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Abstract: In this paper, the fabrication and characterization of a temperature sensor based on
periodically tapered optical fibers (PTOF) are presented. The relation between the geometry of the
sensors and sensing ability was investigated in order to find the relatively simple structure of a
sensor. Four types of PTOF structures with two, four, six and eight waists were manufactured with
the fusion splicer. For each PTOF type, the theoretical free spectral range (FSR) was calculated and
compared with measurements. The experiments were conducted for a temperature range of 20–70 ◦C.
The results proved that the number of the tapered regions in PTOF is crucial, because some of the
investigated structures did not exhibit the temperature response. The interference occurring inside
the structures with two and four waists was found be too weak and, therefore, the transmission
dip was hardly visible. We proved that sensors with a low number of tapered regions cannot be
considered as a temperature sensor. Sufficiently more valuable results were obtained for the last two
types of PTOF, where the sensor’s sensitivity was equal to 0.07 dB/◦C with an excellent linear fitting
(R2 > 0.99). The transmission dip shift can be described by a linear function (R2 > 0.97) with a slope
α > 0.39 nm/◦C.

Keywords: optical fiber; optical sensor; tapered optical fiber; temperature sensor

1. Introduction

Temperature measurement can be performed using one of three methods: the non-
electric method, the pyrometric method and the electric method. The non-electrical method
uses a change in the physical state or physical or chemical parameters of the object. In the
pyrometric method, the thermal radiation of the object is investigated. The third method is
based on the relationship between the change in object temperature and resistance (resis-
tance sensors) or the relationship between the thermoelectric strength of a thermocouple
and temperature (generation sensors). There are a large number of different electric temper-
ature sensors, e.g., negative temperature coefficient (NTC) thermistors [1], resistance tem-
perature detectors, thermocouples [2] or semiconductor temperature sensors [3,4]. Recently,
optical fiber sensors have been intensively developed for a large number of applications,
such as: temperature measurement [5–8], displacement sensing [9–12], strain/pressure
detection [13–17], and bio-photonic and medical tests [18–20]. Due to their dielectric nature,
numerous advantages can be distinguished: contactless operation, small dimension and
weight, high efficiency and low cost. Different types of fiber optic temperature sensors have
been proposed, e.g., fiber Bragg gratings (FBG) [5,21,22], tapered optical fibers [6,23,24],
long-period gratings (LPG) [7,25,26], and Fabry–Perot (F-P) [27–29] or modal interferom-
eters [8,11]. The sensitivity of temperature sensors based on FBG is limited due to small
thermo-optic coefficient and glass thermal expansion [20,30]. The sensitivity of sensors
based on F-P interferometers can be very high; for example, in [29] it was >2.70 nm/◦C,
but only in the specific range of 51.2–70.5 ◦C. For high-temperature applications, multicore
fibers have been proposed [31]. These structures enable measurement of temperature up to
1000 ◦C with sensitivity of ~36.8 pm/◦C. For higher temperature ranges, sensors based on
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sapphire fiber have been developed [32–36] and their sensitivity did not exceed 35.7 nm/◦C.
The combination of sapphire fiber and FBG allows even 1900 ◦C to be investigated [35].
PMMA optical fibers were used to fabricate sensors for lower temperature applications
(<110 ◦C) [37]. A very complex structure of a few tapered mode fibers with LPG was
also investigated as a temperature sensor [38]. The structure reached the sensitivity of
39.3 pm/◦C in the range of 30–90 ◦C. Among these sensor types, fiber optic Mach–Zehnder
interferometers (MZI) are attractive for researchers because they are compact and relatively
low cost [24,39–43]. In [44], using a cascaded sensor, where a capillary hollow-core fiber
was placed between two sections of multimode fibers, temperature sensitivity reached
1.964 nm/◦C in a range from 10 to 70 ◦C. In [45], a sensor with the cascaded configura-
tion of MZI and F-B was presented. The impressive temperature sensitivity was equal to
6.82 nm/◦C in a range from 10 to 60 ◦C. Another cascade of single-mode fiber, multimode
fiber (MMF) and dual core fiber placed between MMFs was investigated by Zhao et al. [46].
In this case, the sensor achieved sensitivity of 2.18 nm/◦C, although in a narrow range of
temperature of 26–44 ◦C. The MZI can be utilized in many other applications, e.g., as a
refractive index sensor [47–49] or a strain sensor [50,51].

Our goal was to develop a fiber optic temperature sensor based on periodically tapered
optical fibers (PTOF) with a simple construction, low-cost production and, simultaneously,
good sensing abilities. Therefore, in this study, we investigated the relation between the
number of tapered regions in the developed PTOF and their sensing performance, in
order to find the simplest sensor construction with good sensitivity. Four models of PTOF
sensors, having 2, 4, 6 and 8 waists, were manufactured, and detailed information related
to the principle of operation, and fabrication and characterization processes, is given. The
expected free spectral ranges (FSR) between the interferometric fringes were calculated
and confirmed by experimental results. The obtained results show that only two types of
fabricated structures can be used as temperature sensors. The sensitivity of the developed
sensors was compared with similar existing sensors and possible applications are given.

2. Principle of Operation

In a PTOF with a period of tapering Lp, four regions can be distinguished, as shown in
Figure 1. The tapered-down and tapered-up regions are labeled in Figure 1 as region ld
and lu, respectively. The waist region called l is placed between the ld and lu regions. The
fourth element of the PTOF is a section of non-tapered fiber ls. The geometry of the sensor,
particularly the symmetry and uniform waist region diameter d, are the key parameters of
the PTOF. In our previous work [52], we showed that we were able to fabricate tapered
fibers with the desired geometry in a repeatable manner. Based on this experience, we
developed the fabrication process of PTOF structures.
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The sensor principle of operation is based on MZI. Some of the light injected into
the PTOF leaks from the core into a cladding in the taper-down region. Therefore, higher
order modes are excited in the cladding area. By comparison, the cladding modes in
the taper-up region are coupled back to the core region. Due to the phase difference ∆φ
between the cladding and the core modes, the Mach–Zehnder interferometer is created
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in the sensor [50,53]. Equation (1) describes the relative phase difference between these
interfering modes:

∆φ =
2π

λ
∆ne f f L (1)

where ∆neff is the difference between core and cladding effective refractive indices, L is the
interferometric length, and λ is the central wavelength of light. Transmission dip appears
for the phase difference equal to ∆φ = (2k + 1)π, where k is an integer. The transmission
light intensity I is described with Equation (2) [53–55], and it will change with the change
in temperature, causing variation in output power:

I = Ico + Icl + 2
√

Ico + Iclcosφ (2)

where Ico and Icl are intensities of the core and cladding modes, respectively.
The distance between the transmission dips is given by Equation (3) [56,57]:

∆λm ≈ λ2

∆ne f f L
(3)

The temperature variation causes the modification of the refractive index of the core
and cladding [58–60] due to thermo-optic effects, in addition to the variation of L due
to glass thermal expansion. Therefore, the temperature sensitivity of the sensor can be
described by Equation (4) [61]:

dλ

dT
∼=

2L
2k+1

(
∂∆ne f f dnco

dT ∂nco
+

∂∆ne f f dncl
dT ∂ncl

)
+ λ

L
dL
dT

1 − 2L
2k+1

∂ne f f
∂λ

(4)

3. Fabrication Process

The Furukawa Fitel S153A optical fusion splicer and single mode G.652.B optical fiber
(SMF) were used to fabricate the PTOF sensors. The SMF (1) was placed in V-grooves (4)
and it was held by the fusion splicer holders (3), as presented in Figure 2. An example of
the PTOF sensor with eight tapered regions is shown in Figure 3.

Sensors 2021, 21, 8358 3 of 12 
 

 

the sensor [50,53]. Equation (1) describes the relative phase difference between these in-
terfering modes: ∆𝜙 ൌ 2𝜋𝜆 𝛥𝑛௘௙௙𝐿 (1) 

where ∆neff is the difference between core and cladding effective refractive indices, L is the 
interferometric length, and λ is the central wavelength of light. Transmission dip appears 
for the phase difference equal to ∆ϕ = (2k + 1)π, where k is an integer. The transmission 
light intensity I is described with Equation (2) [53–55], and it will change with the change 
in temperature, causing variation in output power: 𝐼 ൌ 𝐼௖௢ ൅ 𝐼௖௟ ൅ 2ඥ𝐼௖௢ ൅ 𝐼௖௟𝑐𝑜𝑠𝜙 (2) 

where Ico and Icl are intensities of the core and cladding modes, respectively. 
The distance between the transmission dips is given by Equation (3) [56,57]: Δ𝜆௠ ൎ 𝜆ଶΔ𝑛௘௙௙𝐿 (3) 

The temperature variation causes the modification of the refractive index of the core 
and cladding [58–60] due to thermo-optic effects, in addition to the variation of L due to 
glass thermal expansion. Therefore, the temperature sensitivity of the sensor can be de-
scribed by Equation (4) [61]: 

ௗఒௗ் ≅ మಽమೖశభ൬ങ∆೙೐೑೑ ೏೙೎೚೏೅ ങ೙೎೚ ାങ∆೙೐೑೑ ೏೙೎೗೏೅ ങ೙೎೗ ൰ାഊಽ ೏ಽ೏೅ଵି మಽమೖశభ ങ೙೐೑೑ ങഊ   (4) 

3. Fabrication Process 
The Furukawa Fitel S153A optical fusion splicer and single mode G.652.B optical fi-

ber (SMF) were used to fabricate the PTOF sensors. The SMF (1) was placed in V-grooves 
(4) and it was held by the fusion splicer holders (3), as presented in Figure 2. An example 
of the PTOF sensor with eight tapered regions is shown in Figure 3. 

 
Figure 2. The PTOF structure placed between two electrodes in the fusion splicer. 

 
Figure 3. The PTOF with eight waists. 

Figure 2. The PTOF structure placed between two electrodes in the fusion splicer.

Sensors 2021, 21, 8358 3 of 12 
 

 

the sensor [50,53]. Equation (1) describes the relative phase difference between these in-
terfering modes: ∆𝜙 ൌ 2𝜋𝜆 𝛥𝑛௘௙௙𝐿 (1) 

where ∆neff is the difference between core and cladding effective refractive indices, L is the 
interferometric length, and λ is the central wavelength of light. Transmission dip appears 
for the phase difference equal to ∆ϕ = (2k + 1)π, where k is an integer. The transmission 
light intensity I is described with Equation (2) [53–55], and it will change with the change 
in temperature, causing variation in output power: 𝐼 ൌ 𝐼௖௢ ൅ 𝐼௖௟ ൅ 2ඥ𝐼௖௢ ൅ 𝐼௖௟𝑐𝑜𝑠𝜙 (2) 

where Ico and Icl are intensities of the core and cladding modes, respectively. 
The distance between the transmission dips is given by Equation (3) [56,57]: Δ𝜆௠ ൎ 𝜆ଶΔ𝑛௘௙௙𝐿 (3) 

The temperature variation causes the modification of the refractive index of the core 
and cladding [58–60] due to thermo-optic effects, in addition to the variation of L due to 
glass thermal expansion. Therefore, the temperature sensitivity of the sensor can be de-
scribed by Equation (4) [61]: 

ௗఒௗ் ≅ మಽమೖశభ൬ങ∆೙೐೑೑ ೏೙೎೚೏೅ ങ೙೎೚ ାങ∆೙೐೑೑ ೏೙೎೗೏೅ ങ೙೎೗ ൰ାഊಽ ೏ಽ೏೅ଵି మಽమೖశభ ങ೙೐೑೑ ങഊ   (4) 

3. Fabrication Process 
The Furukawa Fitel S153A optical fusion splicer and single mode G.652.B optical fi-

ber (SMF) were used to fabricate the PTOF sensors. The SMF (1) was placed in V-grooves 
(4) and it was held by the fusion splicer holders (3), as presented in Figure 2. An example 
of the PTOF sensor with eight tapered regions is shown in Figure 3. 

 
Figure 2. The PTOF structure placed between two electrodes in the fusion splicer. 

 
Figure 3. The PTOF with eight waists. Figure 3. The PTOF with eight waists.



Sensors 2021, 21, 8358 4 of 12

In the next step, the electric arc was excited by electrodes (2) in order to heat up the
SMF (1). Then, the holders were moved with defined speed in order to elongate the SMF.
After that, the left clamp of the holder was released and the right holder with the SMF was
moved left by a distance of 500 µm. The SMF was then fastened back by the left clamp and
the electric arc was excited once again. The whole procedure was repeated several times
in order to obtain the desired number of waists. To control the geometry of the fabricated
PTOF, the electric arc power P, travel of the splicer holders s, speed of holders v and arc
duration t were precisely defined. The parameters that were set in the fusion splicer during
the PTOF fabrication are collected in Table 1. Four different PTOFs were fabricated with
two, four, six and eight tapered regions, respectively, as shown in Figure 4. For each type of
the sensor, three samples were fabricated. The geometry parameters of the PTOF sensors
are collected in Table 2.

Table 1. Parameters of the fusion splicer.

Electric Arc Power P
(mW) Arc Duration t (s) Holder Travel s (µm) Speed of Holders v

(µm/s)

20 1.5 500 122
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Table 2. Parameters of the PTOF structures.

Name Waist No. Avg. Waist
Diameter d (µm)

Min/Max Waist
Diameter d (µm)

Avg. Waist
Period (µm)

PTOF-2 2 44.3 41.4/47.3 620
PTOF-4 4 48.9 46.4/51.6 605
PTOF-6 6 49.7 45.3/53.0 533
PTOF-8 8 51.1 49.0/53.0 581

4. Measurement Setup and Procedure

The measurement setup block diagram is presented in Figure 5a. The fabricated PTOF
structures were placed inside a Binder MKT-115 dynamic climate chamber (2), where the
temperature Tchamber was changed from 20 to 70 ◦C. The temperature increase process was
repeated three times for each sample, and during each change the transmission spectrum
was analyzed with steps of 1 ◦C. However, to make the results easier to evaluate, the data
are shown with a 5 ◦C step. The PTOF were connected to the EXFO FTBx-2250 broadband
light source (1) and Anritsu MS9740A optical spectrum analyzer (OSA) (3) through the
SC/APC pigtails (4), as presented in Figure 5b. The spectrum was investigated in the range
from 1460 to 1620 nm in the 501 sampling points. The total power stability of the light
source was equal to 0.02 dB.
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5. Results and Discussion

The presented data are the averages for each type of sensor. The spectral measurement
was undertaken via OSA with bandwidth resolution set at 0.44 nm. Spectral characteristics
before and after the tapering processes for all PTOF structures are shown in Figure 6. To
obtain the transmission spectrum, the difference in optical power between these spectra
was calculated. The maximal values of a standard deviation were 0.24, 0.28, 0.59 and 0.45,
respectively for PTOF-2, PTOF-4, PTOF-6 and PTOF-8 sensors. Theoretically determined
(Equation (3)) transmission dip points are marked on Figure 6 with blue circles. Small
discrepancies may have occurred due to imprecise determination of L. For PTOF-8 PTOF-
6, the calculated and measured FSR (Table 3) are convergent. However, for PTOF-6, a
theoretical transmission dip around 1507 nm was not observed. For PTOF-2 and PTOF-
4, the measured transmission dips are very shallow and hardly perceptible. A similar
observation was made by Yoon et al. [62]. The researchers investigated the temperature and
strain sensors based on a micro-tapered fiber grating. They also observed the proportional
relation between the number of tapered regions and depth of transmission dip. The
explanation of these results is provided in Section 5.1.

Table 3. FSR parameters’ calculation.

Name ∆neff L (mm) λdip (nm) Theoretical
FSR (nm)

Experimental
FSR (nm)

PTOF-2

0.02

1.2 1475 87 85
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PTOF-6 3.2 1545 38 44
PTOF-8 4.6 1524 24 22
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sensors is given in a later section of this article.
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5.1. PTOF with Two and Four Waists

The PTOF structures with two waists were investigated as in the case of the first struc-
ture. The transmission dip evolution forced by temperature change is given in Figure 8a.
Based on the obtained results shown in Figure 8b, it can be stated that, for PTOF-2 sensors,
temperature does not affect the transmission spectra in a clear way. The same situation was
recorded for PTOF-4 sensors (Figure 9). This can be explained by the fact that the coupling
strength between core and cladding modes depends on the number of tapered regions,
because they can be considered as grating patterns. A higher number will enhance the
coupling [62]; however, for a low number of tapered regions, the coupling strength will be
low. In consequence, the depth of transmission dips in PTOF-2 and PTOF-4 is very shallow
and it is extremely hard to measure any transmission dip shift. Moreover, the geometry of
the tapered regions, e.g., taper-down and taper-up regions that are too smooth, or sensor
lengths that are too short, can explain the weak mode coupling. We plan to investigate the
sensor geometry in our further research.
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5.2. PTOF with Six and Eight Waists

More valuable results were observed for PTOF-6 sensors (Figure 10). For the first
transmission dip there is a good linear relationship (R2 > 0.96) between the transmission
variation and temperature, and the sensor resolution reached 0.015 dB/◦C. Moreover,
the shift of transmission dip was observed and the slope of its linear approximation
(R2 > 0.97) was equal to 0.39 nm/◦C (Figure 10b). Importantly, PTOF-6 provides high
temperature sensitivity for the whole temperature range. Excellent temperature sensitivity
was recorded for PTOF-8 sensors. The transmission variation can be defined by a linear
function (R2 ≈ 0.99) with a high (about 4.5 times higher than for PTOF-6) resolution of
0.07 dB/◦C (Figure 11). With this sensor, the temperature change can be also determined by
an investigation of the transmission dip shift. PTOF-8 obtained a resolution of 0.27 nm/◦C,
which is about 30% lower than that of the PTOF-6 sensor.
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5.3. Discussion

The PTOF structures with two and four waists were not recognized as temperature
sensors. The number of tapered regions was too few to provide sufficient mode coupling.
Therefore, the transmission dips were hardly visible, and their potential change due to
temperature variation was not observed. A higher number of tapering regions supported
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strong mode coupling [62], which resulted in a rise in the depth of transmission dips.
Therefore, for PTOF-6 and PTOF-8, the transmission dips were clearly visible. In addition,
the larger number of tapered regions, the higher attenuation of the optical signal. In
consequence, the number of created waists is limited by the sensitivity of the OSA. For
PTOF-6 and PTOF-8, the temperature change affects the transmission shift, in addition
to the transmission dip shift. These changes are almost linear in the whole investigated
temperature range, which is an excellent feature of the developed sensors.

As previously mentioned, the fiber optic temperature sensors based on MZI can
achieve very high sensitivity of ~2–6.8 nm/◦C [44–46]. However, these sensors have a
very complex construction. In Table 4, we compare our sensors to similar constructions.
Our PTOF-6 has at least 4.4 times higher sensitivity in comparison to others, and the
operating temperature range is similar to the results found in [7,21,38,59]. Because the
temperature range is 20–70 ◦C, the sensors can be utilized to monitor the temperature of
telecommunication infrastructure, e.g., in data centers as a support for existing control
systems [63,64]. They can be also employed in numerous indoor applications affected by
high electromagnetic interference, temperature monitoring of battery packages during fast
charging and discharging [65,66], and hazardous locations.

Table 4. Comparison of sensing performance of existing sensors.

Type Temperature Range Sensitivity Ref.

FBG on microfiber 22.5–95 ◦C 31.32 pm/◦C [21]
Tapered LPG 0–60 ◦C 87 pm/◦C [7]

Weakly coupled multicore fiber
taper 0–1000 ◦C 36.8 pm/◦C [31]

Tapered few modes fiber with LPG 30–90 ◦C 39.3 pm/◦C [38]
Tapered microfiber 50–800 ◦C 13.4 pm/◦C [67]

Abrupt tapered single-mode fiber 15–50 ◦C 0.0829 dBm/◦C [59]

PTOF SMF 20–70 ◦C 390 pm/◦C and
270 pm/◦C This study

6. Conclusions

In conclusion, we showed the relationship between the geometry of PTOF structures
and temperature sensing ability. The geometry of the simplest PTOF-2 and PTOF-4 sensors
did not allow any temperature measurements to be made. Only PTOF-6 and PTOF-8, due
to their long interferometric distance and sufficient number of tapered regions, enabled
temperature sensing.

The experimentally determined transmission dips are consistent with the theoretical
calculations for PTOF-6 and PTOF-8 sensors. The maximum transmission resolution was
equal to 0.07 dB/◦C for the PTOF-8 sensor, and the transmission dip shift was equal to
0.39 nm/◦C (PTOF-6) and 0.27 nm/◦C (PTOF-8). In our future work we plan to develop
PTOFs with one or two tapered regions. Then, we will investigate the influence of the
geometry of the tapered region (the slope of the tapered-up and tapered-down regions, in
addition to the length and diameter of the waists) on the sensing ability in such structures.
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