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Abstract

Cellular senescence is now recognized as one of the hallmarks of aging. Herein, we examine 
current findings on senescence of the vascular endothelium and its impacts on age-related 
vascular diseases. Endothelial senescence can result in systemic metabolic changes, 
implicating senescence in chronic diseases such as diabetes, obesity and atherosclerosis. 
Senolytics, drugs that eliminate senescent cells, afford new therapeutic strategies for 
control of these chronic diseases.

Introduction

The endothelial cell (EC) monolayer forms the inner 
cellular lining of all blood vessels forming a critical 
interface between blood and tissue (1). Vascular 
endothelium is involved in physiological functions, 
which include regulation of blood fluidity, hemostasis and 
clotting, vascular tone, immune responses, inflammation, 
angiogenesis, and metabolism (2).

Dysfunction of the endothelium is a major 
contributor to cardiovascular diseases (CVD) such as 
stroke, atherosclerosis, hypertension and diabetes (see 
review by Hadi et  al. (3)) and more recently has been 
shown to play a role in the severe response to COVID-19  
(4). Chronological aging is the dominant risk factor 
for CVD, cancer and neurodegenerative diseases (5) 
and indeed endothelial dysfunctions including arterial 
stiffening (6), impaired neovascularization (7) and loss of 
tissue-barrier function are evident in age-related diseases 
(8). This review will focus on cellular aging or senescence 
of the vascular endothelium.

Cellular senescence

Aging is defined as a gradual decline in organism function 
and is underlined by cellular aging. Current biological 

hallmarks of cellular aging include increased cellular/
oxidative stress, DNA damage, telomere shortening, stem 
cell depletion, mitochondria dysfunction, epigenetics 
and ncRNA dysregulation, loss of proteostasis and cellular 
senescence (9). Cellular senescence is characterized by 
permanent cell cycle arrest and distinct changes in cell 
morphology, metabolism, chromatin reorganization, gene 
profiles and activation of a proinflammatory secretome, 
termed the senescence associated secretory phenotype, 
SASP (10, 11, 12). The SASP can include cytokines (e.g. 
IL-1α/β, IL-6), chemokines (e.g. CXCLs, CCLs), growth 
factors (e.g. VEGF, FGF), proteases (e.g. MMPs, TIMPs) 
and lipids (13). Different aging pathways can induce the 
senescence state but the SASP phenotype will be cell type 
and stimulant specific (14, 15). The SASP can maintain 
the senescence phenotype in the cells, induce senescence 
in neighboring cells and influence the inflammatory 
state of the microenvironment (13). The SASP is also  
essential for activating a specific inflammatory profile  
that is responsible for the removal of the senescence cells 
(16, 17).

Senescence was originally described as a potent 
mechanism, together with apoptosis, for controlling 
cell proliferation and malignant transformation. Now 
it is known to contribute to development (18). During 
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embryonic development, cellular senescence is induced 
by cell fusion to form the outer layer of the placenta 
and contributes to the normal functioning placenta 
(19). Further, senescence contributes to pathogenic 
conditions such as liver fibrosis, (17) yet is essential 
for tissue homeostasis (20) and wound healing (21). In 
adults, senescence is a response to stress, triggered to halt 
the increase in potentially dysfunctional cells. However, 
the accumulation of senescent cells with age contributes 
to age-related-pathologies as is seen for example in 
renal dysfunction (22) and CVD (23). The clearance of 
senescent cells is immune-mediated and the increase in 
senescent cells with age maybe partially attributed to 
the aging immune system or immunosenescence (24, 
25). In addition, senescent cells have the ability to evade 
the immune system by altering the expression of major 
histocompatibility complex (MHC) HLA-E (26), a key 
recognition signal required by natural killer cells and 
differentiated T-cells to clear senescent cells.

Pathways of senescence

Broadly speaking, senescence can be divided into telomere-
dependent replicative senescence (RS) or Hayflick’s limit 
(27) and stress-induced premature senescence (SIPS) (28). 
In vitro, replicative senescence can be induced through 
continual passaging of cells, as some cells (e.g. fibroblasts, 
ECs, immune cells) have a division lifespan. When the 
division capacity of these cells has been exhausted, based 
on their telomere shortening, they enter growth arrest 
and become senescent. There is substantial evidence 
that RS plays an important physiological role in tumor 
suppression (29).

Unlike RS, SIPS is considered to be a telomere 
shortening-independent process and is a rapid response 
characterized by random DNA damage in the genome 
followed by activation of the DNA damage response 
(DDR). SIPS can be induced by for example, oncogenic 
stress (30), metabolic stress (31), inflammation (32), and 
oxidative stress (33).

Most senescence is mediated through activation of 
the p21/p53 and p16/retinoblastoma (RB) protein tumor 
suppressor pathways (Fig. 1) (34). Activation of the DDR 
pathway and telomere dysfunction commonly induces 
p21/p53 dependent senescence while other stresses/stimuli 
are more often associated with the p16/RB pathway (34). 
The preference toward one pathway vs another appears to 
be cell type-specific (34, 35), with variation across species 
(36) and also stimulant dependent. For example, telomere 
dysfunction can lead to activation of the p53 or p16/RB 

pathway in human cells, but will only trigger the p53 
pathway in rodent cells (36).

Senescence markers

There is no single marker that defines a senescent cell 
(37) and this has hindered the field. A panel of markers in 
combination with either p21, p16 or p53 is used to denote 
senescence (Table 1).

Pathways that regulate senescence/SASP

The SASP is driven largely by proinflammatory pathways 
involving NFκB, mTOR and p38/MAPK (38, 39, 40) 
often activated through the metabolic state of the cell or 
through paracrine effects by surrounding senescent cells.

At least four interdependent nutrient-sensing 
pathways act in the induction of senescence. First, NAD+/
NADH pathway that involves NAD regulated AMPK (5’ 
AMP-activated protein kinase) is upstream of the p38/
MAPK-NFκB axis and also impacts on the proinflammatory 
SASP in an independent senescence growth arrest 
pathway (41). In contrast, pharmacological inhibition 
of cluster of differentiation 38 (CD38), a nicotinamide 
nucleotidase (NADase), was shown to reverse the 
age‐related decline in NAD+ levels in muscle and liver, 
and reduce telomere‐associated DNA damage in mice. 
Interestingly, the SASP secretome was shown to induce 
CD38 expression and increase CD38‐NADase activity 
in non‐senescent cells, leading to the suggestion that 
during aging the SASP may contribute to NAD+ decline 

Figure 1
A typical senescent phenotype that is shared between different cell types 
and activation senescent pathways.
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by upregulation of CD38 (42). Although these studies had 
conflicting results on the role of NAD+ on inflammation, 
it shows that NAD+ is critical for SASP regulation and the 
differences may be due to the differences in cell type and/
or the type of senescence induction.

Secondly, the dysfunction of mitochondria as a 
major energy and reactive oxygen producers, has recently 
been linked to the regulation of cellular senescence 
and SASP, mediated through AMPK (43). However, 
such mitochondrial dysfunction can lead to both a 
proinflammatory SASP as well as a low inflammatory 
senescent phenotype (termed mitochondrial dysfunction-
associated senescence, MiDAS) driven through AMPK-
mediated p53 activation (43) and with a lowered NAD+/
NADH ratio.

Thirdly, mTOR another known energy sensor, 
regulates mitochondrial homeostasis and negatively 
regulates autophagy. Inhibition of mTOR with rapamycin 
has been shown to suppress SASP through the MAPKAPK2 
pathway (44).

Fourthly, the energy sensor SIRT1, belongs to a family 
of histone and protein deacetylases, and is positively 
associated with longevity through calorie restriction (45). 
In the heart, the deficiency of SIRT1 has been linked to 
oxidative stress and inflammation, with senescence of ECs 
and VSMCs mediated through the autophagy pathway. 
Overexpression of SIRT1 protected against ischemia-
reperfusion injury in the heart through increased 
autophagy, NOS, FOXO3 activation, and deacetylation of 
NFκB (46).

Lastly, miRNA are upstream regulators of senescence. 
MiRs such as miR-217 and miR-34a increases EC 
senescence, through SIRT1 downregulation. Indeed, there 

are endothelial miRs that can also regulate SASP such 
as miR-155 and miR-21 (see review by Yamakuchi and 
Hashiguchi (47)). As most of these endothelial miRs were 
identified using in vitro studies, more in vivo studies are 
required to delineate their roles in age-related diseases.

Endothelial cell senescence in age-
related diseases

CVD and cerebrovascular diseases are the leading causes 
of death in the elderly population (48). EC dysfunction 
is a well-accepted hallmark of age-related vascular 
dysfunction, with the initiation of abnormal inflammatory 
and thrombotic circuits, arterial stiffening and oxidative 
stress being central to its biology. Importantly, for our 
understanding of vascular aging, senescent EC accumulate 
in aging tissues and contribute to tissue dysfunction (49, 
50, 51). Structural and functional changes in senescent 
ECs are summarized in Figs 2 and 3.

In vitro studies defining senescent ECs have 
demonstrated that senescence can be induced by many 
of the stimuli associated with aging, such as hypoxia, 
disturbed flow and oxidative stress (52), high glucose 
conditions (53), β-amyloid peptides (54) and chronic 
inflammatory conditions (55). These senescent ECs 
generate a proinflammatory SASP similar to all other 
cell types. The senescence is induced through the classic 
senescence signaling pathways, p21/p53 and p16/RB. 
However, ECs can also express a non-activated, potentially 
anti-inflammatory senescent population, as we have 
previously described (56), which is also induced by age-
related stress (52) and by overexpression of the vascular 

Table 1 The different markers of senescence that are commonly used. 

Senescence marker Description

SA β–Gal Senescence-associated beta-galactosidase is an enzymatic stain that can be used on cells and tissues (Fig. 1) 
(38), with its activity associated with an increase in lysosomes biogenesis found in senescent cells (39).

γH2AX Histone H2A variant is DDR marker that is phosphorylated at serine 139 upon DNA double-strand breaks (40). 
γH2AX can also be used to detect nuclear membrane bleb structures that contain cytosolic chromatin 
fragments (CCFs) in the cytoplasmic compartment of senescent cells (41, 42). 

CCFs are known to be involved in the secretion of proinflammatory SASP through the activation of the 
cGAS-STING-NFκB pathway (42). 

Recently, it has been shown that impairment of autophagy is linked to CCFs formation, and metformin-
induced activation of autophagy can reduce CCFs levels and suppress SASP secretion (43).

CCFs and SASP profile in senescent primary human fibroblasts have also been associated with mitochondrial 
dysfunction via a retrograde ROS-JNK signaling pathway (44). 

Lamin B1 Is a protein of the nuclear envelope and its expression is reduced during SIPS-associated nuclear membrane 
blebbing (45, 46).

Ki67, BrdU, PCNA Are typical proliferation markers used to detect growth arrest (47, 48). High expression of these markers 
correlates with a high proliferation rate, and their decrease in expression is used in conjunction with other 
markers to confirm cellular senescence.
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protective gene ARHGAP18 (a.k.a. SENEX) (56). This anti-
inflammatory senescent phenotype is mediated through 
caveolae and inhibition of NFκB (57). The presence of the 
proinflammatory (defined as E1) and anti-inflammatory 
(defined as E2) senescent ECs suggests a duality of 
senescence in the vasculature-to both promote and limit 
inflammation. Confirmation of the existence in vivo of 
these cell types awaits identification of selective markers, 
which will allow investigations into their role in initiation 
and progression of disease.

Senescent ECs have been identified in many age-
associated diseases. The following have been most  
widely studied.

Atherosclerosis

Atherosclerosis is considered a chronic inflammatory 
disease, characterized by enhanced leucocyte recruitment 
into the lesions. Further, endothelial dysfunction is a 
well-known initiating event in atherogenesis (58). Plaque 
accumulation in the vascular system is seen from the 
aorta to coronary arteries (59). These plaque formations 

usually begin with the deposition of small cholesterol 
crystals in the intima and the underlying smooth muscle 
layer. At late stages, these plaques in the arteries can lead 
to clot formation and thrombosis, which will result in 
obstruction of blood flow and even plaque rupture.

Senescent foamy macrophages have damaging roles 
during the onset of atherosclerosis in mice (60). Almost 
two decades ago, senescent ECs were described in 
atherosclerotic lesions from autopsied patients (23). SA-β-
gal positive ECs found at the atherosclerotic lesions were 
enlarged and flattened in comparison to those at non-
lesional areas. Telomere lengths in aortic ECs decrease 
as a function of donor age and have been observed in 
patients with atherosclerosis (61, 62). Aortic ECs isolated 
from aged mice were reported to have a flat and enlarged 
morphology (63) and human aortic ECs induced into 
senescence showed EC dysfunction with enhanced 
proinflammatory ICAM-1 expression and reduced eNOS 
activity (23). Further, a higher fraction of ECs from 
patients with abdominal aortic aneurysm (AAA), another 
clinical manifestation of atherosclerosis, were positive for 
Ki67 demonstrating a higher proliferation rate compared 
to control patients (64), a likely harbinger of telomere-
dependent replicative senescence.

In the context of atherosclerosis, there are a number of 
likely stimuli for senescence induction of the endothelium. 
The areas of hemodynamic stress or disturbed blood flow 
such as arterial bifurcations and curved areas such as the 
iliac and thoracic artery, and the aortic arch, are areas 
of atherosclerosis development. ECs in these areas are 
senescent, induced via the p53/p21 pathway (65). Our lab 
has demonstrated that disturbed flow mimicking these 
atherosclerotic regions, induces EC senescence (52). It is 
proposed that the proinflammatory SASP produced by the 
senescent ECs will lead to a chronic sterile inflammatory 
environment with vascular remodeling. Indeed, SASP 
cytokines such as MCP-1, PDGFB, TNFα and IL-6 are 
atherogenic (66) and can increase monocyte infiltration, 
EC turnover and smooth muscle cell movement into the 
sub-intimal space (67).

Hyperlipidemia and lipid oxidation are high-risk 
factors for atherosclerosis (68). Hypercholesterolemia is 
associated with increased blood levels of oxidized low-
density lipoprotein (ox-LDL), well known to be involved 
in EC dysfunction and which induces EC senescence (69, 
70). Interestingly, the protective high-density lipoproteins 
(HDL), which are also anti-inflammatory (71) can inhibit 
senescence induction (Powter EE, Rye K-A and Gamble JR, 
unpublished results). Some risk factors that can increase 
ox-LDL levels include high-fat diet, smoking, diabetes 

Figure 2
General scheme depicting the structural and functional changes in 
senescent ECs. Black lines represent tight or adhesion junction 
interactions between the ECs.

Figure 3
Examples of H2O2-induced senescent phenotype in human umbilical 
endothelial cells (HUVECs) from our lab. Senescent HUVECs depicted by 
red asterisk had upregulated (A) SA b-Gal, (B) nuclear p21 expression and 
reduced (C) VE-cadherin compared to non-senescent ECs (white asterisk).
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and stress (72). Many of these risk factors also correspond 
with an increase in free radicals, which can affect NO 
bioavailability, damage the endothelium and induce 
EC permeability. Such changes cause accumulation of 
LDL in the sub-endothelial space resulting in enhanced 
EC expression of adhesion molecules such as vascular 
cell adhesion molecule 1 (VCAM1), E- and P-Selectins 
to promote leukocyte recruitment (73). CD9, a novel 
senescence-related marker was reported to be increased 
in aged human arteries and mice (74). In mouse models 
of atherosclerosis, CD9 expression was co-expressed 
with SA-β-gal staining and was found the be upregulated 
in ECs and macrophages within lesions. Genetic 
deletion and antibody treatment against CD9 further 
showed CD9 is critical for inducing EC senescence and 
exacerbating atherosclerotic lesions. Another study 
reported angiopoietin-like 2 is increased in senescent 
aortic endothelium found in atherosclerosis mouse model 
and knockdown of this protein in vivo reduced plaque 
progression (75).

Beyond regulating blood pressure, angiotensin II (Ang 
II), a principal effector of the renin-angiotensin system 
(RAS), is an important signaling molecule involved in 
atherogenic stimuli, such as induction of oxidative stress, 
secretion of proinflammatory cytokines and adhesion 
molecules within the vessel wall (76). Ang II can induce 
EC senescence and dysfunction, which in turns impairs 
NO vasoactive function and hemodynamic stress response 
(77). Concurrently, the levels of angiotensin-converting 
enzyme (ACE) and ET-1 levels are increased (78). Clinical 
and experimental animal studies of ACE inhibitors have 
shown these prevent the progression of atherosclerosis 
(79, 80). Valsartan, a well-known AngII receptor blocker, 
has been shown to attenuate AngII-induced EC senescence 
and inflammation (77).

Multiple studies have shown that disturbed blood flow 
(81), LDL (82) and AngII (83) increase the pathogenesis of 
atherosclerosis by affecting Notch signaling. The Notch 
pathway is important in vascular development and 
vascular modeling (84). Ligand activation of this pathway 
results in the cleavage of transmembrane Notch receptor 
protein into intracellular and extracellular parts, whereby 
the intracellular domain translocates into the nucleus 
for transcriptional activity (84). One study showed basic-
helix-loop-helix transcriptional repressors Hey1 and Hes1, 
which are targets of Notch activation, were increased in 
senescent luminal ECs within atherosclerotic plaques in 
ApoE−/− mouse model and patients with coronary artery 
disease (85). The authors found that enhanced Notch1 
activation resulted in telomere-dependent senescence. 

However, enhanced Notch1 decreased senescence 
in HUVECs via telomere-independent pathway (86). 
Further, constitutive activation of Notch pathway via 
increased expression of Notch1 intracellular domain 
was shown to induce premature senescence through 
p16 signaling. Apart from the usual Notch ligands (e.g. 
Delta, Serrate, LAG-2 family), other atherogenic proteins 
such as thrombospondins 1/2 and periostin, to name a 
few, have been shown to modulate Notch signaling (see 
review by Wang (87)). Both proteins are extracellular 
matrix proteins, and affect vascular processes like 
angiogenesis. Thrombospondin-1 is associated with 
endothelial senescence (88), but evidence of periostin and 
EC senescence is lacking. 

Obesity

Studies in both human and mice demonstrate physiological 
aging can drive senescence in adipocytes and/or the EC 
population but importantly, that endothelial senescence 
alone can drive systemic metabolic dysfunction.

Age has been associated with significant changes 
in metabolism, leading to age-dependent increases in 
body weight, reduced insulin sensitivity and changes in 
lipid metabolism (89). Indeed, CVD is the leading cause 
of morbidity and mortality in obese individuals. White 
adipose tissue (WAT) is an organ responsible for regulating 
systemic energy homeostasis and is composed of visceral 
and s.c. WAT. Disruption of adipose tissue function has 
been linked to a chronic inflammatory state that can 
deregulate vascular homeostasis (90). Precursor cells 
required for maintaining adipocyte turnover and normal 
WAT function have been found to be senescent in obese 
human individuals and mice (91, 92). Further, studies on 
ECs isolated from adipose tissue biopsies from obese subjects 
showed that the visceral region had more inflammation 
and significantly higher senescent ECs compared to leaner 
subjects (93, 94). The ECs can be induced into senescence 
by conditioned medium from visceral adipose tissue from 
obese but not normal individuals, showing the potential 
paracrine effects of SASP (93). Mouse models have been 
used to dissect the role of obesity on the adipocyte and 
EC compartments. In endothelial-specific progeroid 
mice, the ECs were induced into early senescence. These 
mice showed metabolic impairment through adipose 
tissue dysfunction, specifically in s.c. inguinal WAT (95). 
The senescent endothelial-derived SASP (mainly IL-1a), 
induced senescent-like features in mature adipocytes 
but not on pre-adipocytes, indicating heighten the risk 
of senescent adipocytes with age (95). In normal mice 

This work is licensed under a Creative Commons 
Attribution 4.0 International License.https://doi.org/10.1530/VB-20-0013

https://vb.bioscientifica.com © 2021 The authors
 Published by Bioscientifica Ltd

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1530/VB-20-0013
https://vb.bioscientifica.com


K K Ting et al. The ageing endothelium R403:1

https://vb.bioscientifica.com © 2021 The authors
 Published by Bioscientifica Ltd

on a high-calorie diet, p53/p21-driven EC senescence 
was observed in the aorta, skeletal muscle and lung. In 
endothelial-specific p53-deficient mice on a high-calorie 
diet, there was improved insulin sensitivity and reduced 
fat deposition (96). In contrast, overexpression of p53 in 
endothelium caused metabolic abnormalities in mice. 
Thus, endothelial senescence alone can drive systemic 
metabolic dysfunction thus providing a functional link 
between aging, the vasculature and metabolic disease.

Diabetes

Type II diabetes mellitus (T2DM), also known as adult-
onset diabetes, is a progressive condition in which the 
body becomes resistant to normal insulin function and/
or gradual loss of insulin production in the pancreas. 
The reduction of insulin sensitivity is associated with 
a decrease in mass and function of insulin-producing 
pancreatic β–cells, leading to gradual high blood glucose 
or hyperglycemia. Many studies have shown that obesity 
and T2DM are closely linked (97), although diabetes can 
also occur in patients that are not obese and obese patients 
may not become diabetic. Aging is a known risk factor 
for both of these metabolic diseases, thus, suggesting 
that cellular senescence may provide a nexus between 
aging and metabolic disorders. Indeed β–cell senescence 
has been identified in pancreatic islets isolated from  
aged male mice, human donors with T2DM or with high 
BMI (98).

Vascular dysfunction has been widely reported in 
diabetic patients (99) and animal models (100). Of these 
diabetic retinopathy (DR) is a well-known microvascular 
complication of T2DM. Vision impairment in patients with 
DR is caused by macular edema and neovascularization. In 
vitro studies have shown that hyperglycemia can induce 
EC senescence (53, 101). Further, senescent ECs are found 
in aortic and retinal regions in rodent models of diabetes 
(102, 103). P53 activation is seen in the vasculature in both 
diabetic human and animal studies (101, 102, 103) and 
is associated with activation by hyperglycemic-induced 
production of advanced glycation end products (AGEs) 
and oxidative stress pathways (104). AGEs have been 
shown to induce EC dysfunction through p38/MAPK and 
ERK1/2 signaling pathways (105), which are associated 
with senescence and cell cycle regulation, respectively. 
One of the common secondary symptoms of T2DM is 
chronic non-healing wound. Diabetic patients are at risk 
of developing diabetic foot ulcers, a type of chronic non-
healing wound, which can lead to lower limb amputation 
and death. Vascular dysfunction in diabetic patients has 

been associated with local tissue hypoxia and lower limb 
neuropathy resulting in poor healing of wounds (see 
review by Chao and Cheing (106)). Campisi et  al. have 
demonstrated the need for fibroblasts and EC senescence 
in normal wound healing at least in animal models (43). 
Normal would healing is divided into four stages: (a) 
hemostasis, (b) inflammation, (c) proliferation and (d) 
remodeling. Fibroblasts and ECs are known to proliferate 
during physiological wound healing and senescence of 
these cells is required at the remodeling stages. However, 
in diabetic wounds, EC proliferation or neo-angiogenesis 
is compromised (107), resulting in impairment of vascular 
circulation to the wound. Consequently, the wound 
becomes hypoxic, leading to upregulation of p53, the 
upstream regulator of p21-dependent senescence. In 
diabetic murine wounds the senescence is observed mostly 
in macrophages (108) and the SASP from the accumulated 
senescent macrophages promotes fibroblast senescence 
and fibrosis. Topical silencing of p53 can increase EC 
numbers and improve diabetic wound healing (109). 
Thus, the difference between normal wound healing and 
diabetic wound healing would suggest that cell-type-
specific senescence is important likely through the release 
of cell-type-specific SASP.

The EC compartment in diabetes is also compromised. 
Senescent ECs have been associated with inflammation 
and impaired angiogenesis in diabetic rats (110) and 
the endothelial progenitor cells (EPCs) derived from 
bone marrow are reduced and dysfunctional in diabetic 
patients (111). EPCs are known for maintaining vascular 
homeostasis and compensatory angiogenesis, which are 
also critical for wound healing. Thus, although senescent 
ECs exert a beneficial effect on normal wound healing, in 
pathological wound repair they appear to be detrimental.

Cancer

Age is a risk factor for cancer development. The vasculature 
in solid tumors is both functionally and structurally 
abnormal, with chronic uncontrolled angiogenesis. In 
line with this proliferative phenotype, senescent ECs have 
been identified in human glioma likely activated to curb 
the proliferative response (112). However, this is also at 
the expense of promoting a proinflammatory milieu with 
increased Notch seen in human carcinomas, melanoma 
and human colorectal carcinomas (113). Endothelial 
Notch1 activity is linked to metastasis by promoting 
senescent, proinflammatory endothelium (114). In 
contrast, endothelial Notch3 activity was shown to limit 
tumor growth through apoptosis (115). In mice, ECs 
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had a high expression of p16 in the primary tumor and 
metastatic sites in the lungs with constitutive active Notch 
1. The senescent ECs were inflammatory, expressing high 
levels of the adhesion molecule VCAM1 that is associated 
with increased neutrophil infiltration into the tumor, 
a cell type associated with poor prognosis (114). The 
senescent cancer cells may also either induce angiogenesis 
or induce the ECs to undergo senescence through SASP. 
Thus, the EC senescence is both beneficial (inhibition 
of angiogenesis) but also detrimental (proinflammatory, 
facilitating neutrophil infiltration), which is consistent 
with the understanding of senescence in tumors, to act as 
a double-edged sword (29).

Dementia

Clinical-pathology studies have suggested an overlap in 
cognitive impairment found in clinical Alzheimer’s disease 
(AD), with vascular pathologies (e.g. microinfarcts and 
microbleeds) (116). Comorbidity studies have found that 
patients with vascular dementia have higher prevalence 
of CVDs such as diabetes, atherosclerosis, coronary artery 
diseases and cardiac arrhythmia (117).

The major hallmarks of AD, the most common 
form of dementia, include the accumulation of 
aggregated extracellular amyloid and the intracellular-
accumulation of neurofibrillary tangles, which can lead 
to neurodegeneration. AD can be characterized as familial 
or hereditary but the majority of AD cases are age-related.

The blood-brain barrier (BBB), which is part of 
the neurovascular unit, consists of ECs, pericytes, and 
astrocytes and regulates solute passage between the blood 
and the brain. BBB breakdown occurs early, even before 
deposition of amyloid-beta and cognitive decline (118, 
119) suggesting an intact BBB is essential. The concept 
that endothelial dysfunction is a critical link in the 
development of AD, is gaining strength. Reduction in 
the cerebral blood flow, impaired hemodynamic response 
and vascular reactivity have been detected in patients 
in the early stages of AD and across people with normal 
aging-to-mild cognitive impairment (120). The increased 
deposition of amyloid plaque in brain microvessels, 
termed cerebral amyloid angiopathy is associated with 
microbleeds and cerebral hemorrhages (121). However, 
drug trials involving the use of anti-amyloid have shown 
that although it is effective in reducing plaque burden in 
AD patients, it did not reverse neurovascular dysfunction 
or improve cognitive function (122).

Senescence of microglia, astrocytes, pericytes, 
oligodendrocytes, oligodendrocyte progenitor cells, and 

neurons (123, 124, 125, 126, 127, 128) have been found 
in the brain and this senescence has been attributed to 
the development of AD and Parkinson’s disease. Although 
senescent ECs have not been identified in the brain of 
patients with these neurodegenerative diseases, many in 
vitro studies have shown that oligomeric β-amyloid can 
induce SIPS in ECs (54, 129).

Although a definitive understanding of EC 
senescence and AD development is still lacking, 
evidence is accumulating of its potential importance. 
A number of senescence-associated markers are seen 
in the endothelium in the brain. For example, a recent 
population-based study has shown positive correlation 
between DNA damage and p53 in the endothelium in 
human brain samples of AD (130). Further, the authors 
concluded that endothelial DNA damage and senescence 
is associated with aging and it may occur independently 
of AD pathology. A recent single-cell RNASeq study by 
Kiss  et al. has detected a higher prevalence of senescent 
brain ECs in aged mice (51). These senescent brain ECs 
expressed a unique SASP profile that was different from 
senescent microglia, astrocytes and oligodendrocytes. 
Senescent ECs expressed increased levels of Kitl, Plat, 
Igfbp7, Cxcl12, and Ctnnb1. Cxcl12 and Ctnnb1 are related 
to leukocyte transendothelial migration, suggesting 
a mechanism for increased inflammation. Tissue 
plasminogen activator (TPA or Plat), is essential for clot 
lysis on the endothelial cell surface (131) and Ctnnb1 
(β-catenin) is involved in cell–cell adhesion (132). Studies 
from progeroid mice have shown that senescent EC have 
poor tight junction organization (127) and tight junction 
proteins claudin-5 and occludin are found to decrease 
in expression in AD mice (133). A further example 
is Notch1 where studies have suggested it maybe a 
potential biomarker for AD (134, 135). Interestingly, the 
gamma secretase enzyme, involved in the cleavage of 
Notch receptor, is one of two enzymes primarily involved 
in the processing of the amyloid precursor protein 
into neurotoxic β-amyloid peptides. In vitro Notch1 
expression was shown to be increased by β-amyloid 
treatment in brain ECs (134) and Notch1 activation 
induces EC senescence (85). Further, activated Notch1 
is associated with vascular pathology in AD. Chronic 
hippocampal expression of cleaved Notch intracellular 
domain NICD was found to promote vascular thickening 
and amyloid deposition in a rat model of early AD and 
chronic activation of Notch1 led to a decreased cerebral 
blood flow in early AD in a transgenic rat model (136). 
Thus, identification of senescent ECs in AD, and their 
role in the BBB awaits further investigation.
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Senotherapeutics

The damaging role of senescent cells in disease 
development has really been cemented through the 
use of transgenic mice (e.g. INK-ATTAC, p16-TMR) that 
can selectively ablate senescent cells (137). With loss of 
senescent cells, these mice showed a reduced incidence of 
age-related pathologies in kidney, heart and brain.

The field of senolytics, drugs that selectively eliminate 
senescent cell, is gaining momentum. Dasatinib and 
Quercetin (D+Q) were some of the first senolytics, which 
remove senescent cells in vitro and in progeroid mice 
through targeting of the anti-apoptotic pathways in 
senescence (138). Long term oral treatment of D+Q have 
been shown to improve vascular function in aged or 
atherosclerotic mice at a level similar to genetic clearance 
of senescent cells in aged INK-ATTAC mice (139). The 
D+Q combination has been shown to efficiently reduce 
senescence cell burden in phase I trials for several 
senescence-related diseases such as diabetic kidney disease 
(NCT02848131) (140). Further, the D+Q combination 
have also been shown to alleviate physical dysfunction 
seen in senescence-associated disease such as idiopathic 
pulmonary fibrosis (NCT02874989) (141), however, it 
remains unclear whether senescent cells burden was 
reduced.

Recently, two further senolytics have been trialed. 
Navitoclax, which targets the Bcl-2 family of anti-
apoptotic factors (142) and Venclexta (a small molecule 
BH3 mimetic) which blocks diabetes by targeting 
senescence (143). Further studies have shown that 
D+Q exhibit cell and pathway selectivity (140), thus 
demonstrating the need for expansion of our senolytic 
repertoire to provide cell- and disease-specific drugs for 
future use. A recent study has shown that sustained 
ablation of p16 senescent liver sinusoidal ECs promotes 
liver and perivascular fibrosis (144) which can be 
detrimental to healthspan. Thus, selective and time-
dependent removal of the senescent population of 
cells is likely to influence the success of senolytics in 
the clinic. In contrast to senolytics that target the anti-
apoptotic pathway, a novel study has demonstrated a 
drug called SSK1, which specifically eliminates senescent 
cells through the activity of lysosomal β-galactosidase 
with more superior efficacy than common senolytics 
(145). Other types of senescence targeting drugs with 
different specificities are being developed. These include 
senomorphics, drugs that modulate the inflammatory 
SASP profile without killing senescent cells. Studies 
using senolytics and senomorphics on disease/senescent 

endothelium have been well-reviewed by Kim and Kim 
(146). Finally, senescence immunotherapy provides 
another therapeutic strategy. At present, it is being used 
for treatment of cancers but it is emerging as a promising 
alternative to senolytics to clear senescent cells under 
the notion that different immune cells are capable of 
selectively identifying and removing unique senescent 
cells. Current senescent immunotherapy findings  
can be found in reviews by Kim and Kim (146) and Song 
et al. (147).

Summary and future directions 

ECs play a critical role in vascular homeostasis, regulation 
of inflammation and thrombosis and maintenance 
of organ function. This review outlined our existing 
understanding of senescent ECs and their contribution to 
cardiovascular disease, metabolic disease and dementia. 
Although senescence was initially considered as an all-
encompassing phenotypic change, it is now apparent 
that each cell type exhibits an unique and distinguishing 
senescence phenotype, one that may also be tissue specific. 
Hence our understanding of endothelial senescence is 
still in its infancy. Current findings have indicated that 
specific depletion of senescent cells reverses age-related 
changes and prolongs life span. However, caution should 
be urged as cellular senescence also plays important 
physiological roles such as in tissue development, wound 
healing and tumor inhibition. To achieve optimal success 
in targeting senescence it will be imperative to have a 
thorough knowledge of the senescent cell type at play in 
disease, and their spatiotemporal expression in order to 
deliver the most appropriate senolytic, senomorphic or 
drug combination.
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