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Retinal degeneration 3 (RD3) is an evolutionarily conserved 23 kDa protein expressed in rod
and cone photoreceptor cells. Mutations in the gene encoding RD3 resulting in unstable
non-functional C-terminal truncated proteins are responsible for early onset photoreceptor
degeneration in Leber Congenital Amaurosis 12 patients, the rd3 mice, and the rcd2
collies. Recent studies have shown that RD3 interacts with guanylate cyclases GC1 and
GC2 in retinal cell extracts and HEK293 cells co-expressing GC and RD3. This interaction
inhibits GC catalytic activity and promotes the exit of GC1 and GC2 from the endoplasmic
reticulum and their trafficking to photoreceptor outer segments. Adeno-associated viral
vector delivery of the normal RD3 gene to photoreceptors of the rd3 mouse restores GC1
and GC2 expression and outer segment localization and leads to the long-term recovery
of visual function and photoreceptor cell survival. This review focuses on the genetic and
biochemical studies that have provided insight into the role of RD3 in photoreceptor function
and survival.
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INTRODUCTION
Guanylate cyclase (GC) plays a key role in phototransduction by
catalyzing the synthesis of cGMP. In the dark the basal catalytic
activity of GC in photoreceptor outer segments (OS) is balanced by
the basal activity of phosphodiesterase (PDE) to maintain cGMP
at a level sufficient for maintaining a significant fraction of cGMP-
gated channels in their open state. This allows the influx of Ca2+
and Na+ into the OS with the intracellular Ca2+ level reaching
250–500 nM (Gray-Keller and Detwiler, 1994; Woodruff et al.,
2002). At this concentration, guanylate cyclase activating pro-
teins (GCAPs) with bound Ca2+ maintain GC at its basal level
(Gorczyca et al., 1994; Dizhoor et al., 1995; Polans et al., 1996).
Following photoexcitation the Ca2+ level decreases to less than
25 nM through the combined closure of the cGMP-gated chan-
nels and continued efflux of Ca2+ by the Na/Ca-K exchanger
(Woodruff et al., 2002). The reduced Ca2+ concentration triggers
the exchange of Ca2+ for Mg2+ on GCAPs resulting in the activa-
tion GC (Peshenko and Dizhoor, 2006; Dizhoor et al., 2010). The
increase in cGMP reopens the cGMP-gated channels and restores
Ca2+ and cGMP to their dark state levels.

Vertebrate photoreceptors contain two membrane-bound GCs,
generally called GC1 and GC2, that share a high degree of sequence
identity (∼49%) and structural organization (Shyjan et al., 1992;
Lowe et al., 1995; Baehr et al., 2007; Karan et al., 2011). They
consist of an N-terminal signal sequence followed by an extra-
cellular domain, a transmembrane segment, a kinase homology
domain, a dimerization domain, a cyclase catalytic domain, and a
carboxyl-terminal extension. GC1 and GC2 exist as homodimers
which localize to disk membranes of photoreceptor OS (Yang and

Garbers, 1997; Ramamurthy et al., 2001). GC1 is present at rel-
atively high concentrations in rod and cone OS, whereas GC2
is restricted to rod OS in mice and humans (Baehr et al., 2007;
Azadi et al., 2010). The relative amounts of GC1 and GC2 vary
with species with a GC1 to GC2 ratio of 4:1 in mouse (Pesh-
enko et al., 2011b) and 30:1 in bovine photoreceptors (Helten et al.,
2007; Kwok et al., 2008). The importance of GC1 and GC2 in the
visual response and photoreceptor survival has been determined
in knockout mice. In GC1 knockout mice, the cone photoresponse
is absent and these cells undergo rapid degeneration (Baehr et al.,
2007; Karan et al., 2010). Rod photoreceptors remain viable and
functional due to the presence of GC2. In the GC1/GC2 double
knockout mice, the rod and cone photoresponse is undetectable
and both cell types undergo degeneration. The importance of
GC1 in rod and cone function and survival is further highlighted
by the finding that mutations in the GUCY2D gene encoding
human GC1 cause Leber Congenital Amaurosis (LCA) Type 1
(LCA1), a severe early onset retinal dystrophy, and cone-rod
dystrophy (Perrault et al., 1996; Kelsell et al., 1998; Karan et al.,
2010).

Photoreceptor cells are highly polarized neurons with the OS
segregated from the rest of the cell by a thin cilium. OS proteins
must be efficiently transported from the endoplasmic reticu-
lum (ER) in the inner segment through the cilium since OS
turnover every 10 days through the phagocytosis of aged OS
membranes by retinal pigment epithelial cells and the addition
of new membrane at the base of the OS (Sung and Chuang,
2010). The molecular machinery which orchestrates the trans-
port of proteins to the OS is highly complex involving vesicle
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budding, fusion, and motorized transport along microtubules
and other cytoskeletal elements in the inner segment and cilium.
Molecular-based studies indicate that the C-terminal targeting seg-
ment of several OS membrane proteins including rhodopsin and
perpherin-2 play an essential role in vesicle trafficking through
protein–protein interactions (Tam et al., 2000, 2004; Deretic et al.,
2005; Chuang et al., 2007; Mazelova et al., 2009). The vesicle
transport pathways, however, appear to be distinct for various
OS membrane proteins (Fariss et al., 1997). Efforts to define a
sequence required to transport GC to outer segments have been
inconclusive (Karan et al., 2011). Recently, retinal degeneration
3 (RD3), a photoreceptor protein encoded by the gene associ-
ated with retinal degeneration in the rd3 mouse, rcd2 collie, and
LCA12 patients has been shown to play a crucial role in the traf-
ficking of GC1 and GC2 in photoreceptors (Azadi et al., 2010).
In this review, we focus on the molecular properties of RD3 and
its role in GC trafficking, catalytic activity, and photoreceptor
degeneration.

GENETIC AND PROTEIN ANALYSIS OF THE RD3
The gene responsible for retinal degeneration in the rd3 mouse
was first identified as an uncharacterized transcript in an in silico
search of retina-specific transcripts and called C1orf36 for Chro-
mosome 1 open reading frame 36 (Lavorgna et al., 2003). The
gene now known as RD3 consists of 3 exons spanning the 5′ and
3′ untranslated region with the open reading frame comprised of
part of exon 2 (amino acids 1–99) and exon 3 (100–195). RT-PCR
and in situ hybridization confirmed the presence of RD3 in the
retina with high expression in the photoreceptors.

The RD3 protein encoded by the RD3 gene is highly con-
served across vertebrates with the human protein consisting of
195 amino acids and sharing 95% sequence identity with other
primates, 86% with mouse and rat, 83% with bovine, 67% with
chicken, and 50–60% with lower vertebrates including Danio
rerio (Zebrafish) and Xenopus tropicalis (Western clawed frog).
Computer algorithms indicate that RD3 lacks any known homol-
ogy domains or transmembrane segments. RD3 is predicted to
have a high α-helix content (∼43%), no β-sheets and consid-
erable disordered regions (Figure 1). There are four conserved
stretches of predicted α-helices (H1–H4) with the first helix con-
sisting of 34 amino acids and the last helix having 39 amino acids.
Additional conserved features include a putative coil–coil region
between amino acids 22–54 and several predicted phosphorylation
sites.

RD3 has been isolated from retinal homogenates and HEK293
cells and bacteria expressing the recombinant protein (Azadi
et al., 2010; Peshenko et al., 2011a). On SDS gels RD3 migrates
as a 23 kDa protein consistent with its amino acid sequence.
Dynamic light scattering and gel filtration chromatography, how-
ever, indicate that purified RD3 in solution exists as a polydispersed
oligomeric protein.

TRUNCATION MUTATIONS IN RD3 CAUSE PHOTORECEPTOR
DEGENERATION
The rd3 mouse was one of the first naturally occurring murine
strains found to display early onset rod and cone degeneration
(Chang et al., 1993). The rate of degeneration varies with the

background strain (Linberg et al., 2005; Friedman et al., 2006;
Danciger et al., 2008; Molday et al., 2013). The albino RBF/DnJ
strain shows the fastest rate of degeneration with only a mono-
layer of photoreceptor nuclei present 8 weeks after birth. The
pigmented In(5) 30RK/J strain displays the slowest rate with some
photoreceptors still present after 30 weeks. The Rb(11.13)4Bnr/J
strain is intermediate in its rate of degeneration. Rod-derived sco-
topic electroretinograms (ERG) are measurable in all strains at an
early age prior to significant photoreceptor degeneration (∼24–
35 days postnatal), but a cone response has only been reported
in the In(5) 30RK/J strain (Friedman et al., 2006; Molday et al.,
2013). The mutation which causes photoreceptor degeneration in
all strains was first reported by Friedman et al. (2006). They iden-
tified a homozygous C→T substitution (c.319C→T) in the Rd3
gene which causes a premature stop codon resulting in a protein
lacking the last 99 amino acids.

An extensive human RD3 mutational screen was carried out on
individuals with autosomal dominant and recessive retinal degen-
erative diseases. A homozygous G → A transition in the donor
splice site at the end of exon 2 was found in two siblings from a
family with LCA (Friedman et al., 2006). This mutation causes a
premature stop codon following codon 99 of the RD3 gene. The
RD3 gene was the twelfth gene associated with LCA and accord-
ingly this subclass is called LCA12. Subsequent genetic screens
revealed homozygous mutations in RD3 with severely truncated
proteins in other LCA families (Preising et al., 2012; Perrault et al.,
2013). World-wide genetic screens indicate that mutations in
the RD3 gene causing LCA are rare. In addition to truncation
mutations, missense mutations in RD3 have been observed in indi-
viduals with other retinopathies (Friedman et al., 2006). However,
additional studies are needed to determine if these mutations are
directly responsible for the disease.

A mutation in the canine Rd3 gene causes rod-cone dysplasia 2
(rcd2) in a strain of collies (Kukekova et al., 2009). An insertion in
the gene leads to an alteration in the last 61 codons and a further
extension of the open reading frame.

Biochemical studies indicate that the truncated RD3 proteins
associated with photoreceptor degeneration in the rd3 mouse and
LCA12 patients are highly unstable and non-functional (Friedman
et al., 2006; Peshenko et al., 2011a). These studies support a crucial
role of the C-terminal segment in the stability and function of
RD3.

INTERACTION OF RD3 WITH GC1 AND GC2
RD3 was first detected in a mass-spectrometry-based proteomic
analysis of bovine photoreceptor OS (Kwok et al., 2008). Mon-
oclonal and polyclonal antibodies against RD3 confirmed the
presence of the 23 kDa RD3 protein in mouse retinal extracts by
western blotting (Azadi et al., 2010). These antibodies, however,
proved to be problematic for immunolocalizing RD3 in pho-
toreceptors as they failed to consistently label retinal cryosections
above background levels due to either the inaccessibility of the epi-
topes or the low level of RD3 expression. One polyclonal antibody
showed some immunoreactivity in outer and inner segment layers
above control retinas, but in subsequent studies this observation
could not be reproduced (Azadi et al., 2010). Additional studies
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FIGURE 1 | Sequence alignment of RD3 proteins from various

vertebrates. Sequences of human, mouse, chick, and Xenopus tropocalis
RD3 were aligned using Clustal W multiple alignment program. Sequence
identities relative to human RD3 are shown in yellow and * and similarities

are indicated by (:). Helical predictions were based on the PSIPRED protein
structure prediction program and coil–coil domain (enclosed in a rectangle)
was predicted using Coils program found in the web-based ExPASy
Bioinformatics Resource portal.

are needed to definitively determine the subcellular localization of
RD3 in photoreceptor cells.

The first insight into the possible role of RD3 in photoreceptors
was obtained from co-immunoprecipitation experiments. A mon-
oclonal antibody to murine RD3 coupled to Sepharose immuno-
precipitated GC1 and GC2 together with RD3 from mouse retinal
extracts (Azadi et al., 2010). The interaction of RD3 and GC1 was
confirmed in co-expression and co-immunoprecipitation studies.
When RD3 and GC1 were co-expressed in HEK293 cells, an anti-
RD3 antibody co-precipitated GC1 with RD3 and in a reverse
experiment an anti-GC1 antibody co-immunoprecipitated RD3
with GC1 confirming the direct interaction between these pro-
teins (Azadi et al., 2010). Analysis of GC1 deletion mutants further
indicated that the C-terminus of GC1 is required for binding of
RD3.

RD3 IS IMPORTANT FOR THE EXPRESSION AND
LOCALIZATION OF GUANYLATE CYCLASES
To determine the significance of the RD3-GC interaction, the
expression and localization of GC1 and GC2 in the rd3 mouse
was compared with age-matched wild-type (WT) mice by west-
ern blotting and confocal microscopy (Azadi et al., 2010). GC1
and GC2 from WT mouse retina migrated as 120 and 125 kDa
proteins on SDS gels, but were absent or present in reduced
amounts in extracts from rd3 mice depending on the strain
used for the analysis (Azadi et al., 2010; Molday et al., 2013).
At a subcellular level, GC1 and GC2 was localized to the pho-
toreceptor OS of WT mice with GC1 present in rod and cones
and GC2 restricted to rod cells as reported previously (Karan

et al., 2010). In contrast, GC1 and GC2 immunolabeling was
absent in 21-day old Rb(11.13)4Bnr/J rd3 mice and mislocalized
to the inner segment of the In(5)30RK/J strain (Azadi et al.,
2010; Cheng and Molday, 2013; Molday et al., 2013). GCAP1
and GCAP2 were detected at a reduced level in rd3 mice
and primarily confined to the inner segments as observed in
GC1/GC2 knockout mice (Azadi et al., 2010; Karan et al., 2010).
Other photoreceptor OS proteins including the cyclic GMP-gated
channel, PDE6, peripherin-2, rhodopsin, and cone arrestin tar-
geted normally to the OS of the rd3 mice. Gene expression
observed by microarray analysis indicated that the expression
levels of genes encoding RD3, GC1 and GC2 in 21 day old
(Rb(11.13)4Bnr rd3 mice were similar to age-matched WT mice.
Up-regulation of endothelin 2 (EDn2), glial fibrillary acid pro-
tein (Gfap), and complement component factor 1 (Cf1) and
down-regulation of phosducin (Pdc), gap junction protein α5
(Gja5) and retinal G protein – coupled receptor (Rgr) genes,
however, were observed for the rd3 retina (Cheng and Molday,
2013).

The expression and distribution of GC1 was also examined
in the In(5)30RK/J strain of rd3 mice by immunofluorescence
microscopy (Molday et al., 2013). GC1 was detected at reduced
levels in this strain and confined primarily to the inner segments
where it co-localized with the anti-KDEL ER marker. A small
amount of GC1 was detected in the OS layer which may account for
the attenuated scotopic and photopic ERGs observed in this strain.
Similar mislocalization of GC in the rcd2 collie has been observed.
When the normal murine Rd3 gene was delivered to photorecep-
tor cells of either strain of rd3 mice using adeno-associated virus
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(AAV), GC1 and GC2 expressed at levels comparable to that of
WT mice and localized normally to the photoreceptor OS layer
(Molday et al., 2013). Collectively, these studies indicate that RD3
is required for efficient expression and localization of GCs to the
photoreceptor OS.

The effect of RD3 expression on the localization of GC was
also examined in transfected culture cells (Azadi et al., 2010). GC1
primarily localized to the ER of transfected cells in the absence of
RD3, whereas RD3 co-localized with Rab11 in endosomes. Co-
expression of GC1 and RD3 resulted in the exit of GC1 from
the ER and colocalization with RD3 in Rab11 containing vesi-
cles. These studies are consistent with the observed effect of
RD3 in promoting the exit of GC from the ER in photoreceptor
cells.

RD3 INHIBITS GUANYLATE CYCLASE ACTIVITY
In addition to altering the expression level and trafficking of GC,
RD3 inhibits its catalytic activity (Peshenko et al., 2011a). In the
absence of GCAPs, RD3 expressed in either bacteria or HEK293
cells inhibited the basal and GCAP-activated GC catalytic activ-
ity at submicromolar concentrations, but did not alter the Ca2+
sensitivity of GCAPs. It remains to be determined if RD3 plays a
significant role in modulating the activity of GCs during photo-
transduction. It is possible that RD3 only plays an important role in
inhibiting cyclase activity during the trafficking of GCs within the
inner segments. At present the quantity of RD3 in photoreceptors
remains to be determined, but in in vitro measurements, RD3 at
nanomolar concentrations competitively inhibited the activation
of GC by GCAP (Peshenko et al., 2011a).

The effect of the RD3 mutation (F100ter) associated with
LCA12 and other possible disease-linked missense mutations on
the interaction of RD3 with GC was studied (Peshenko et al.,
2011a). The F100ter and the G57V mutants were undetectable
when expressed in HEK293 cells, but were expressed at signifi-
cant levels in E. Coli. Other missense mutants (K130M, G35R,
R68W, W6R/E23D) expressed at levels comparable to WT RD3
and bound GC1. The F100ter mutant had no effect of the
cyclase activity, whereas the missense mutations inhibited GC
activity to varying degrees. The W6R/E23D and G35R muta-
tions inhibited the cyclase activity at a similar concentration as
WT RD3, whereas the R68W, K130M and G57V were less effec-
tive. It remains to be determined if these missense mutations in
RD3 alter the ability of RD3 to function in GC trafficking in
photoreceptors.

MODELS FOR THE ROLE OF RD3 IN PHOTORECEPTORS
Studies carried out to date suggest that RD3 serves two roles in
photoreceptor cells. A primary function of RD3 is to facilitate
the exit of GC from the ER and its trafficking to the pho-
toreceptor cilium (Figure 2). RD3 may also be involved in the
trafficking of GC within the cilium although this remains to be
determined.

A second function of RD3 is to inhibit GC catalytic activity
(Peshenko et al., 2011a). The inhibition of GC activity by RD3
may be crucial for insuring that cGMP is not produced in the
inner segment of photoreceptors cells during the trafficking of
GC to the outer segment. In the absence of RD3 inhibition, GC

FIGURE 2 | Simplified diagram showing the role of RD3 in GC

trafficking. GC synthesized in the endoplasmic reticulum (ER) of
photoreceptor inner segments binds to RD3 on the cytoplasmic side of the
ER membrane. This interaction may induce membrane curvature required
for the budding of GC-RD3 from the ER in the form of small vesicles. RD3
also inhibits the cyclase activity of GC. The RD3-GC complex together with
other adaptor proteins is translocated through the Golgi to the base of the
connecting cilium where GC perhaps in the absence of RD3 is transported
through the cilium to the base of the outer segments where it is
incorporated into disk membranes. At some point RD3 dissociates from GC
possibly through phosphorylation or other post-translational modifications
or protein–protein interaction. RD3 associated with endosomes is returned
to the ER to initiate another cycle of RD3-mediated GC transport.

could either use up the supply of GTP required for the function of
other proteins including small G-proteins such as Rabs required
for protein vesicle trafficking or overproduction of cGMP in the
inner segment could be toxic to photoreceptors. In this regard it is
interesting to note that an early study reported that retinal extracts
from the rcd2 collie showed a 10 times higher level of cGMP than
control retinas during a 2–8 week period with only 25% reduction
in PDE activity (Woodford et al., 1982).

ROLE OF RD3 IN PHOTORECEPTOR CELL SURVIVAL
The mechanism by which loss in RD3 causes photoreceptor degen-
eration remains to be determined. Here we discuss two possible
mechanisms. The first mechanism is centered on the role of GC
and cGMP in maintaining calcium homeostasis in photorecep-
tors. It is generally known that too high or too low Ca2+ levels
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can be toxic to cells (Fain, 2006). Calcium homeostasis in OS
is maintained by the influx of Ca2+ through the cGMP-gated
channels and the efflux through the Na/Ca-K exchanger. In the
absence of GC in the OS, cGMP will not be produced resulting
in permanent closure of cGMP-gated channels and a reduction in
intracellular Ca2+ below a threshold required for photoreceptor
survival. In this case the mechanism of photoreceptor degenera-
tion in the rd3 mouse and LCA12 patients would be similar to
photoreceptor degeneration in the GC1/GC2 knockout mouse
and LCA1 patients. Direct comparison of the rate of photore-
ceptor degeneration in the rd3 mouse and GC1/GC2 knockout
mouse is complicated by the large variation in the rate of degen-
eration observed for different strains of rd3 mice, although in
general degeneration in the rd3 mouse appears to be more rapid.
Comparison of LCA12 with LCA1 patients is complicated by
the presence of functional GC2 in rod photoreceptors of LCA1
patients. However, limited clinical assessment of these patients
suggests that LCA12 is more severe (Preising et al., 2012; Perrault
et al., 2013).

A second mechanism involves the role of RD3 in the inhi-
bition of GC activity (Peshenko et al., 2011a). In the absence
of RD3, GC in photoreceptor inner segments is likely to be
active in catalyzing the production of cGMP (Woodford et al.,
1982). Elevated cGMP levels can be toxic through the unregu-
lated activation of cGMP-dependent enzymes. High cGMP levels
have been implicated in photoreceptor cell death in the rd1
and rd10 mice linked to mutations in the β-subunit of PDE
(Bowes et al., 1990; Chang et al., 2007), mice deficient in the
A3 subunit of the cone cGMP-gated channel (Xu et al., 2013),
and transgenic mice harboring an Y99C mutation in GCAP1
(Olshevskaya et al., 2004). Both the loss in RD3 chaperone activ-
ity and inhibition of GC activity may contribute to photoreceptor
degeneration.
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