Supplements. Then we tried the fol-
lowing modified expression:

d s s sab aa bb ab
2 2  

This distance satisfies the triangle inequality for the
BLOSUM matrices and PAM matrices up to index 210.
For larger PAM indices it violates the triangle inequality
much less than the previous formula (at most 3% of the
distance triplets are concerned).
As we show in this paper, it is not necessary to use

the distance matrix approach to obtain amino acid vec-
tors. However, if one needs a metric space (see for
instance [12]), one can use our amino acid vectors to
compute a true metric distance:

d a b a a b b a bab
2 2 2       ( )

       

Consensus profile
A possible usage of the amino acid vector representation
is for finding the consensus sequence of a multiple
sequence alignment. Let us assume that a column of an
alignment of three sequences contains the three amino
acids: H, R and V. What is the best consensus amino
acid for this column? Using amino acid vectors, a
straightforward answer to this question exists: it is the
amino acid closest to the geometric mean of the amino
acids in the column. In the above case it is T.

Conclusions
Substitution matrices are complex and subtle data struc-
tures. They are symmetric, but non-redundant and seem
devoid of any simple pattern. Substitution matrices have
210 independent matrix elements, thus, on average, a
minimum of about 11 values per amino acid is needed
to reconstruct them. This implies that it is illusory to
describe amino acids with only two or three characteris-
tics. Our results corroborate this simple reasoning.
Using SVD, we were able to obtain from the substitu-

tion matrices a Euclidian vector for each amino acid.
This representation is appropriate for a number of ana-
lyses that do not rely on sequence comparisons and,
instead, need to take into consideration the intrinsic
properties of the sequences. As discussed by [12], a
metric model of evolution is a prerequisite for the devel-
opment of fast sequence comparison algorithms. The
vector representation we propose allows us to define
distances between amino acids that satisfy the three
conditions, positivity, symmetry and triangle inequality,
defining a Euclidian metric space while avoiding the loss
of information incurred when a similarity matrix is con-
verted into a distance matrix. One interesting finding of
this work is the fact that substitution matrices of the
same series (BLOSUM or PAM) can all be represented
by a shift, that only depends on the evolutionary dis-
tance, and a set of amino acid vectors (the “galaxy”).
Galaxies are very similar but for the radius Rg that
increases with decreasing evolutionary distances.
Among many other possible applications, the vector

representation enables the comparison of different sub-
stitution matrices, the calculation of a consensus
sequence and the evaluation of the effect of various phy-
sicochemical properties in the substitution matrices.
Software used
Most computations were made with the Scilab software
[31]. We used the Microsoft Excel spreadsheet to per-
form some optimizations, to make some data manipula-
tions and create graphical representations. Mathematica
scripts [32] were used to generate the 3D figures. We
employed GIMP [33] to create animated gif images used
to compare 3D mappings. Programs and data are freely
available at [24]
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