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ABSTRACT

Motivation: Analyzing data from multi-platform genomics experiments

combined with patients’ clinical outcomes helps us understand the

complex biological processes that characterize a disease, as well as

how these processes relate to the development of the disease.

Current data integration approaches are limited in that they do not

consider the fundamental biological relationships that exist among

the data obtained from different platforms.

Statistical Model: We propose an integrative Bayesian analysis

of genomics data (iBAG) framework for identifying important genes/

biomarkers that are associated with clinical outcome. This framework

uses hierarchical modeling to combine the data obtained from multiple

platforms into one model.

Results: We assess the performance of our methods using several

synthetic and real examples. Simulations show our integrative meth-

ods to have higher power to detect disease-related genes than

non-integrative methods. Using the Cancer Genome Atlas glioblast-

oma dataset, we apply the iBAG model to integrate gene expression

and methylation data to study their associations with patient survival.

Our proposed method discovers multiple methylation-regulated genes

that are related to patient survival, most of which have important

biological functions in other diseases but have not been previously

studied in glioblastoma.
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1 INTRODUCTION

The overarching goal of cancer genomics is to customize patient

care decisions according to diverse genetic and epigenetic alter-

ations for a tumor (Chin et al., 2011; Vogelstein and Kinzler,

1993; Weir et al., 2004). Early cancer genomics studies focused

on only a single type of alteration at a time to assess these

changes, e.g. high-resolution copy number profiling led to the

discovery of novel oncogenes in ovarian cancer (Nanjundan

et al., 2007), melanoma (Scott et al., 2009) and lung carcinoma

(Bass et al., 2009). Some of these findings have already been

translated into personalized cancer treatment, such as imatinib

for KIT-mutated gastrointestinal stromal tumors (Handolias

et al., 2010) and trastuzumab for HER2-positive breast tumors

(Pegram and Slamon, 2000).
As technologies to perform comprehensive profiling of the

cancer genome have progressed, different technology platforms,

from basic capillary electrophoresis sequencing to advanced

forms of microarrays, have been brought together on the

same patient set. For example, the Cancer Genome Atlas

(TCGA) is a worldwide research program that currently

encompasses comprehensive genomic datasets for 420 types

of cancer (http://cancergemone.nih.gov; Hudson et al., 2010).

The work of TCGA is motivating approaches for integrating

data outputs from different types of technology platforms to

identify important biomarkers related to cancer development

and progression. The key hypothesis behind these approaches

is that cancer consists of hundreds of distinct molecular

changes, from multiple types of genetic and epigenetic alter-

ations to the interactions among them. Each type of alteration

provides a different and complementary view of the whole

genome. Hence, integrating multiple aspects of the genome

and the underlying biological processes to identify novel targets

is essential and has the potential to improve the clinical man-

agement of cancer.
The concept of integration is very broad (see review by Hamid

et al., 2009). Such integration studies can be divided into three

general groups according to the primary focus of the study

(Daemen et al., 2009). The focus of the first group, called sequen-

tial integration studies, is the sequential analysis of heterogeneous

data from different platforms for the purpose of understanding

the biological evolution of disease as opposed to predicting clin-

ical outcome (Fridlyand et al., 2006; Qin, 2008; Tomioka et al.,

2008). In this group, data obtained on one type of platform are

analyzed along with the clinical outcome data, and then a second

data platform is subsequently used to clarify or confirm the

results obtained from the first platform. For example, Qin

(2008) showed that microRNA expression can be used to sort

tumors from normal tissues, regardless of tumor type. The study

then analyzed the relationship between the candidate target genes

for the cancer-related microRNAs and mRNA expression and

disease status.

The focus of the second group of integration studies, which

we call biological integration studies, is the analysis of biolo-

gical pathways and regulatory mechanisms among data*To whom correspondence should be addressed.
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obtained from different platforms, such as the relationship
between gene expression and protein abundances, or the rela-
tionship between gene expression and copy number changes

in patient tumor samples (Karpenko and Dai, 2010; van
Wieringen et al., 2012; Waters et al., 2006). The challenge
for this group of studies is that the biological annotation data-

bases used for mapping different datasets are inconsistent. An
R-package to match array comparative genomic hybridization
(CGH) and gene expression microarray features for integrative

analysis purposes was provided by van Wieringen et al. (2012).
The focus of the third group of integration studies, which

we term model-based integration studies, is the analysis of data
obtained from multiple platforms that are combined into one

statistical model to identify clinically relevant genes and/or to
predict clinical outcome. Instead of merging datasets or analyz-
ing them sequentially, the data from different platforms are

treated equally, and the most relevant features are selected
from all available platforms (Daemen et al., 2009; Lanckriet
et al., 2004). For example, Daemen et al. (2009) proposed a

kernel-based approach to integrate data from multiple plat-
forms for the classification of discrete clinical outcomes.
They showed that the area under curve (AUC) based on inte-

grated data used for predictions was significantly improved
compared with the AUC based on data from a single platform.
However, these studies treated each platform independently

and ignored the underlying biological mechanisms among dif-
ferent platforms. Witten and Tibshirani (2009) developed a
supervised canonical correlation model to find significant

axes of correlations between multiple multivariate datasets at
a global (chromosomal) level. They integrated copy number
and gene expression data and identified linear combinations

(canonical variables) that are related to a clinical outcome.
However, they also did not take the biological mechanisms
(directionality) into account, as we detail later in the text.

Our proposed method takes a different approach in modeling
biological relationships among molecular features measured by
different platforms, by focusing on relationships at a ‘gene-

centric’ level. We first study the underlying biological mechan-
isms, relating the data across the different platforms. Then using
this information, we partition gene expression into different

(independent) units and use this to identify genes relevant to
clinical outcome as modulated by these different platforms. We
hypothesize (and show) that, compared with non-integrative

methods, our proposed method can detect clinically relevant
gene expression changes with greater power and a lower false
discovery rate (FDR), in addition to obtaining results that are

more biologically interpretable.
Molecular biology has shown that features identified on dif-

ferent platforms influence clinical outcome at different levels.

For example, in TCGA studies, copy number, methylation, mu-
tation status, mRNA expression, microRNA expression and the
expression of proteins in specific signaling pathways have been

measured on the same set of samples. The fundamental biolo-
gical relationships among the products of these different plat-
forms and their associations with clinical outcome are shown

in Figure 1. Generally speaking, molecular features measured
at the transcript level (e.g. mRNA expression) affect clinical out-
come more directly than molecular features measured at the

DNA/epigenetics level (e.g. copy number, methylation and

mutation status). Molecular features measured at the DNA

level affect clinical outcome by influencing mRNA expression
(Fabiani et al., 2010; Glinsky, 2006; de Tayrac et al., 2009).

Similarly, microRNAs, post-transcriptional regulators that

bind to complementary sequences on target mRNAs, influence
mRNA through translational repression or target degradation,

which then affects clinical outcome (Tseng et al., 2011).
Conducting the proposed integrative analysis is a challenge

because of the complicated biological relationships and the dif-
ferent intrinsic structures of various platforms. For example, mo-

lecular features measured at the DNA level regulate the mRNA
expressions of the corresponding genes or nearby genes (Peng

et al., 2010). In contrast, microRNAs can regulate the mRNA

expression of any gene, regardless of its locus, and each
microRNA molecule has multiple target genes. Another chal-

lenge underlying this analysis is the large scale of the different
types of gene alterations in contrast to the limited number of

patient samples for such a study. Hence, an easily implemented
and efficient variable selection method is needed for such an

integration analysis.
We have developed the integrative Bayesian analysis of gen-

omics data (iBAG) model to address these challenges. The main

advantages of our proposed model can be summarized as fol-
lows. The iBAG model (i) uses a hierarchical approach to model

the fundamental biological relationships underlying molecular
features obtained by different platforms; (ii) accounts for both

the influences of different platforms and the biological relation-
ships among the platforms in one unified model to predict

patients’ clinical outcomes; (iii) can conduct high-dimensional

variable selection, which adapts to analyzing hundreds of distinct
molecular entity effects jointly in one model; (iv) uses a Bayesian

framework, which allows the model enough flexibility to estimate
the different intrinsic structures of biological relationships for

different high-throughput platforms; and (v) is computationally

efficient and feasible owing to its closed forms of full conditional
posterior distributions for posterior sampling.
The rest of this article is organized as follows. In Section 2,

we describe the iBAG model construction along with prior

formulations for continuous, discrete and survival clinical out-
comes. In Section 3, we introduce an innovative approach for

conducting high-dimensional variable selection using Bayesian
FDRs. In Section 4, we illustrate the performance of the iBAG

model and use simulations to compare its performance with

those of alternative approaches. In Section 5, we apply the
iBAG model to integrate gene expression and methylation data

for TCGA’s glioblastoma study, and evaluate the associations

Fig. 1. Associations among different molecular features and with clinical

outcome. PTM: post-translational modification; solid (dashed) arrow:

products from one platform are influenced directly (indirectly) by the

products from the other platform
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between those data and patients’ survival times. Finally, we

provide a summary and discussion in Section 6. The technical

details and additional simulation results are contained in the

Supplementary Material (Section S1).

2 THE iBAG MODEL

For ease of interpretation and exposition, we illustrate our

methodology using two platforms at a time—DNA methylation

and gene expression data. Integration across more than two

platforms can be done in an analogous manner, as discussed in

Section 6.

2.1 Model for continuous outcome

Suppose the total number of patients is N. For the nth patient,

our observed datum consists of—(i) Yn, the clinical outcome of

interest [e.g. survival time, tumor(sub)type], (ii) ðmn1, . . . ,mnJÞ,

the measures of methylation levels for J probes/sites on the whole

genome, (iii) ðgn1, . . . , gnKÞ, the measures of gene expression

level for K genes, and (iv) ðcn1, . . . , cnLÞ, the values of L clinical

(non-genomic) factors (e.g. tumor stage, age and other

demographic variables). Hence, all of the observed datasets

in our study can be denoted (in matrix notation) as

fYN�1,MN�J,GN�K,CN�Lg.

We propose the following two-component hierarchical con-

struction for our iBAG model: a mechanistic model to infer

direct effects of methylation on gene expression, and a clinical

model that uses this information to predict a clinical outcome.

The first component of our model assesses the underlying biolo-

gical relationship between methylation and gene expression.

The expression level of a gene is affected primarily by the methy-

lation sites in the promoter region and is usually lower when

its promoter is highly methylated. However, methylation is

only one of the many potential factors contributing to a

change in gene expression level (as shown in Fig. 1). The mech-

anistic model regresses the measure of gene expression for the

kth gene (mk) on the methylation measures obtained within

the promoter of the kth gene. To match the methylation sites

to a given gene, we use the annotation files for the platforms and

use those methylation sites that are encompassed within the pro-

moter region of a given gene—thus potentially allowing multiple

methylation sites to map to a particular gene. The second com-

ponent of our model assesses when the expression of a particular

gene affects the clinical outcome, whether this effect is modulated

through methylation and/or through some other mechanisms

that are independent of methylation (e.g. microRNA, copy

number effects).

Mechanistic Model : G ¼ GM
þG

�M,GM
¼M�;

Clinical Model : Y ¼ C�C þGM�M þG
�M�

�M þ �:
ð1Þ

The parameters of the mechanistic and clinical models have

the following interpretations:

� GM ¼ gMnk
� �

N�K
¼ gM1 , . . . , gMK
� �

, where gMk denotes the part

of the expression changes of the kth gene expression feature

that is modulated through methylation (M).

� G
�M
¼ g

�M
1 , . . . , g

�M
K

� �
, where g

�M
k is an N� 1 vector that de-

notes the part of the expression changes of the kth gene

expression feature that is modulated by mechanisms other

than methylation (e.g. microRNA, copy number effects).

We assume that g
�M
k follows a multivariate normal distribu-

tion with mean 0 and covariance matrix �2kIN�N for

k ¼ 1, . . . ,K.

� � ¼ ð!jkÞJ�K, where !jk is the ‘gene-methylation’ effect

that estimates the (conditional) effect of the jth methylation

feature on the kth feature identified from the gene expres-

sion data.

� �C ¼ ð�C1 , . . . , �CL Þ, where �
C
l denotes the effect of the lth

clinical factor on clinical outcome Y.

� �M ¼ ð�M1 , . . . , �MK Þ, where �
M
k estimates the effect of gMk on

Y, which can be interpreted as the effect of gene expression

modulated by methylation for the kth feature

identified from the gene expression data. We denote this

partial effect of gene expression on clinical outcome as a

type M effect.

� �
�M ¼ ð�

�M
1 , . . . , �

�M
K Þ, where �

�M
k measures the effect of g

�M
k on

Y, which can be interpreted as the effect of gene expression

modulated by other sources for the kth feature identified

from the gene expression data. We denote this partial gene

expression effect on clinical outcome as a type �M effect.

� � is the error term that accounts for variation not explained

by the observed genomic and clinical factors and which is

assumed to follow a normal distribution with a common

standard deviation �.

In essence, our mechanistic model divides the gene expression

levels into two components—one modulated by methylation

ðG
�M
Þ and the other independent of methylation ðG

�M
Þ—and

uses both of these components (jointly) in the clinical model

for the prediction of relevant outcomes. Figure 2 further exem-

plifies the architecture of the iBAG model for integrating

data from two platforms. The formal directed acyclic graphical

representation is given in Supplementary Fig. S1.

2.2 Prior construction

There are various univariate and multivariate approaches for

fitting the iBAG model, as specified above, which require some

variable selection and/or sparsity to regularize the ill-posed

Fig. 2. Graphical representation of the structure of the iBAG model
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high-dimensional problem—as both the number of genes (K) and

methylation features (J) are potentially of very high dimension

(on the level of thousands) as compared with the sample size

(N¼ hundreds), and most of the genes are expected to have

very weak effects on clinical outcome. We use a Bayesian pena-

lized regression approach that not only jointly models the mech-

anistic and clinical components in Equation (1) but also provides

a natural approach for imposing sparsity and performing vari-

able selection via hierarchical priors.
We denote our full parameter set as M¼

�
�M, �

�M, �C,

�, �, �1, . . . , �K
�
and specify our prior construction for each of

these parameters. To model the main constructs of interest,

�M, �
�M,�

n o
, we use the Bayesian formulation of the lasso

(Tibshirani, 1996), which serves a dual purpose. First, similar

to the lasso regression with L1 penalty, it achieves sparsity

(variable selection) via non-linear shrinkage of small/weak

effects toward zero. This approach has proven to be useful in

identifying genomic features with large effects on clinical out-

comes in various genomic studies (Hoggart et al., 2008; Li

et al., 2011). Second, and more importantly, as the complete

conditionals are available in closed forms, the Bayesian forma-

tion of the lasso substantially aids our Bayesian computations

for large genomic datasets such as those considered here.

Specifically, we can write the double exponential (lasso) prior

distribution as a scale mixture of a normal distribution with an

exponential mixing density (Park and Casella, 2008), which

allows us to use Gibbs sampling to draw the samples from the

posterior distribution.
Thus our (conditional) Bayesian lasso prior for the type M

effects (�M) can be written as

½�Mj�M, �� �
YK
k¼1

�M

2�
expð��Mj�Mk j=�Þ,

where �M is the shrinkage parameter for the vector �M, and

� is the standard deviation for the random error term ".
Similarly, we define a Bayesian lasso prior for �

�M, conditioned

on the (different) shrinkage parameter �
�M and the (same) stand-

ard deviation �.
For �, which models the gene-methylation effects in the

mechanistic model, we adopt the following strategy. When the

number of features matching a given gene (promoter) is lower

than the sample size (N) (e.g. methylation features), we assume

that !jk follows a normal distribution if mj is within the kth gene

promoter and !jk¼ 0, otherwise. In cases where the number of

probes/features exceeds N for a particular gene (e.g. microRNA

features), we allow for a Bayesian lasso prior, as described earlier

in the text, to achieve regularization.

For �C ¼ ð�Cl Þ1�L, which models the effects of clinical factors,

we simply assume that the prior of each �Cl is a multivariate

normal distribution with mean 0 and large variance (e.g. on

the order of 106 for a variable with standard deviation¼ 1).

For the error variance (�2 and �21 , . . . , �2K), we assume an im-

proper prior �ð�2Þ ¼ 1=�2. For other hyper parameters in the

hierarchical model, we assume a gamma prior on ð�MÞ2 and

ð�
�MÞ

2, with mean parameter �M, �
�M and scale parameter �M,

�
�M, respectively. In our applications, we assume the values of

�M, �
�M, �M and �

�M are all equal to 1.

2.3 Estimation via Markov chain Monte Carlo

Our complete iBAG model can be expressed hierarchically as

½YjC,G,M;M� ¼ C�C þ ðM�Þ�M þ ðG�M�Þ�
�M þ �;

½gkjZ;!g� ¼M!g þ g
�M
k , g

�M
k �MNNð0, �

2
kIN�NÞ;

� �MNNð0, �
2IN�NÞ;

�Mj�M, �
� 	

�
YK
k¼1

�M
2�

exp ��Mj�Mk j=�
� �

;

�
�Mj�

�M, �
h i

�
YK
k¼1

� �M

2�
exp ��

�Mj�
�M

k j=�
� �

;

�C �MNL 0, 106IL�L
� �

;

!jk � Nð0, 106Þ for mj within the promoter k th gene;

�2, �21 , . . . , �2K � 1=�2 �
YK
k¼1

1=�2k;

�M
� �2

� Gamma �M, �M
� �

, �
�M

� �2
� Gamma �

�M, �
�M

� �
,

where MNKðu,�Þ denotes the K dimensional multivariate

normal distribution with mean u and covariance matrix �.
To conduct estimation and subsequent inference, we follow a

fully Bayesian analysis of the iBAG model specified above using

Markov chain Monte Carlo (MCMC) approaches (Casella and

George, 1992). Specifically, we iteratively draw posterior samples

from the full conditional distributions of the parameter sets, as

specified below.

2.3.1 Mechanistic model parameters

½!j0,k0 j�� �N
��2ðgk0 Þ0Yk0 þ ��2k0

m0 j0gk0
��2ðgk0 Þ0gk0 þ ��2k0

m0j0mj0 þ 10�6

 
,

��2ðgk0 Þ0gk0 þ ��2k0
m0j0mj0 þ 10�6

� ��1

,where

gk0 ¼ �Mk0 � �
�M
k0

� �
mj0 , for k0 ¼ 1, . . . ,K, andmj0 within the

promoter of k0 th gene,

�2k0 j�
h i

� Inv: Gamma
N� 1þ J

2
,
1

2
jjgk0 �!k0mk0 jj2
� �2

þ
10�6

2
!2
k0

� 

:

2.3.2 Clinical model parameters

½�Cj�� �MNL
C0ðY�G

�M�
�M �GM�MÞ

��2C0Cþ 10�6I
, ��2C0Cþ 10�6
� ��1 !

,

½�Mj�� �MNK
ðGMÞ

0YM

ðGM
Þ
0GM
þD�1M

,
�2

ðGM
Þ
0GM
þD�1M

 !
,

½�
�Mj�� �MNK

ðG
�M
Þ
0Y

�M

ðG
�M
Þ
0G

�M
þD�1�M

,
�2

ðG
�M
Þ
0G

�M
þD�1�M

 !
,

½�2j�� � Inv: Gamma
N� 1þ 2K

2
,
1

2
jjYM þ Y

�M � Yjj2

� �2�

þ
�M

2
ð�MÞ0D�1M �

M þ
�

�M

2
ð�

�MÞ
0D�1�M �

�M

!
,
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where

DM ¼ Diag ð	M1 Þ
2, . . . , ð	MK Þ

2
� �

,

D �M ¼ Diag ð	
�M

1 Þ
2, . . . , ð	

�M
K Þ

2
� �

,

½ð	Mk Þ
�2
¼ 
Mk j�� � Inv: Gaussian

�M�0
j�Mk j

, ð�MÞ2
� 


Ið
Mk 40Þ,

½ð	
�M

k Þ
�2
¼ 


�M
k j�� � Inv: Gaussian

�
�M�0

j�
�M

k j
, ð�

�MÞ
2

 !
Ið


�M
k 40Þ,

and Yk0 ¼ Y�G�
�M �

X
k 6¼k0

!jk �
M
k � �

�M
k

� �
mj0

n o
,

YM ¼ Y�G
�M�

�M,Y
�M ¼ Y�GM�M:

2.3.3 Shrinkage parameters

½ð�MÞ2j�� � Gamma Kþ �M,
XK
k¼1

1


Mk
þ �M

 !
,

½ð�
�MÞ

2
j�� � Gamma Kþ �

�M,
XK
k¼1

1



�M
k

þ �
�M

 !
:

As all the above full conditional likelihoods are available in

closed form, an efficient Gibbs sampler can be used to update

our posterior distributions by drawing samples sequentially from

full conditional distributions for each parameter set. See details

in Supplementary Material (Section S1).

2.4 iBAG model for discrete and censored outcomes

The construction of the iBAG model can be easily extended

to model discrete and censored outcomes using latent variable

formulations (Albert and Chib, 1993). Specifically, when Y is a

binary variable taking values of 0 or 1 [e.g. tumor-(sub)type], we

use a probit latent-variable formulation that preserves all the

conjugate constructions. We let Z be the (unobserved) latent

variable that relates to Y as follows,

Yn ¼
1 if Zn40
0 otherwise

for n ¼ 1, . . . ,N:

�

Then conditionally (on Z) our iBAG model for discrete

responses is the same as that shown in Equation (1), with Y in

the clinical model replaced by Z and parameter representations

and corresponding interpretations remaining exactly the same as

those for continuous outcomes.
If the clinical outcome of interest is patient survival time (with

censoring), we use the accelerated failure time model with a data

augmentation approach (Tanner and Wong, 1987) to impute the

censored values for this study. We let t ¼ ðt1, . . . , tNÞ denote the

survival time and d ¼ ð�1, . . . , �NÞ denote the censoring status.

Still, we let Z ¼ ðZ1, . . . ,ZNÞ denote an unobserved latent vari-

able. Given the latent variable Z for right-censored responses,

the expression of the iBAG model is similar to Equation (1),

changing the response variable Y to Z.
The relationship between clinical outcome (tn,�n) and the

latent variable Zn can be expressed as

logðtnÞ ¼ Zn if �n ¼ 1
logðtnÞ4Zn if �n ¼ 0

for n ¼ 1, . . . ,N:

�

The full conditionals and the MCMC sampling schemes
for discrete and survival responses are provided in the

Supplementary Material (Section S2).

3 GENE SELECTION VIA FDRs

Our posterior sampling schemes for the iBAG model result in

MCMC samples for all model parameters and, of specific interest
to our study, the effects of gene expression levels on clinical

outcomes modulated by and independent of methylation
f�M, �

�Mg. One key issue is to summarize this information in

the MCMC samples to conduct gene selection. Typical inferen-
tial approaches, such as selection based on posterior quantiles or

the maximum a posteriori (MAP) via MCMC samples, suffer
from two drawbacks. First, the Bayesian lasso has excellent

shrinkage properties but does not conduct natural model/
variable selection, as it does not set the effects exactly equal

to 0 (owing to an absolutely continuous prior). Second, such
inferential methods do not allow for the natural incorporation

of FDR controls that are commonly used in high-dimensional
settings (Benjamini and Hochberg, 1995; Storey and Tibshirani,

2003).
We propose an alternative approach to obtaining posterior

probabilities to evaluate the significance of gene expression

effects that facilitates efficient FDR-based inferences. Let
fMsg

S
s¼1 denote the S MCMC posterior samples for the model

parameters. When the clinical outcome Y is continuous, for
each MCMC sample, we compute the (conditional) MAP esti-

mate of f�Ms , �
�M

s g, conditional on all other model parameters that
can be obtained by minimizing the following objective/loss

function:

jjY� C�Cs �GM�Ms �G
�M�

�M
s jj

2
2 þ �

M
s jj�

M
s jj1 þ �

�M
s jj�

�M
s jj1, ð2Þ

where jj � jjl is the l-norm, and Y is the observed continuous

outcome. When the clinical outcome is discrete or censored,
the MAP estimate of f�Ms , �

�M
s g can be obtained similarly by

replacing Y in Equation (2) with the MCMC samples for the
unobserved latent variable Z. Equation (2) is similar to the pena-

lized objective function in the frequentist lasso (Tibshirani, 1996)
with two different shrinkage parameters (�M, �

�M)—however,

with the key difference that it conditions on all the other
model parameters, thus accounting for uncertainty. There are

several algorithms available for computing the MAP estimate.
We use the computationally efficient least angle regression selec-

tion algorithm (Efron et al., 2004) to compute the estimates.
We denote the resulting (conditional) estimates as �̂Mk, s and �̂

�M
k, s

for the kth gene feature. Finally, we estimate the posterior
probability of significance (pMk , p

�M
k ) by computing the (empirical)

frequencies of the non-zero elements in the MAP estimates for
each gene k as

pMk ¼
1

S

XS
s¼1

I �Mk, s 6¼ 0
� �

; p
�M
k ¼

1

S

XS
s¼1

I �
�M

k, s 6¼ 0
� �

,

where Ið�Þ is the indicator function.
Note that, in this framework, 1� pMk

� �
and 1� p

�M
k

� �
can be

interpreted as estimates of the ‘local’ FDR or Bayesian q-values
(Newton et al., 2004; Storey and Tibshirani, 2003). Thus, given

a desired global FDR �, we can determine a threshold �� to use
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in flagging the set of genes fk : pMk � �� or p
�M
k � ��g as signifi-

cant genes associated with the clinical outcome. The significant
threshold �� can be determined according to the method pro-

posed by Morris et al. (2008). Let p ¼ ðpi, i ¼ 1, . . . , 2KÞ be
the combined vector of posterior probabilities for �M and �

�M.
We then sort pi in descending order to obtain p(i). Then �� ¼ pð�Þ,

where � ¼ maxfi0 : i0
Pi0

i¼1 pðiÞ 	 �g. Using this cutoff, the
expected proportion of genes found to be significant that are
in fact false positive genes is �, in other words, we can control

the average Bayesian FDR to be �.

4 SIMULATION STUDIES

In this section, we examine the operating characteristics of the
proposed iBAG model through synthetic numerical examples.

We use two versions of the iBAG model: an iBAGunified model
as specified in Section 2 and an iBAG2-stage model in which the
mechanistic and clinical models in Equation (1) are fit sequen-

tially. Specifically, the mechanistic model involves fitting K linear
regressions (for each gene separately). Subsequently, both the
fitted values and the residuals from the mechanistic model are

used as predictors in the clinical model. We use a similar lasso
framework to estimate the clinical model and select genes related
to clinical outcome. In addition, we compare the performance

with those of two other models—a non-integrative (non-INT)
model and a single gene (SG) model. In the non-INT model,

we ignore the information provided by methylation and fit
only the clinical model with gene expression features (G) as
multivariate explanatory variables. In the SG model, we perform

a multivariate linear regression for each gene separately with all
of the genomic features available (including both mRNA and
methylation levels) for the gene, to conduct selection based on

individual P-values.
We simulate datasets that reflect the application dataset (ana-

lyzed in Section 5) as closely as possible. We fix the total number

of patients at N¼ 200 and vary the total number of genes
(K¼ 400, 600, 800, 1000). We assume that J¼ 200 out of K
genes have had methylation levels measured (the proportion in

the application dataset). Given the triplet, (N, J, K), we first
generate methylation data, mnj, independently from Uniform
(0,1), corresponding to the beta-values of DNA methylation

used in the TCGA glioblastoma study (described in Section 5).
Next, we simulate the gene expression values from a mixture of
two normal distributions, based on the corresponding methyla-

tion measures, i.e. fgkg
J
k¼1�

iid
Normalð�1:5mk, �

2
kÞ (regulated by

methylation) and fgkg
K
Jþ1�

iid
Normalð0, �2kÞ (not regulated by

methylation). In the application dataset, �80% of the correl-
ations between DNA methylations and the corresponding gene
expression levels range from –0.4 to –0.8. To induce explicit de-

pendence between methylation and gene expression, we assume
�1 ¼ � � � ¼ �K and vary the values (¼ 0.31, 0.44, 0.73) that re-
spectively correspond to gene expression-methylation correl-

ations ð
 ¼ �0:8, � 0:6, � 0:4Þ. Finally, we use model (1) to
generate the clinical outcomes Y by setting—(i) �Mk ¼ 1 for
k ¼ 1, . . . , 20 and J� 21, . . . , J, and �Mk ¼ 0 for all other ks;

(ii) �
�M

k ¼ 1 for k ¼ J� 21, . . . , J and Jþ 1, . . . , Jþ 20, and
�

�M
k ¼ 0 for all other ks and (iii) � � NNð0, 0:1

2IN�NÞ. In essence,
we have three groups of genes: group 1 consists of genes with

only a nonzero type M effect, which is the gene expression effect

modulated only by methylation (genes 1–20); group 2 consists
of genes with only a non-zero type �M effect, which is the gene
expression effect independent of methylation, but modulated by

other mechanisms (gene Jþ 1 to gene Jþ 20); and group 3 con-
sists of genes with both nonzero type M and type �M effects,
i.e. the gene expression effects modulated (partially) by both

methylation and other mechanisms (gene J� 21 to gene J).
In total, we investigate 12 different data combinations based
on variations of (K,
), and we generate 10 datasets for each

combination.
For the non-INT and iBAG2-stage models, we use regular lasso

regression and obtain receiver operating characteristic (ROC)

curves by varying the shrinkage parameter. For the SG model,
we vary the cutoff of the P-value for significance to obtain the
ROC curves. For the iBAGunified model, we obtain the ROC

curve by varying the significance threshold for the Bayesian pos-
terior probabilities of the gene expression effects. We fit all four

models, iBAGunified, iBAG2-stage, SG and non-INT, to all the
simulated datasets and obtain ROC curves to identify the true
effects of gene expression for the three groups of genes. For each

model, we plot the means of the ROC curves based on the
10 simulated datasets for each (K,
) combination. For example,
in Figure 3, we plot the ROC curves for identifying the true

effects of gene expressions for the three groups of genes when
K¼ 1000 and 
¼�0.6, which most closely mimics the real data-
set analyzed in Section 5. Supplementary Table S1 shows the

rank of performance for the four models in identifying the
three groups of genes based on the areas under the ROC
curves (AUC) values. Based on the AUC values, we can conclude

that the iBAGunified model outperforms the non-INT, SG and
iBAG2-stage models in identifying all three groups of genes.

Although the iBAG2-stage model performs slightly worse than
the non-INT model in identifying genes with only type �M effects
and genes with both type M and type �M effects, it has a clear

advantage in identifying genes with only type M effects. The SG
model performs better than the non-INT model in identifying
genes with only type M effects, but it has lower AUCs in iden-

tifying the other two groups of genes. The performances of the
four models in the other 11 scenarios are similar (see
Supplementary Figs S2.1–S2.3 for the detection of genes in

groups 1–3).
Based on the results from all 12 scenarios, the performance of

the four models can be summarized as follows: (i) Our proposed

iBAGunified model consistently performs the best of all three
models for discovering all three groups of genes; (ii) The
iBAG2-stage model performs better than the non-INT model

in discovering the genes in group 1, those with effects of gene
expression modulated only by methylation; (iii) In discovering
the genes in groups 2 and 3, the iBAG2-stage model performs as

well as the non-INT model; and (iv) Compared with the
non-INT model, the SG model performs better in identifying

genes in group 1, but worse in identifying genes in the other
two groups.

5 TCGA GLIOBLASTOMA MULTIFORME DATASET

Glioblastoma multiforme (GBM) is the most common and most
aggressive type of malignant primary brain tumor in humans.

The TCGA GBM dataset includes tumor samples from 4500
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patients with GBM, along with DNA copy number, mutation,
methylation and gene expression information. Analyzing differ-

ent platforms individually illuminates some of the pathobiologic
features and molecular biomarkers in GBM. For example,
Verhaak et al. (2010) proposed using gene expression data to

develop clinically relevant molecular sub-classifications of
GBM, and Noushmehr et al. (2010) used methylation levels to
identify a subset of GBM tumors that harbor characteristic pro-

moter DNA methylation alterations, referred to as the glioma
CpG island methylator phenotype.
Here, we focus on integrating gene expression, methylation

data and patients’ clinical features from the GBM study. The
data can be downloaded directly from TCGA’s website (http://
tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). The clinical outcome

of interest is the overall survival time. The gene expression profile
is obtained using Affymetrix Human Genome U133A Array.

Level 2 data were downloaded from the TCGA website as
of June 2011, and the data were normalized globally using
BrainArray Custom Chip Definition Files (CDF) and the

Robust Multichip Average (RMA) normalization method.
Unsupervised hierarchical clustering (Pearson correlation and
Ward linkage) and principal components analysis were used to

search for batch effects, but no significant batch effects were
observed. The DNA methylation information is obtained using
the Illumina Human methylation 27 BeadChip. We directly

downloaded the level 3 data from the TCGA website; there are
no significant batch effects (http://bioinformatics.mdanderson.
org/tcgabatcheffects/). For DNA methylation data, we use the

beta value, which is a number between zero and one that meas-
ures the percentage of methylation. For the subsequent analyses,
we briefly outline the data pre-processing steps here for the gene

expression and methylation data. Complete details can be found
in the Supplementary Material (Section S4.1). First, we filter
out the under-expressed genes and the methylation features for

which the beta values do not vary by patient. After this step,
7785 genes and 6890 methylation features remain. Second, we
annotate the 6890 methylation features to the 7785 genes accord-

ing to their positions on the chromosomes. Third, we choose
the top genes based on univariate filtering, adjusting for patient
age. Finally, 1000 genes (348 of them with methylation informa-

tion available) remain for our analysis on 201 patients. Our goal

is not only to understand methylation-based regulation of genes
but also to use this information to find significant genes asso-

ciated with survival times.
We randomly split the total data from 201 patients into a

training dataset (data from 134 patients) and a test dataset

(data from 67 patients). For the training dataset, we fit the fol-
lowing three models for the selected genes: (i) the non-INT
model, with only gene expression information as explanatory

variables, (ii) the additive (ADD) model, with both gene expres-
sion and methylation information as explanatory variables
and assuming their effects on patients’ survival times are addi-

tive, (iii) the iBAGunified model for censored outcomes, which
integrates both gene expression and methylation information.
We include patient age as a clinical covariate for both the

iBAG and non-INT models. For a fair comparison, we use a
Bayesian approach to obtain estimations for all three models

using double-exponential (lasso) priors. We construct the priors
for the iBAGunified model as stated in Section 2.3. The priors for
the non-INT model are the same as those for the iBAGunified

model, except for setting � to be 0. The priors for the ADD
model are the same as those in the non-INT model, except for
the priors of the methylation effects, which are set in a manner

similarly to that of the priors for gene expression effects in the
non-INT model. To check the convergence of the iBAGunified

model, we run two MCMC chains with different starting

values. As seen in the trace plots and the plots based on
Gelman and Rubin’s convergence diagnostic statistics, for the
important parameters in the iBAGunified model (Supplementary

Fig. S5), the results show that the iBAGunified model converges
after �2000 iterations.
To compare the performance of the three models, we obtain

the predicted values for the test dataset using the mean estima-
tions of the parameters from the posterior samples for all three
models. We use the concordance index (C-index) to evaluate

the prediction performance for the different models. The
C-index can be expressed as

P
ði, jÞ2� Iðt̂i, t̂jÞ=j�j, where

Iðt̂i, t̂jÞ ¼ 1 for t̂i4t̂j and¼ 0 otherwise, t̂i is the estimated sur-

vival time for patient i, and � is the set that consists of all pairs
of i, j such that survival time ti4tj. This measure has been shown
to be effective in comparing prediction performances among

different models for right-censored data (Bonato et al., 2011;

Fig. 3. ROC curves of the true positive rate versus false positive rate of discovering genes in group 1 (genes with only non-zero type M effect; the left

panel), group 2 (genes with only type �M effect; the middle panel) and group 3 (genes with both type M and type �M effects; the right panel) by the

non-INT model, SG model, iBAG2-stage model and iBAGunified model when the total number of genes (K) is 1000, and the assumed correlation 
 between

methylation and gene expression¼ –0.6 (values in parentheses are AUCs for the corresponding ROC curves)
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Harrel et al., 2001; van Wieringen et al., 2009). We calculated
C-indexes for the fitted values in the training dataset and the pre-

dicted values in the test dataset for all three models. The results

are summarized in Table 1. The C-indexes for the iBAGunified

model are the highest for both the training (0.80) and test data-
sets (0.76). The C-indexes for the non-INT model are the lowest

for both training (0.70) and test datasets (0.73). Although the

improvements by integrating the methylation data are limited
(all 95% CIs of the C-index overlapped for the three models),

the iBAGunified model has the best performance in both model

fitting and model prediction.
For the two models performing relatively better in prediction

(iBAGunified model and ADD model), we use Gibbs sampling to

obtain posterior samples for the parameters and apply the
method described in Section 3 to obtain the posterior probabil-

ities for the different types of gene expression effects. The

Bayesian posterior probabilities obtained by the iBAG model

for the type M and type �M effects are summarized in Figure 4,
panels A and B, respectively. The Bayesian posterior probabil-

ities of the methylation effects and gene expression effects by the

ADD model are summarized in Figure 4, panels C and D,
respectively.

Applying the iBAGunified model to the GBM training dataset,
we identify 136 genes (of the total 348 genes with methylation

information) as significantly modulated by at least one methyla-

tion feature. These genes are listed in Supplementary Table S3.

Of 136 genes, 102 genes (76%) have a negative estimation for
methylation effects. This result reflects the biologic action of

methylation, which usually represses gene expression. At

FDR¼ 0.2 (corresponding posterior probability cutoff¼ 0.517),
we obtain 22 genes with non-zero type M effects (effects modu-

lated by methylation) on patient survival using the iBAGunified

model. These genes are listed in the top box of Table 2. We use

an asterisk to show the genes significantly modulated by methy-
lation, as identified by the iBAGunified model (within the list pro-

vided in Supplementary Table S1). We use a boldface font to

show the genes positively associated with patient survival (higher

expression of the gene indicates longer survival time), and a regu-
lar font to show the genes negatively associated with patient

survival (higher expression of the gene indicate shorter survival

time). In addition, we identify 107 genes with nonzero type �M
effects on survival (summarized in the lower box in Table 2).

CNGA3 is the only gene that overlaps between the 22 genes

with type M effects and the 107 genes with type �M effects,

which means that CNGA3 is found to have effects modulated
by both methylation and other mechanisms.

Using the ADD model with the same FDR¼ 0.2 (correspond-
ing posterior probability cutoff¼ 0.579), we obtain 22 genes that

have significant methylation effects and 78 genes that have sig-

nificant gene expression effects on patient survival. By

comparing the gene lists derived by the iBAG and ADD
models using Venn diagrams (Supplementary Figs S4.1 and
S4.2), we observe that 59 of 78 genes with significant gene ex-

pression effects obtained by the ADD model overlap with the
genes with non-zero type �M effects obtained by the iBAGunified

model, and have a directional association with survival time

(both are positive or negative). There are 12 common genes
when comparing the genes with significant methylation effects

by the ADD model and the genes with non-zero type M effects
(effects modulated by methylation). Among the 10 genes with
non-zero type M effects obtained only by the iBAGunified model,

five genes (SARMS1, C1QA, UFD1L, CBFB and MVP) are
found to be significantly modulated by methylation (see
Supplementary Table S1). However, for the 10 genes with sig-

nificant methylation effects obtained only by the ADD model,
only two of them (ANK3 and IL11RA) are found to be signifi-

cantly modulated by methylation (see Supplementary Table S1).
This indicates that for the other eight genes obtained only by the
ADD model, they are shown to have significant methylation

effects on survival, but their gene expression levels are not chan-
ged. This result does not seem to conform to our belief that
methylation affects patient survival by depressing the gene ex-

pression. The advantage of the iBAGunified model is that it can

Fig. 4. Posterior probabilities for gene expression effects by the

iBAGunified model (panel A for effects modulated by methylation and

panel B for effects modulated by other mechanisms), by the ADD

model (panel C for effects identified by methylation and panel D for

effects identified by gene expression). Blue dot: Negative effect (higher

expression indicates shorter survival); Red dot: Positive effect (higher

expression indicates longer survival); Black horizontal line: corresponding

cutoff for posterior probabilities at FDR¼ 0.2

Table 1. C-indexes for the three models in the training and test datasets

non-INT model ADD model iBAGunified model

Training data 0.73 (0.02) 0.77 (0.03) 0.80 (0.03)

Test data 0.70 (0.03) 0.75 (0.02) 0.76 (0.03)
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identify the genes with effects modulated by methylation, and

thus the results are more biologically interpretable.
Of the 22 genes identified by effects modulated by methyla-

tion, 14 are negatively associated with survival, whereas eight

genes are positively associated with survival. Functional analysis

with the database for annotation, visualization and integrated

discovery (DAVID, Dennis et al., 2003) revealed that some of

the genes that are negatively associated with survival are regula-

tors of transcription (SMURF2, HOXA1, RBBP4 and

POLR3C) and code for plasma membrane (CAP2, GPR116,

SMURF2). Detailed results and additional discussions can be

found in Supplementary Table S5.1. This gene set related with

negative survival is enriched for Gene Ontology terms, cell mor-

phogenesis and neuron differentiation, suggesting a probable

role in the genesis of brain tumors. On the other hand, the effects

of genes associated with positive survival are mostly intra-cellular

and are related to immune systems processes (C1QA, CBFB,

DPP4 and SARM1), suggesting a likely function in tumor sup-

pression (see Supplementary Table S5.2). Although no GBM

studies have so far identified these 22 genes as important bio-

markers of survival, two of the genes in this list are associated

with other types of glioma—MVP was found to be overexpressed

in ganglio-gliomas (Aronica et al., 2003). Moreover, most of the

genes in this list have important biological functions in other

types of cancer. For example, HOXA1 stimulates oncogenesis

through the MAPK signaling pathway and the transcription

factors STAT3 and STAT5B in mammary epithelial cells

(Mohankumar et al., 2008). Also, CpG islands of HOXA1 are

significantly hypermethylated in lung cancer (Selamat et al.,

2011), breast cancer (Park et al., 2011) and gastric carcinoma

(Kang et al., 2008).

6 DISCUSSION

In this article, we introduce an innovative model, iBAG, to in-

tegrate two different platforms of omics data and estimate their

associations with clinical outcome. Different from most existing

integration approaches, which focus on either finding biological

relationships among different platforms or predicting patient

prognosis, our iBAG model involves a hierarchical structure,

which simultaneously estimates biological mechanisms and uses

this information to find significant prognostic genes. Our simu-

lation study shows that the iBAG model can simultaneously in-

crease the power and decrease the FDR in detecting clinically

relevant genes, especially for genes with expression effects modu-

lated only by methylation. Moreover, we can categorize all clin-

ically relevant genes into three groups according to different

biological mechanisms: genes with expression effects modulated

only by methylation, genes with expression effects modulated

only by other mechanisms and genes with expression effects

modulated by both methylation and other mechanisms. We

apply the iBAG model to integrate methylation data and gene

expression data from TCGA’s GBM dataset. The results show

that the iBAG model outperforms the model based on data from

a single layer of biological information in both determining genes

important to survival and model fitting.
The main goal of the iBAG model is to (i) identify more

disease-associated genes, and (ii) achieve better predictive

power, by treating gene expression as the downstream event

that is regulated by different mechanisms (e.g. methylation,

copy number and microRNA). We choose to treat the gene ex-

pression as a downstream event regulated by different mechan-

isms so that the iBAG model can help us identify more

disease-associated genes. There are several reasons underlying

this choice. First, acknowledging that a gene’s expression can

be modulated by different mechanisms (e.g. methylation, copy

number and microRNA), even if these mechanisms do not have

a direct effect on survival, we can still identify genes whose

modulated expressions potentially impact survival. Second, as

the measure of gene expression from microarray technology is

usually noisy, iBAG can effectively identify, which part of the

gene expression is actually modulated by various factors from

other platforms, thus denoising the expression to find prognostic

genes. In addition, as shown by our analysis of the GBM data, if

we simply use methylation information additively to gene expres-

sion to estimate the methylation effects on patient survival, we

find that many methylation effects related to survival do not

significantly change the gene expression levels. The iBAG

model can help us eliminate these genes and obtain results that

are more biologically interpretable.
As our main goal is to identify important genes associated with

patient survival, we assume that the methylation effect on gene

Table 2. Genes with significant gene expression effects obtained by iBAGunified model at FDR¼ 0.05 sorted according to their GeneIDs

Type M

genes

SPON2, CAP2*, POLR3C, CNGA3*, DPP4, GPR116, FKBP1A, SARM1*, RNF115*, HOXA1*, PCP4*, CYB5R2, RBBP4, SMURF2,

TK1, C1QA*, UFD1L*,C2orf44*, SF3B5*,CASP4, CBFB*, MVP* LPCAT3, TRIB1, PEMT, TAB1, DCTN2, FARS2, RPP40,

PNPLA6, OS9, SLC27A5, TMEM115, POLI, NXPH3, ADCY8, C16orf42*, CLTC, STX2, SEP10, E2F4, CNGA3*, AIM1, CSTA*,

FCER1G*, FHIT*, ZBTB1, FRAT2, NPTXR, PISD, CCDC19, FAM50B*, ZNF544*, DKK3*, SREBF1, GRIK5, GSTM3, MNX1*,

HSPA1A*, IGBP1, IL10RB, INPPL1, IPW, ITPR2, KARS, LRP3, MAP3K10, NCF2*, ATIC*, ACO1

Type �M

genes

PABPC3, MRTO4, VPS28, PDE8A*, ENPP2, WBP11, PFDN2*, PHKG1, POLR2H, RC3H2, NDE1, FBXO34, ARHGEF10L,

C12orf35, PPP2R2A, ADI1, GIMAP5*, AMBRA1, BIN3, UBFD1, BEX4, EPB41L5, RGS3*, ELOVL5, RPE*, RPS4X, CFB*,

PLEK*, PORCN, SP3*, SP100*, GNS, STAT6*, SURF2, TACC1, HOXC4, TLE1, TOP1, UBE2V2, VDAC3, SLC39A7, KIAA1012,

ADIPOR2, SLC24A6, ZNF430, NPRL3, SH3BGRL3*, ZNF528, MT4*, CSDA, RUVBL1, HERC2, DIRAS3*, EIF1AY, VAPB,

RPL23, SNCAIP, KIAA0141, HS3ST2

Type M effects: effects modulated by methylation; type �M effects: effects modulated by other mechanisms; asterisk: genes significantly modulated by methylation; genes in

bold font: Genes positively associated with patient survival; Genes in regular font: Genes negatively associated with patient survival.
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expression and the gene expression effect on patient survival are

all linear and independent. By making this assumption, the con-

ditional posterior distributions are in closed forms, which save us

on computation cost. However, this assumption may not reflect

the true biological process; therefore, if the main interest is to

make predictions about clinical outcome, then more general

forms of functions (e.g. non-parametric functions) may need to

be considered. In our study, we focus on finding purely associ-

ational relationships between genes and patients’ survival times.

Independent functional experiments and datasets are needed to

validate any causal relationships or implications. In addition,

although our implementation is Bayesian, the fundamental idea

of the integrative hierarchical modeling can be applied using

frequentist approaches as well. Although we illustrate the inte-

gration of only two platforms at a time, integrating three or more

platforms can also be done by following a similar framework.

This will require a deeper understanding of the fundamental bio-

logical relationships among different data platforms. We leave

these tasks for future consideration. The iBAG model provides a

useful and intuitive framework for integrating multiple platforms

to improve diagnosis and prognosis in cancer. A freely available

R software for the iBAG model is available under the ‘software’

link at: http://odin.mdacc.tmc.edu/ �vbaladan/.
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