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Dopamine as a growth differentiation factor in the 
mammalian brain 

Dopamine (DA), one of the catecholamines, acts as a neu-
rotransmitter in the central nervous system and is involved 
in motor control, attention, learning, enhancement of drug 
abuse, and certain types of neuropsychiatric disorders, such 
as schizophrenia, Huntington’s, and Parkinson’s diseases. DA 
binds to specific receptors, for example, D1-like and D2-like 
receptors, followed by intracellular signal transduction via G 
proteins to bring about secondary messenger cyclic adenos-
ine monophosphate synthesis or inhibition. In contrast, DA 
has been reported to have a growth differentiation function 
as an alternate role. In this review, I focus on DA as a growth 
differentiation factor during development, in particular, in 
the differentiation and migration of cortical interneurons. I 
further discuss the assumed role of DA in the abnormal de-
velopment of cortical neurons and cortical adult neurogene-
sis as prospects of regenerative medicine.

An electronic search of the PubMed and Google Scholar 
for papers published from 1980 to 2019 was performed, us-
ing the following words: “dopamine”, “migration”, “adult neu-
rogenesis”, “differentiation”, “development”, “cerebral cortex”, 
“GABA”, and “interneuron”. Using these papers, the effect of 
DA on neural differentiation and migration during develop-
ment was reviewed.

Biosynthesis of DA is based on tyrosine. The rate-deter-
mining step of DA synthesis is the conversion of tyrosine 
to L-DOPA by tyrosine hydroxylase. Thereafter, L-DOPA is 
rapidly converted to DA by aromatic L-amino acid decar-
boxylase and DA is concentrated into the secretory granules 
in the presynaptic terminal. DA released from the presynap-
tic sites binds to the specific metabotropic receptors (Foley, 
2019).

 It has been reported that DA regulates neuropeptide ex-
pression, such as dynorphin, enkephalin, and substance P, 

via promotion or suppression of DA receptors’ signaling. 
These studies suggest that DA is not a simple neurotransmit-
ter. During the early development of mammals, DA, tyrosine 
hydroxylase, DA receptors, and the DA-related signaling 
molecules, such as dopamine and 3′,5′-cyclic adenosine 
monophosphate-regulated neuronal phosphoprotein-32, G 
proteins, and adenylate cyclase, are expressed in the striatum 
primordium (Liu and Graybiel, 1999), which is the brain re-
gion that interacts most rapidly with the DA cells in the mid-
brain during development. In rodents, these molecules are 
observed in the striatum primordium from embryonic days 
12–13 (E12–13). The striatum primordium at E12–13 has 
not yet differentiated into striatal neurons and mostly un-
differentiated precursor cells express DA-related molecules 
(Liu and Graybiel, 1999), suggesting that DA can function as 
a growth differentiation factor. Nevertheless, the genetic de-
pletion of DA-related molecules indicates that DA signaling 
may not significantly affect the development of the striatum, 
except for the D1 receptor (Liu and Graybiel, 1999). Thus, 
these studies suggest that DA signaling may not be involved 
in the regulation of striatal tissues during prenatal devel-
opment but has a function in controlling the expression of 
some of the neural peptides.

Most of the evidence, as described above, was published 
before the middle 1990s. In the late 1990s, the important 
finding on the development of γ-aminobutyric acid (GABA)
ergic interneurons in the cerebral cortex was reported: the 
tangential migration pathways of cortical GABAergic inter-
neurons (Peyre et al., 2015). A part of the striatum primor-
dium, the medial ganglionic eminence (MGE), is the source 
of cortical GABAergic interneurons. Cells in the lateral gan-
glionic eminence of the striatum primordium are differen-
tiated into striatal neurons. Therefore, there are two distinct 
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migration pathways of cortical neurons (Peyre et al., 2015). 
Pyramidal neurons are generated in the ventricular zone of 
the developing cortex and move to the cortical parenchyma 
along the radial glia, whereas the tangential migration from 
the MGE results in cortical GABAergic interneurons. There-
fore, up to the middle 1990s, nobody examined whether DA 
affects the development of cortical GABAergic interneurons 
derived from the MGE. In other words, the possibility re-
mains that DA regulates the differentiation and migration of 
cortical GABAergic interneurons.

Most recently, DA has been reported to regulate the differ-
entiation and migration of cortical GABAergic interneurons 
(Ohira, 2019). During the migration of cortical GABAergic 
interneurons from the MGE to the cerebral cortex, the MGE 
cells are stimulated by factors called motogenic factors, and 
begin to migrate along the cortical projection fibers (Peyre 
et al., 2015), which express the transiently expressed axo-
nal surface glycoprotein-1 (TAG-1)/Contactin-2 adhesion 
molecule. Moreover, the interaction between semaphorin 
(Sema) and neuropilin (Npr) guides the MGE cells to the 
cerebral cortex (Peyre et al., 2015). Thus, the expressions of 
these migration-associated molecules should be spatiotem-
porally regulated during development. In the report, it was 
shown that the tyrosine hydroxylase positive axons from 
the substantia nigra entered the MGE region at E12.5 in 
mice, suggesting DA release in the MGE (Figure 1). In the 
primary cultures of the MGE cells, DA treatment increased 
the expression of the interneuron markers, Dlx2, glutamic 
acid decarboxylase 67, and Npr, as well as the D2 receptor, 
via DA-D1 receptor signaling. Dlx2 is essential to produce 
GABAergic precursor cells in the cerebral cortex (Peyre et 
al., 2015). Glutamic acid decarboxylase 67 is essential for the 
production of GABA from glutamate in the central nervous 
system. These results suggest that DA prompts the differen-
tiation of the MGE cells to cortical GABAergic interneurons 
in the primary cultures. 

Brain-derived neurotrophic factor (BDNF) is one of the 
motogenic factors for cortical GABAergic interneurons 
(Table 1) (Polleux et al., 2002). Interestingly, in the primary 

cultures of the MGE cells, the expression of BDNF mRNA 
was upregulated by the signaling of the D2 receptor, which is 
expressed by D1 receptor signaling (Ohira, 2019). Addition-
ally, using organotypic slice cultures of E14.5 brains, DA-
D2 receptor-BDNF signaling has been shown to increase in 
the number of migrating cortical GABAergic interneurons 
from the MGE (Figure 1). When both types of DA receptors 
are expressed on the same cell surface, D2 receptor signaling 
may be preferred, since the dissociation constant of the D2 
receptor is smaller than that of the D1 receptor (Hunger et 
al., 2018). Administration of 6-hydroxydopamine, which can 
degenerate DA neurons in the substantia nigra, into E9.5 to 
E18.5 of pregnancy mice decreased the number of cortical 
GABAergic interneurons in E18.5 embryos. These results 
suggest that DA plays an important role in the development 
of cortical GABAergic interneurons and could harmonize 
the expressions of molecules for differentiation and migra-
tion of cortical GABAergic interneurons.

Another motogenic factor, hepatocyte growth factor/scat-
ter factor (HGF/SF), has also been reported (Powell et al., 
2001). Similar to neurotrophins, HGF/SF and its receptor, 
c-Met, are expressed in the cortex and ganglionic eminence 
as early as E13.5. In mutant mice of the urokinase-type plas-
minogen activator receptor, which is a converting enzyme of 
the inactive pro-form of HGF/SF, a subtype of cortical inter-

Figure 1 Schematic representation of the 
differentiation and migration of cortical 
interneurons by DA during development. 
(A) MGE cells receive DA release from tyrosine 
hydroxylase positive axons of the substantia nigra, 
and differentiate into cortical interneurons. MGE 
cells express Dlx2, GAD67, Neuropilin-1, and D2 
receptor (D2R) via D1R signaling. (B) Once the cells 
express D2R, D2R-BDNF-TrkB signaling moves the 
cortical interneurons to the cortex. BDNF: Brain-de-
rived neurotrophic factor; cAMP: cyclic adenosine 
monophosphate; DA: dopamine; Dlx2: distal-less 2; 
GAD67: glutamic acid decarboxylase 67; LGE: lateral 
ganglionic eminence; MGE: medial ganglionic em-
inence; TH: tyrosine hydroxylase; TrkB: tropomyo-
sin-related kinase B.

Table 1 Migration-related factors of GABAergic interneurons

Migration-related factors References

BDNF-TrkB Polleux et al. (2002); Steinecke et 
al. (2014)

HGF/SF-c-Met Powell et al. (2001); Eagleson et al. 
(2011)

Semaphorin-Neuropilin Marín et al. (2001); Li et al. (2019)
Slit-Robo1 Marín et al. (2003); 

Hernández-Miranda et al. (2011); 
McKinsey et al. (2013)

BDNF: Brain-derived neurotrophic factor; GABA: γ-aminobutyric acid; 
HGF/SF: hepatocyte growth factor/scatter factor; TrkB: tropomyosin-
related kinase B.
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neurons decreased to 55–65% of the wild type level. It would 
be interesting to clarify the relationship between HGF/SF 
and DA.

Two pairs of repulsive molecules, Sema-Npr and Slit-Robo, 
have been reported to be involved in tangential migration 
(Marín et al., 2001). Npr1/2 is expressed in the migrating 
MGE cells, whereas Sema3A and Sema3F are expressed in 
the developing striatum. Subsequently, they function to sort 
migrating cortical GABAergic and striatal interneurons to 
their correct destination. The Npr1/2 expressing regions are 
just mantle layers of MGE, which are located in the ventral 
part of the internal capsule. These findings suggest that DA 
regulates the guidance of the MGE cell via the control of Npr 
expression.

The slit genes have been identified to encode the secreted 
molecules that function as factors for branching and repul-
sive pathfinding of axons and migrating neurons (Marín et 
al., 2003). In light of tangential migration, the slit mRNA is 
expressed in the ventricular zones (VZs) of the lateral gan-
glionic eminence and the MGE. The repulsive effect of Slit 
protein can determine the initial direction of cell migration 
from the VZs of the lateral ganglionic eminence and MGE to 
the outside of the regions. In the study, the expression of the 
slit receptor, Robo1, could not be changed by DA and DA 
receptor antagonists. In addition, since DA is released in the 
ventral region of the internal capsule apart from the VZ and 
the subventricular zone, the mechanism of Robo1 expression 
might not involve DA signaling. In summary, the expres-
sions of factors promoting the migration of MGE cells, such 
as BDNF and Npr1, can be orchestrated by DA.

The following paragraph outlines the consequences of DA 
function decrease or loss during development. As described 
above, the number of cortical interneurons may decrease. 
In fact, a DA neuron deficit in the substantia nigra by 6-hy-
droxydopamine treatment during prenatal development 
results in a decrease in cortical GABAergic interneurons 
(Ohira, 2019). Cortical GABAergic interneurons, especially 
calbindin and parvalbumin-positive neurons, have been 
reported to induce the synchronized spiking of the gamma 
band (Nakazawa et al., 2012). Interestingly, during adoles-
cence, DA can regulate functional maturation of GABAergic 
interneurons, especially, parvalbumin-positive interneurons 
in the cerebral cortex and hippocampus, including ex-
pression of GABA synthesizing enzymes and transporters, 
density of GABAergic synapses, and the projection pattern 
of GABAergic axons (Kilb, 2012). Thus, we assume that 
the decrease in cortical GABAergic interneurons, which is 
caused by a DA reduction, leads to cognitive deficits, hallu-
cinations, and delusions. Indeed, such symptoms appear in 
schizophrenic patients (Nakazawa et al., 2012). The analyses 
of postmortem brain specimens from schizophrenic subjects 
have shown that the number of interneurons in the cerebral 
cortices, especially in the prefrontal cortices, decreases and 
abnormalities of gamma band neural activity are evident 
(Nakazawa et al., 2012). Some studies suggests that GAB-
Aergic deficits in schizophrenia patients progress during 
neurodevelopment (Fung et al., 2014; Gonzalez-Burgos et 
al., 2015; Glausier and Lewis, 2018). The genetic analyses 
of schizophrenia also provide evidence that DA-associated 

genes, such as catechol-O-methyltransferase and DA recep-
tor genes, are related to schizophrenia. Therefore, DA signal-
ing deficits during development might induce schizophre-
nia-like abnormalities.

However, the increase of DA contents during development 
shows contrasting features. Cocaine inhibits DA transport-
ers on the cell surface, causing DA release into the synaptic 
sites by the inhibition of DA reuptake into the nerve ter-
minals. Consequently, DA contents in the synaptic sites are 
constitutively increased, and DA signaling is upregulated by 
cocaine treatment. In addition, when the DA concentration 
is increased by cocaine treatment, desensitization of DA re-
ceptors could occur, which would cause the same phenom-
enon as the decrease in DA concentration. Prenatal cocaine 
exposure disrupts brain development and induces lasting 
altered functions in cognition, known as “crack baby”, that 
is, cocaine exposure during gestation is required to produce 
measurable central nervous system deficits in the offspring 
(Ross et al., 2015). Importantly, exposure of mouse embryos 
to cocaine from E8 to E15 decreases the number of corti-
cal interneurons at E15 (Crandall et al., 2004). In addition, 
BDNF expression is decreased by cocaine treatment in the 
basal forebrain region of E15 mouse embryos (McCarthy et 
al., 2011). This suggests that excess DA disrupts the develop-
ment of cortical interneurons, which is similar to the effects 
of the decrease in DA contents as described above. Taken to-
gether, adequate concentrations of DA are necessary for the 
development of cortical interneurons.

In stroke and neurodegenerative disease, there is pro-
found impairment of the structures and functions of the 
brain. Treatment of the diseases is mostly via drugs. More-
over, thrombus in cerebral infarction can be dissolved or 
inhibited by drugs such as acetylsalicylic acid and clopido-
grel, which can increase the survival of neurons around the 
infarct sites. However, their effects are very limited in terms 
of functional regeneration. Currently, research and devel-
opment of therapeutic methods using stem cells, such as in-
duced pluripotent stem cells and embryonic stem cells, are 
being actively conducted around the world as a treatment 
alternative to drugs. In addition to these, cell therapy using 
endogenous neural stem cells, which can produce all neural 
lineages, including neurons, astrocytes, and oligodendro-
cytes in the central nervous system, and neural progenitor 
cells, which have already become a lineage committed to 
giving rise to only one category of neural cell components, 
are going to be applied clinically. Previously, some of the 
endogenous neural stem cells and neural progenitor cells 
have been identified (for example, in the olfactory bulb, hip-
pocampus, and hypothalamus). Interestingly, recent studies 
have reported neural stem cells and neural progenitor cells 
in the cerebral cortex (Ohira, 2018). One of the reports 
identified that neuronal progenitor cells in the adult cortex 
express the MGE markers, Nkx2.1 and MafB (Ohira et al., 
2010), and these cells are also found in the cerebral cortex 
of aged animals (Okada and Ohira, 2017) and a certain 
drug can activate cortical neurogenesis (Ohira et al., 2013), 
suggesting that tissue stem/progenitor cells derived from 
the MGE may be maintained for the life of the individual 
and useful for cell therapy. DA has been reported to regulate 
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adult neurogenesis in the hippocampus (Veena et al., 2011; 
Hedlund et al., 2016; Tapia-Bustos et al., 2017). DA can pro-
mote the generation of and survival of new neurons in the 
hippocampal dentate gyrus, although there is controversy as 
to whether the D1 or D2 receptor can transduce the signal 
of DA (Choi et al., 2014; Takamura et al., 2014). The number 
of neural progenitor cells has been reported to be decreased 
in the hippocampal dentate gyrus of patients with Parkin-
son’s disease. DAergic fibers were observed in the vicinity 
of hippocampal neural progenitor cells, and proliferation of 
the neural progenitor cells was reduced after the depletion 
of DA cells in the substantia nigra (Borta and Höglinger, 
2007). Thus, the possibility that DA can increase cortical 
neurogenesis should be considered. Because cell therapy 
with stem cells is a promising modality to treat neurological 
disorders, it is important to elucidate the molecular mecha-
nisms, including differentiation control by DA, underlying 
the differentiation of these cortical neural stem cells and 
neural progenitor cells. 
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