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Abstract

The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in
yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant
phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented
mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the
mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have
smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although
mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress
the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent
with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes
damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that
free radicals contribute to the pathology of C. elegans eat-3 mutants.
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Introduction

Dominant optic atrophy (DOA) is one of the leading causes of

inherited blindness. DOA is a progressive eye disease caused by

degeneration of the retinal ganglion cell layer with ascending

atrophy of the optic nerve [1]. The most prevalent form of DOA is

caused by heterozygous mutations in the nuclear encoded, but

mitochondrially targeted, Opa1 protein [2,3]. Opa1 is a member

of the dynamin family of proteins. This family consists of several

large GTP binding proteins with diverse cellular functions. The

archetypal dynamin is required for endocytosis [4, 5], but two

other dynamin-related proteins, Drp1 and Mitofusins in mam-

mals, act along with Opa1 to control mitochondrial fission and

fusion. Mitochondrial fission and fusion are dynamic processes

required for the replenishment of mitochondria, for example in

long neuronal projections and during cell growth and division.

Mitochondrial fission facilitates the redistribution of mitochondria

in response to local changes in the demand for ATP, while

mitochondrial fusion is needed to exchange mtDNA and other

components that may become damaged over time [6,7]. The rates

of fission and fusion vary depending on cell type and environ-

mental cues, but these rates are usually balanced. This balance is

controlled by the opposing actions of the different dynamin family

members on or in mitochondria.

The three dynamin-related proteins that affect mitochondria

have different topologies and play different roles in fission and

fusion. Mammalian Drp1 and the homologous proteins in C.

elegans and yeast are cytosolic proteins that are required for

mitochondrial division [8–10]. These proteins wrap around

constricted parts of mitochondria where they control a late stage

of mitochondrial outer membrane division [8,11]. Mutations in

Drp1 homologues give rise to a highly interconnected mesh of

mitochondria [8–10]. Fusion between mitochondrial outer

membranes is mediated by a different set of dynamin family

members [12]. These proteins are called Mitofusins in mammals

and Fzo1 in yeast and Drosophila. They have two transmembrane

segments that anchor the proteins in the mitochondrial outer

membrane. There are two Mitofusins in mammals (Mfn1 and
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Mfn2), which are often coexpressed but are not redundant [13].

Mutations in Mfn2 cause peripheral neuropathy in Charcot Marie

Tooth (CMT) disease [14]. Mutations in Fzo1 and Mitofusins give

rise to fragmented mitochondria [12,15,16], but this fragmenta-

tion can be suppressed by mutations in Drp1 homologues in yeast

and mammalian cells.

Evidence for the role of Opa1 in fusion between mitochondrial

inner membranes initially came from studies of the yeast homologue

of Opa1, which is called Mgm1. The mitochondria of yeast Mgm1

mutants are fragmented, they form aggregates and they lose their

mtDNA [17–19]. Conditional mutations show that the loss of

mtDNA is preceded by the changes in mitochondrial morphology,

indicating that loss of mtDNA is a secondary defect [18]. The

mitochondrial fragments in Mgm1 mutants are converted into a

closed network of mitochondria by additional mutations in

mitochondrial fission proteins, suggesting that Mgm1 is a mitochon-

drial fusion protein [20–23]. This role was substantiated by

experiments in which two yeast cells with differently labeled

mitochondria are allowed to fuse. The mitochondria of Mgm1

mutant cells do not mix the two labels showing that they are unable

to fuse [24]. A direct role in mitochondrial fusion was then shown

with in vitro reconstitution experiments using mitochondria isolated

from yeast Mgm1 mutants [25].

Biochemical analysis shows that yeast Mgm1 and mammalian

Opa1 are localized to the mitochondrial intermembrane space

[19,24,26,27]. The mitochondrial leader sequences of Mgm1 and

Opa1 are cleaved upon import into mitochondria. In yeast,

roughly half of the protein is further processed by a rhomboid

protease [28–32]. A homologue of this protease, called PARL,

exists in mammals, but cleavage in higher eukaryotes may require

other proteases [33]. Immuno-electron microscopy of mammalian

cells shows the bulk of Opa1 protein distributed throughout cristae

with only a small portion localized to the boundary space between

mitochondrial inner and outer membranes [27].

The importance of Opa1 for housekeeping functions, such as

mitochondrial fusion and redistribution of mtDNA, is apparent

from these cell biological studies. It has, nevertheless, been difficult

to establish the exact sequence of events leading to retinal ganglion

cell death in DOA, even with the mouse models that have recently

become available [34,35]. The effects on retinal ganglion cells are

restricted both in time and place and they occur with the mild loss

of Opa1 function that results from haploinsufficiency of the Opa1

gene [36]. In contrast, cultured mammalian cells transfected with

Opa1 siRNA typically show the stronger effects that are associated

with complete loss of Opa1 function. Late time points after

transfection with Opa1 siRNA show mitochondria that are reduced

to small dispersed fragments [27,37,38], while early time points show

that this fragmentation is preceded by internal rearrangements of the

mitochondrial inner membrane [27]. At these times the mitochon-

dria swell and stretch forming localized constrictions, similar to the

changes in mitochondrial morphology that are observed during early

stages of apoptosis [39]. Transfection with Opa1 siRNA also

increases susceptibility to apoptosis by promoting cytochrome c

release [40]. Increased susceptibility to apoptosis, exacerbated by

photo-damage, was therefore proposed as a possible cause of retinal

ganglion cell death in patients with DOA [41]. However,

alternatives, such as the effects of reduced levels of ATP, are also

considered as possible causes of DOA [42].

Here we show that the previously described C. elegans eat-

3(ad426) strain [43] has a mutation in the D2013.5 gene, which

encodes the ortholog of yeast Mgm1 and mammalian Opa1. The

ad426 mutation leads to fragmented mitochondria similar to those

cause by mutations in Opa1 and Mgm1. Electron microscopy

shows that eat-3(ad426) mitochondria have disorganized inner

membranes and a large number of inner membrane septae. We

also find that eat-3(ad426) growth defects are attributable to

impaired oxidative phosphorylation and increased damage from

free radicals within mitochondria.

Results

C. elegans EAT-3 Is an Orthologue of Yeast Mgm1 and
Mammalian Opa1

BLAST homology searches show that C. elegans has a single

homologue of yeast Mgm1 and mammalian Opa1. This protein is

encoded by the D2013.5 gene. It has a predicted molecular weight

of 106.8 kDa and 46% amino acid identity to human Opa1.

Similar to yeast Mgm1 and mammalian Opa1, this C. elegans

protein has a putative mitochondrial targeting sequence followed

by domains that are typical of dynamin family members: a

conserved GTPase domain, a middle domain and a GED or

assembly domain [44] (Figure 1A). Pilot experiments with

D2013.5 RNAi yielded worms that grew slowly, remained small

and had small numbers of progeny. These phenotypes led us to

investigate the eat-3 mutant, which was previously identified in a

screen for mutations that cause abnormal or defective eating in C.

elegans [43]. The D2013.5 gene is very close to the eat-3 locus

(within 0.2 map units) and the overall appearance of D2013.5

RNAi animals is similar to that of eat-3 animals.

Upon sequencing the D2013.5 gene from eat-3(ad426) animals,

we found a single point mutation, changing a valine at position

328 to an isoleucine (Figure 1B). Although this is a surprisingly

conservative change, there are other examples where such a

change has a dramatic effect on protein function [45]. The

affected residue is just downstream of the G2 threonine in the

effector binding loop of the dynamin-like GTPase, where it may

disrupt the GTPase cycle. A C. elegans dynamin mutant, dyn-

1(ky51), has a mutation that is also very close to the G2 threonine

[46]. Surprisingly, this dynamin mutation can be suppressed by a

second mutation at the same position as that mutated in eat-

3(ad426), which further demonstrates the importance of this

particular residue (Figure 1B).

Author Summary

Dominant Optic Atrophy is a progressive eye disease
caused by degeneration of retinal ganglion cells. The most
prevalent form of DOA is caused by mutations in the Opa1
protein. This protein is required for fusion between
mitochondria, it has an anti-apoptotic function, and it is
required for mitochondrial DNA segregation. It has,
nevertheless, been difficult to understand why mutations
in Opa1 specifically affect retinal ganglion cells. We used
rhe nematode C. elegans as a model to study the
underlying causes of Opa1 pathologies. C. elegans Opa1
is encoded by the eat-3 gene. Mutants are sluggish, grow
slowly, remain small, and have small broodsizes. These
phenotypes are not suppressed by mutations in cell death
genes, suggesting that apoptosis does not contribute to
eat-3 pathogenesis. Instead, eat-3 mutants are hypersen-
sitive to paraquat, which promotes damage by free
radicals, and they are sensitive to loss of the mitochondrial
superoxide dismutase sod-2, which is needed to eliminate
free radicals from the mitochondrial matrix. Moreover, eat-
3 mutants overexpress SOD-2, most likely compensating
for increased free radical production. These results show
that C. elegans EAT-3 is important for resistance to free
radicals and they raise the possibility that free radicals
contribute to DOA in humans.

Growth and Survival of C. elegans Opa1 Mutants
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To verify that eat-3(ad426) is indeed a D2013.5 mutant, we

injected this strain with a wildtype D2013.5 cDNA under control

of the D2013.5 gene promoter. The number of progeny reaching

the L4 larval stage increased from 10 per uninjected eat-3 animal

(SD = 8, n = 28) to 30 per transgenic animal (SD = 22, n = 26),

showing that a wildtype D2013.5 construct partially rescues the

eat-3 mutant. Partial rescue is common for C. elegans genes with a

maternal effect, since transgenes are often poorly expressed in the

germline. We obtained further evidence that D2013.5 encodes the

eat-3 locus with a second allele, named tm1107. The tm1107 allele

is most likely a null, since it has a 419 bp deletion that causes a

frameshift at position 329 and thus eliminates two thirds of the

D2013.5 protein. The absence of EAT-3 protein in tm1107

animals, but not in ad426 animals, was confirmed by Western blot

analysis using an antibody raised against the C. elegans EAT-3

protein (Figure S1). Homozygous eat-3(tm1107) animals survive but

they have fragmented mitochondria, a decrease in broodsize,

sluggishness and slow growth phenotypes, similar to the pheno-

types of eat-3(ad426) animals. More importantly, tm1107 fails to

complement eat-3(ad426), indicating that ad426 and tm1107 are

both alleles of eat-3 and that the phenotypes are due to mutations

in the D2013.5 gene (data not shown). The C. elegans D2013.5

locus is henceforth called eat-3.

Additional alleles of eat-3 were isolated in an F2 screen for

suppressors of eat-3(ad426) mutant phenotypes. The progeny of

36,000 F1 animals were screened for restored growth rate, size and

fecundity. This screen yielded seven new mutants with restored

growth rates. Five of these mutants have second site mutations in

the eat-3 gene (cq6-cq10), while two mutants have mutations that

lead to premature stops in the drp-1 gene (cq5 and cq11). The new

mutations in the eat-3 locus all cause substitutions in the GTPase

domain (Figure 1B). A similar screen with the dyn-1(ky51) also

yielded a series of substitutions in the GTPase domain (Figure 1B).

When the new mutations are mapped onto the crystal structure of

the dynamin GTPase domain [47], they reveal a striking pattern of

convergence on the G2 motif of the GTPase domain (Figure 1C).

It seems likely that they restore the ability of the G2 threonine to

interact properly with GTP or make the conformational changes

that occur during GTP hydrolysis.

Fragmented Mitochondria Caused by Mutant eat-3 or
Loss of EAT-3 Protein

To investigate how eat-3 affects mitochondria, we focused on

mitochondrial morphology in C. elegans body wall muscles.

Mitochondria were detected with mitochondrial matrix markers,

consisting of an N-terminal mitochondrial leader sequence fused to

GFP, cyan fluorescent protein (CFP) or yellow fluorescent protein

(YFP), and mitochondrial outer membrane markers, consisting of

a resident outer membrane protein (TOM70) fused to GFP, CFP

or YFP [8]. The functions of the EAT-3 protein were disrupted by

expressing dominant negative mutant proteins or antisense cDNA,

which effectively causes localized RNAi, under control of the

muscle specific myo-3 promoter. The dominant negative mutations

that we used here are T322A, which disrupts the G2 motif of the

Figure 1. Mutations in C. elegans eat-3 and dyn-1 Mutants. (A)
Dynamin family members in C. elegans. DYN-1 is required for scission of
vesicles from the plasma membrane. DRP-1 is required for scission of
mitochondrial outer membranes. FZO-1 is required for fusion of
mitochondrial outer membranes. EAT-3 is required for fusion of
mitochondrial inner membranes. The GTPase, Middle, and GTPase
Effector (GED) domains are shared between dynamin family members.
In addition, DYN-1 has a pleckstrin homology (PH) domain and a proline
rich domain (PRD), FZO-1 has two transmembrane segments that
anchor the protein in the mitochondrial outer membrane, and EAT-3
has a mitochondrial leader sequence (mls) that targets the protein to
the mitochondrial intermembrane space. Some key alleles are shown on
the right. (B) Sequence alignment of the GTPase domains of C. elegans
EAT-3 (D2031.5), human Opa1, human Dyn1, and C. elegans DYN-1. The
GTP binding consensus sequences (G1-4) are indicated with white
circles. The primary mutations in eat-3(ad426) and dyn-1(ky51) alleles are
shown in the red circles. Secondary mutations in the intragenic

revertants are shown in the blue circles. The dyn-1(ky51) revertants cq2,
cq3, and cq4 are shown below the sequences and the eat-3(ad426)
revertants cq6, cq7, cq8, cq9, and cq10 are shown above the sequences.
(C) The positions of the GTP binding motifs (open circles labeled G1-4),
the positions of primary mutations (red circles), and the positions of
secondary mutations (blue circles) superimposed on the structure of
the rat Dyn1 GTPase domain [47]. The arrows point to the primary
mutation suppressed by each secondary mutation.
doi:10.1371/journal.pgen.1000022.g001

Growth and Survival of C. elegans Opa1 Mutants

PLoS Genetics | www.plosgenetics.org 3 2008 | Volume 4 | Issue 2 | e1000022



GTPase domain, and K300A, which is analogous to the K44A

mutation in the G1 motif of dynamin [5].

Both dominant negative mutations and the loss of function

induced by antisense cDNA cause mitochondria to fragment into a

large number of small pieces (Figure 2B and 2C; 83% of cells were

affected, n = 200). Labeling with a mitochondrial outer membrane

marker shows that the mitochondrial fragments truly are detached

(not shown). The exact size and distribution of mitochondrial

fragments varied between the different treatments, but it was not

evident that these phenotypes represent different levels of severity

(Figure 2B–2C). Mitochondrial fragmentation is also observed in

eat-3(ad426) and in eat-3(tm1107) animals and this phenotype is

reversed in transgenic animals expressing wildtype eat-3 cDNA

under control of the myo-3 promoter (Figure 2D–2F).

Similar mitochondrial fragmentation is observed in muscle cells

of fzo-1(tm1133) mutants (Figure 2G), which have a mutation in

the C. elegans homologue of Drosophila and yeast Fzo1 and

mammalian Mitofusins, proteins required for fusion of the

mitochondrial outer membrane [12,13,15,16,48,49]. The mito-

chondria of eat-3 and fzo-1 mutants are similarly fragmented

consistent with their roles in mitochondrial fusion. However, the

gross anatomical defects (size, growth rate and broodsize) are less

severe in fzo-1(tm1133) mutants and fzo-1 RNAi animals than in

eat-3 mutants (data not shown), even though fzo-1(tm1133) is also a

null allele (it has a chromosomal deletion that truncates the protein

after 65 amino acids). These results suggest that there might be

functional differences in the ways that EAT-3 and FZO-1 proteins

affect the gross anatomy of C. elegans.

In contrast, intragenic revertants of eat-3(ad426) show a range of

mitochondrial morphology defects (Figure 2H–2J); the mitochondria

are still fragmented in eat-3(ad426cq10), they are partially restored to

their filamentous morphology in eat-3(ad426cq8) and completely

restored in eat-3(ad426cq6) commensurate with the suppression of

gross anatomical defects. We conclude that mutations in fzo-1 and

eat-3 both cause mitochondrial fragmentation, but their effects on

size, growth rate and broodsize are different.

Ultrastructural Analysis of Wildtype and eat-3 Mutant
Mitochondria

To further investigate how mitochondria are affected, we

conducted electron microscopic analysis of wildtype and eat-

3(ad426) worms. Figure 3A and 3C show longitudinal sections of

wildtype worms. The mitochondria in muscle cells are long, while

mitochondria in other cell types, such as intestinal cells, appear to be

short or round, because they are randomly oriented with respect to

the plane of sectioning. The mitochondria contain many short pairs

of membrane segments that criss-cross the mitochondrial matrix

(Figure 3A, insert). These segments are likely to be oblique sections of

randomly oriented cristae. Their morphology suggests that C. elegans

mitochondria contain tightly packed tubular cristae.

In contrast, eat-3 mitochondria are almost all round (Figure 3B,

3D, and 3E) and often further divided by inner membrane septae

(‘‘1’’ in Figure 3E). The number of mitochondria transected by

inner membrane septae, as detected in thin sections, is less than

0.5% in wildtype animals (n = 220) and 63% in eat-3(ad426)

animals (n = 221). The frequency of internal septae in eat-3 animals

is likely to be even higher, because the thin sections will have

missed septae outside of the plane of sectioning. We conclude that

the majority of eat-3(ad426) mitochondria are divided by internal

membrane septae. In contrast, wildtype mitochondria are rarely if

ever further divided by septae.

The mitochondria of eat-3(ad426) animals often have shorter and

reduced numbers of cristae. These cristae typically project no more

than 100 nm into the matrix (‘‘2’’ in Figure 3E), while cristae in

wildtype mitochondria are more densely packed and appear to

traverse the width of mitochondria. To quantify the difference

between eat-3 and wildtype cristae, we traced the lengths of

mitochondrial membranes detected in thin sections. The eat-3

mitochondria had on average 1.21 mm total cristae length (n = 20,

SD = 0.78), compared with 7.34 mm in wildtype mitochondria

(n = 16, SD = 3.80). The length of inner boundary membranes is also

decreased: 2.62 mm per eat-3 mitochondrion (n = 20, SD = 0.91),

compared with 5.38 mm per wildtype mitochondrion (n = 16,

SD = 2.64). There is, however, still a 66.2% decrease of total cristae

length when normalized with the lengths of inner boundary

membranes or a 70.3% decrease when normalized with the surface

area of the mitochondrial section. We conclude that most eat-3

mitochondria have fewer cristae than wildtype mitochondria.

Some mutant mitochondria have long inner membrane

invaginations, which could in principle be enlarged cristae, but

are more likely membrane folds resulting from a surplus of inner

membrane (‘‘3’’ in Figure 3E). It is, however, not clear from the

EM sections whether these membrane folds are attached to the

rim. In addition, many eat-3 mitochondria have internal curved or

ring-shaped structures formed by two concentric membranes

enclosing a matrix-like material (‘‘4’’ in Figure 3E). These

membrane inclusions are eat-3-specific, since they were not

observed in wildtype animals. The matrices of eat-3 mitochondria

also contain electron-dense inclusions (‘‘5’’ in Figure 3E), but these

are not specific for the eat-3 mutant, since wildtype mitochondria

contain similar (albeit smaller) inclusions. Given their internal

location, all of these membrane inclusions are likely to be derived

from the inner membrane.

To determine whether the various membrane inclusions

observed in thin sections are connected outside of the plane of

view, we made three-dimensional reconstructions of mitochondria

Figure 2. Fragmented Mitochondria Caused by RNAi or
Mutations in eat-3. (A) Regular tubular array of mitochondria in
muscle cells of a wildtype worm. (B) Fragmented mitochondria in muscle
cells subjected to eat-3 RNAi generated with a Pmyo-3:: antisense-eat-3
construct. (C) Fragmented mitochondria in muscle cells of worms with a
Pmyo-3:: eat-3(T322A) construct. (D) Fragmented mitochondria in muscle
cells eat-3(ad426) worms. (E) Fragmented mitochondria in the muscle cells
of eat-3(tm1107) worms. (F) Tubular mitochondria in the muscle cells of
eat-3(ad426) worms that were rescued by a construct containing wildtype
eat-3 cDNA under control of the eat-3 gene promoter (Ex[eat-3(wt)]). (G)
Mitochondria in the fzo-1(tm1133) deletion strain. (H-J) Mitochondria in
the eat-3(ad426) revertants cq6, cq8, and cq10. Mitochondria were
detected with matrix GFP driven by the muscle specific myo-3 promoter.
The bar indicates 5 mm.
doi:10.1371/journal.pgen.1000022.g002

Growth and Survival of C. elegans Opa1 Mutants
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using electron tomography. In this technique, a thick section is

viewed at different angles and the imaging data is used to

reconstruct a three dimensional model. Images of an eat-3

mitochondrion are shown in Figure 4. This mitochondrion has

several matrix ‘‘bubbles’’, divided from the rest of the matrix by

septae of inner membrane. These bubbles are sealed off, indicating

that the septae observed in the thin sections reflect completed

inner membrane divisions. The three-dimensional reconstructions

of eat-3 mitochondria also show that some of the membrane

inclusions that appear free floating in the matrix are indeed

physically separated from the inner membrane (Figure 4). This

separation suggests severing of membranes within the mitochon-

drial matrix by an as yet unknown mechanism. Similar free-

floating structures were previously observed in a mitochondrial

myopathy of unknown etiology in humans [50] and in mitochon-

dria of apoptotic cells [51].

Inhibition of Growth by eat-3 RNAi
To investigate the role of eat-3 in whole worms we first

determined the expression pattern of the eat-3 gene with transgenic

animals that carry an extrachromosomal array with the eat-3 gene

promoter fused to green fluorescent protein (GFP) and b-

galactosidase coding sequences. This pattern was similar to that

of C. elegans drp-1 [8] with high levels in intestinal cells, in muscle

cells and in neurons and low levels in other cell types (data not

shown). Cell types with high levels of expression may be

metabolically more active than other cell types, but basal levels

of this protein are most likely required in all cells.

We then conducted experiments to assess the effects of eat-3 loss

of function on the growth and brood size of worms. Worms

Figure 3. Aberrant Internal Structures in eat-3(ad426) Mito-
chondria. (A) Longitudinal section of a body wall muscle in a wildtype
worm. This section shows one long mitochondrion (m) and myofibrils
(f). The insert is an enlargement of a muscle cell mitochondrion. (B)
Longitudinal section of a body wall muscle in an eat-3(ad426) worm. (C)
Section of an intestinal cell in a wildtype worm. The mitochondria (m)
are randomly oriented and therefore sectioned at many different
angles. (D) Section of an intestinal cell in an eat-3(ad426) worm. The
pairs of arrows indicate matrix compartments with different cristae
morphologies enclosed by a single outer membrane. (E) Enlarged
portion of an intestinal cell showing mitochondria (m) with more inner
membrane aberrations. Aberrant structures indicated with numbers: 1.
Inner membrane septae. 2. Short tubular cristae. 3. Long invaginations
of inner membrane. 4. Novel compartments within the mitochondrial
matrix enclosed by a double membrane. 5. Electron dense inclusions in

the mitochondrial matrix. The inserts show further enlargements of
three different places with double membranes. (F) Section of an
intestinal cell in an eat-3(ad426) worm rescued by microinjection of a
wildtype eat-3 transgene. Bars are 0.5 mm.
doi:10.1371/journal.pgen.1000022.g003

Figure 4. Tomographic Reconstruction of an eat-3(ad426)
Mitochondrion. (A,B) Front and rear views of an eat-3 mitochondrion
reconstructed by electron tomography. Outer membrane is shown in
red. Inner membrane is shown in green. Bubbles on the side of the
mitochondrion, which are also shown in green, are matrix compart-
ments separated inner membrane septae. Invaginations of the inner
membrane, which are likely to be short tubular cristae, are shown in
light green. Internalized membrane-bound compartments are shown in
magenta. Large clusters of electron dense material without membrane
are shown in blue. (C–F) Tomographic sections used to make the three-
dimensional renderings in (A) and (B). The bar is 0.5 mm.
doi:10.1371/journal.pgen.1000022.g004

Growth and Survival of C. elegans Opa1 Mutants
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injected with eat-3 dsRNA give viable progeny but their brood size

is reduced (90 viable eggs per worm, SD = 14, n = 20, compared

with 270 for wildtype, SD = 10, n = 20). The F1 worms remain

small, are sluggish and develop slowly. Similar effects were

observed with chromosomal mutations in the eat-3 gene. In an

experiment with ad426 and tm1107 alleles, the averages were 302

for wildtype (SE = 8.2, n = 7), 51 for eat-3(ad426) (SE = 8.4, n = 7)

and 50 for eat-3(tm1107) (SE = 10, n = 7). In an experiment with

intragenic revertants of eat-3(ad426), the averages were 75 for eat-

3(ad426cq6) (SE = 48, n = 6), 190 for eat-3(ad426cq7) (SE = 14,

n = 6) and 65 for eat-3(ad426cq8) (SE = 27, n = 6). These numbers

are variable, as one might expect from different allele strengths,

but they are all reduced when compared with wild type animals.

Growth was quantified by measuring the lengths of progeny

from RNAi injected worms (Figure 5A). Progeny from worms

injected with eat-3 dsRNA were on average only 0.15 mm in

length at four days after hatching (SD = 0.02, n = 20), whereas wild

type animals were 1 mm in length (SD = 0.04, n = 5). Even after

three weeks, the eat-3 RNAi worms rarely reach 0.5 mm,

consistent with a previous study showing that the eat-3(ad426)

mutant also remains small [52]. Similar effects on length were

observed with chromosomal mutations in the eat-3 gene

(Figure 5B). Worms with eat-3 deficiencies live longer than

wildtype animals (33 days for RNAi worms, versus 20 days for

untreated worms, and as shown previously with eat-3(ad426)

animals [53]), but it also takes them longer to reach adulthood

(10 days for eat-3 RNAi progeny whereas wildtype animals take

2 days). It would thus appear that developmental decisions are

normal, but the rate of development is greatly reduced as one

might expect from a general decrease in metabolic activity.

To see how mitochondria in the gonads of eat-3 RNAi animals

are affected, we stained the gonads of injected worms with

Rhodamine 123, as was previously done with C. elegans drp-1 RNAi

animals [8]. We find that the mitochondria are more dispersed, but

do not appear to be less abundant than in untreated gonads

(Figure 5C–5D). The effect of eat-3 RNAi on mitochondria is,

however, much less dramatic than that of drp-1 RNAi, which causes

mitochondria to form large aggregates [8]. However, Hoechst

staining shows that there is a paucity of nuclei when compared with

wildtype (Figure 5C–5D). This paucity suggests reduced numbers of

mitotic divisions at the tips of the gonads, which would lead to the

production of fewer oocytes in agreement with the low brood sizes of

eat-3 mutant and RNAi treated animals.

Genetic Interactions between C. elegans eat-3, drp-1, and
fzo-1

Two of the mutants that were isolated in our screen for

suppressors of eat-3(ad426) have premature stop codons in the drp-

1 gene, showing that defects in mitochondrial fission suppress the

defect in mitochondrial fusion caused by a mutation in eat-3.

Similar genetic interactions were previously observed with

mutations in the orthologous yeast genes [19,21]. Since mito-

chondrial fission and fusion proteins not only act antagonistically

on mitochondrial morphology, but also affect the viability of

worms, we conducted additional experiments to further determine

the extent of eat-3 suppression by drp-1 loss of function. First, we

tested whether the fragmentation of mitochondria is reversed by the

dominant negative mutant DRP-1(K40A), which blocks division of

the mitochondrial outer membrane [8]. Constructs encoding Pmyo-

3::DRP-1(K40A) and a mitochondrial outer membrane marker were

injected into eat-3(ad426) worms or into wildtype worms along with

the Pmyo-3::antisense-eat-3 construct. DRP-1(K40A) gives rise to

interconnected mitochondria, regardless of whether it is expressed in

a wildtype background, with antisense eat-3, or in an eat-3 mutant

(100% of cells, n = 50, data not shown). The drp-1(cq5) allele, which

was isolated as a suppressor of eat-3(ad426), also causes hypercon-

nectivity of mitochondria in eat-3(ad426) animals, similar to the

connectivity observed in the drp-1(cq5) single mutant (Figure 6A–

6D). We conclude that a functioning mitochondrial division

apparatus is required for the mitochondrial fragmentation induced

by mutant eat-3.

To find out whether other abnormalities of the eat-3(ad426)

mutant are reversed by a defect in mitochondrial division, we

determined the brood-size of eat-3(ad426) mutants grown with or

without drp-1 RNAi. Our results show that drp-1 RNAi significantly

restores the brood-size of eat-3(ad426) mutants (Figure 6E). A

chromosomal mutation in drp-1 also restores the brood size as shown

with eat-3(ad426); drp1(cq5) animals (Figure 6E). We conclude that

defects in C. elegans DRP-1 and EAT-3 proteins compensate each

other’s physiological defects. Similar effects were observed in yeast,

where the effects of mutations in the EAT-3 homologue Mgm1 are

suppressed by mutations in the DRP-1 homologue Dnm1 [19,21].

To our surprise, however, the brood size defect of the eat-3(ad426)

allele was also partially suppressed by fzo-1 RNAi, while the eat-

3(tm1107) allele, which is most likely a null allele, was not suppressed

by drp-1 or fzo-1 RNAi (Figure 6E), even though mitochondrial

fragmentation in eat-3(tm1107) animals is reversed by drp-1 RNAi

(Figure S2). These results suggest that the eat-3(ad426) allele has some

residual protein function that is masked by wildtype DRP-1 and

FZO-1 proteins. In support of this residual activity, we find that eat-3

RNAi reverses the restoration of brood size by the drp-1 mutation in

eat-3(ad426); drp1(cq5) animals (Figure 6E).

The suppressive effects of drp-1 and fzo-1 loss of function can be

explained by the fact that they both act upstream of inner

membrane fusion. Loss of drp-1 prevents the formation of inner

membrane fusion intermediates by introducing a fission defect that

is epistatic to fusion defects, while loss of fzo-1 does this by blocking

outer membrane fusion, which also precedes inner membrane

fusion. It seems likely that the inner membrane fusion interme-

diates, formed with wildtype drp-1 and fzo-1, sequester mutant

EAT-3 protein, while loss of drp-1 or fzo-1 function frees this

Figure 5. Slow Growth and Disrupted Gonads Caused by eat-3
RNAi. (A) Growth curve comparing wildtype worms to the progeny of
worms injected with eat-3 RNAi. The plots show the average lengths
obtained with 5 wildtype worms (closed circles) and 20 eat-3 RNAi
progeny (closed squares) with standard deviations. (B) Chromosomal
eat-3 mutants are also smaller than wild type, but this defect can be
restored by a mutation in drp-1. The lengths of eat-3(ad426), eat-
(ad426); drp-1(cq5) and eat-3(tm1107) are compared with the lengths of
wild type (N2) animals four days after hatching. The lengths are
averages of 12, 13, 5, and 16 animals respectively with standard
deviations. (C) Close-up of a gonad arm from a wild type worm.
Mitochondria were stained with rhodamine 123 (red) and nuclear DNA
was stained with Hoechst (green). The nuclei form an orderly pattern
near the surface of the gonad. These nuclei are always surrounded by
mitochondria. (D) Gonad of a worm injected with eat-3 RNAi. The
gonads are dissected two days after injection with dsRNA. The
mitochondria appear more dispersed than in wildtype but are not
notably less abundant. Instead, there is a paucity of nuclei consistent
with the reduced brood size of eat-3 RNAi animals. The bar is 5 mm.
doi:10.1371/journal.pgen.1000022.g005
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protein for other essential functions within the mitochondrial

intermembrane space.

Failure of ced-3 and ced-4 Mutations To Suppress eat-3
Phenotypes

It is well-established that Opa1 has an anti-apoptotic function in

mammalian cells [37,40,54,55]. We therefore tested whether

apoptosis contributes to the various eat-3 phenotypes in C. elegans

by making double mutants with eat-3(ad426) and ced-3(n717) or

ced-4(n1894) mutations. The ced-3 gene encodes a caspase and the

ced-4 gene encodes APAF-1. Mutations in either gene block

programmed cell death in C. elegans. The effects on broodsize were

determined by counting the numbers of progeny that survive to

the L4 larval stage. The brood sizes were reduced to varying

degrees in each of the single mutants, but the brood size defects of

the eat-3(ad426) animals were not significantly affected by the

additional mutations in ced-3 and ced-4 loci (Figure 7A). Although

ced-3 encodes the caspase that is utilized for all programmed cell

death in C. elegans and inducible cell death in C. elegans gonads [56],

there are three other caspases (csp-1, csp-2 and csp-3) that might

contribute to cell death under other circumstances. We tested

these csp genes with feeding RNAi, but saw no effect on the brood

size of eat-3(ad426) mutants. Some redundancy between the

caspases remains possible, but redundancy does not apply to ced-4,

since it encodes the single C. elegans homologue of APAF-1.

The ced-4 gene is central to all caspase dependent cell death in C.

elegans. The absence of an effect of ced-4 mutations on the eat-3

broodsize defect, as shown here (Figure 7A), is therefore a reliable

indication that caspase dependent cell death does not contribute to

the reduced broodsize of eat-3 mutants. To verify that eat-3 mutants

show no increase in cell death, we counted the numbers of dying cells

by looking for light-refractory cells with DIC microscopy in eat-

3(ad426) and eat-3(tm1107) embryos at the comma stage. Those

numbers were not significantly different from the numbers for

wildtype embryos (Figure 7B). To verify that the ced mutants used

here were effective, the numbers of dying cells were also counted in

ced-3(n717) and ced-4(n1894) mutant embryos. As expected, these

mutants show strongly reduced numbers of dying cells. We conclude

that ced-3 and ced-4 dependent cell death does not contribute to the

reduced brood size of eat-3 animals. The eat-3; ced-3 and eat-3; ced-4

double mutants also grow slowly and remain small similar to the eat-3

single mutants (data not shown), suggesting that cell death does not

contribute to these other maladies.

Paraquat Sensitivity of eat-3 Mutants
The growth and brood size defects of eat-3 mutants resemble

those of gas-1 and mev-1 mutants, which have defects in Oxidative

Phosphorylation complexes. Those mutants are also more

susceptible to damage from free radicals, as shown by their

sensitivity to paraquat, which produces superoxide radicals

through a radical ion intermediate [57]. To test whether eat-3

mutants are also sensitive to free radicals, we grew eat-3(ad426)

animals with increasing concentrations of paraquat. We find that

eat-3(ad426) animals are significantly more sensitive to paraquat

than wildtype animals (Figure 8A). Values for IC50 were on

Figure 6. Suppression of eat-3(ad426) Phenotypes. (A) Mitochon-
dria in a wildtype (N2) muscle cell with their normal tubular
morphology. (B) Fragmented mitochondria in a muscle cells of the
eat-3(ad426) mutant. (C) Mitochondria with highly connected outer
membranes (green) but not connected matrix compartments (red) in a
muscle cell of the eat-3(ad426); drp-1(cq5) double mutant. (D) Similarly
connected mitochondrial outer membranes in a muscle cell of the drp-
1(cq5) mutant after removal of the eat-3(ad426) mutation by
backcrossing. The mitochondria in muscle cells were detected with
the transmembrane segment of C. elegans Tom70 fused to YFP (shown
in green) and the matrices are labeled with a mitochondrial leader
sequence fused to CFP (red). Nuclei are marked with n. The bar
indicates 5 mm. (E) Histograms showing rescue of the eat-3(ad426)
broodsize defect by drp-1 and fzo-1 RNAi, but not rescue of the eat-
3(tm1107) deletion allele by drp-1 or fzo-1 RNAi. Wildtype (N2) and
mutant animals were grown on bacteria with the feeding RNAi plasmid
pILL4440 without insert, with fzo-1 cDNA or with drp-1 cDNA. The bars
on the right show that the brood size of the eat-3(ad426) mutant is also
rescued by a chromosomal drp-1 mutation (drp-1(cq5)). This rescue
depends on residual eat-3 function in the ad426 allele, because it is
eliminated by eat-3 RNAi. The brood sizes were defined as the numbers
of viable larvae that developed to the L4 stage. Error bars indicate SE.
An unpaired Student’s t test was used for statistical analysis. The single
asterisk indicates P,0.0001 and the double asterisk indicates P,0.01
(n = 24 for eat-3(ad426) alone, n = 14 for the same with fzo-1 RNAi and
n = 7 for drp-1 RNAi).
doi:10.1371/journal.pgen.1000022.g006

Figure 7. Lack of Evidence for Increased Cell Death in eat-3
Mutant Animals. (A) The broodsizes of eat-3(ad426) animals alone
were not appreciably different from the broodsizes of the ced-3(n717);
eat-3(ad426) or ced-4(n1894); eat-3(ad426) double mutants. Feeding
RNAi for the other caspases (csp-1, csp-2 and csp-3) also had no effect
(data not shown). (B) Numbers of dying cells were counted in comma
stage embryos of wildtype (N2), eat-3(ad426), eat-3(tm1107), ced-3(n717)
and ced-4(n1894) animals. The numbers of dying cells were not
significantly increased in the eat-3 mutants when compared with
wildtype. The numbers of dying cells in ced-3(n717) and ced-4(n1894)
embryos were included to show that cell death is effectively blocked in
these mutants. The bars indicate SE.
doi:10.1371/journal.pgen.1000022.g007

Growth and Survival of C. elegans Opa1 Mutants

PLoS Genetics | www.plosgenetics.org 7 2008 | Volume 4 | Issue 2 | e1000022



average 0.25 mM for eat-3(ad426) animals and 0.44 mM for

wildtype (N2) animals (averages of four independent experiments).

Increased sensitivity to paraquat is also observed with eat-

3(tm1107) animals (Figure 8B), confirming that this effect is

caused by loss of eat-3 function. The sensitivity of eat-3(ad426)

animals to paraquat is suppressed by the drp-1 mutations in eat-

3(ad426); drp-1(cq5) and in eat-3(ad426); drp-1(cq11) animals

(Figure 8A–8B). These two drp-1 mutations were isolated

independently, confirming that they are the cause of this reversal.

Since these results suggests that mitochondrial outer membrane

fission and fusion processes affect paraquat sensitivity, we tested

whether the fzo-1(tm1133) mutant, which has a defect in

mitochondrial outer membrane fusion, are also sensitive to

paraquat. Our results show that this mutant is not more sensitive

to paraquat than wildtype animals (Figure 8A), from which we

conclude that mitochondrial fusion defects are not enough to

promote free radical damage. The increased paraquat sensitivity of

eat-3 mutants, but not of fzo-1 mutants, therefore indicates that the

EAT-3 protein affects free radical formation or sequestration in

ways that are unrelated to its role in mitochondrial fusion.

Enhancement of the eat-3 Mutant Phenotype by SOD-2
Loss of Function

To test whether the induction of superoxide dismutase genes

aids survival of eat-3 mutants, we tested possible genetic

interactions between eat-3 and superoxide dismutase genes in C.

elegans. C. elegans has five superoxide dismutase genes. The sod-1,

sod-4, and sod-5 genes encode Cu2+/Zn2+ superoxide dismutases.

One splice variant of sod-1 and all variants of sod-4 have a signal

peptide, suggesting that these proteins are sent through the

secretory pathway to the extracellular matrix. Other sod-1 isoforms

and all proteins encoded by sod-5 lack recognizable targeting

sequences, suggesting that those are cytosolic. A fraction of Cu2+/

Zn2+ superoxide dismutases might also be localized to the

mitochondrial intermembrane even without recognizable targeting

sequences, similar to Cu2+/Zn2+ superoxide dismutases in yeast

and mammals [58]. The two remaining sod genes (sod-2 and sod-3)

encode Fe/Mn superoxide dismutases. These proteins have

mitochondrial leader sequences, which most likely target them to

the mitochondrial matrix.

We first grew eat-3(ad426) animals on feeding RNAi bacteria with

RNAs for the sod genes that are not secreted (sod-1, sod-2, sod-3 and

sod–5), since those might affect the survival of eat-3 mutants. There

were little or at best modest effects with sod-1, sod-3 and sod-5 RNAi

treatments, but the effects of sod-2 RNAi on eat-3(ad426) animals

were consistent and strong (Figure 9A). To verify these differences,

we grew mutants of each of the sod genes on eat-3 RNAi bacteria. As

with the converse experiment, sod-2(gk257) mutant animals grow

much more poorly with eat-3 RNAi (Figure 9B). The effectiveness of

eat-3(ad426) in one experiment and eat-3 RNAi in the second

experiment confirms that the enhancement of sod-2 defects are

indeed caused by eat-3 loss of function. We conclude sod-1, sod-3 and

sod-5 are not necessary for survival of the eat-3 mutant, but a

mutation in the sod-2 gene and sod-2 RNAi both strongly affect

survival of animals with eat-3 deficiencies.

The weak or negligible enhancement of eat-3 by sod-3 RNAi and

the sod-3(gk235) mutant is noteworthy since SOD-2 and SOD-3

have 88% amino acid identity and both proteins have mitochon-

drial leader sequences, indicating that they are both targeted to the

mitochondrial matrix. The genetic interactions between sod-2 and

eat-3 might, however, be different from those between sod-3 and

eat-3, because sod-2 and sod-3 genes are differentially expressed

[59] and their expression is regulated by different pathways [60].

We used Western blots probed with a cross reacting Fe/Mn-SOD

antibody to determine whether differential expression of sod genes

correlates with the different effects that we observe with sod-2 and

sod-3 genes.

Our blots show that Fe/Mn-SOD expression is induced more

than two-fold in eat-3(ad426) animals (Figure 9C). This induction is

almost entirely attributable to SOD-2 since sod-2 RNAi, but not

sod-3 RNAi largely abolishes this expression (Figure 9D). The

induction is reversed by a secondary mutation in drp-1(cq5) and in

the intragenic revertant of eat-3(ad426cq8) (Figure 9C). Similar

reductions were seen with other revertants (data not shown).

Consistent with their lack of paraquat sensitivity, fzo-1(tm1133)

animals show little or no induction of SOD expression. We

conclude that SOD-2 protein levels are dramatically increased in

eat-3(ad426) animals, but not in fzo-1(tm1133) animals. This

increase is partially reversed in intragenic revertants and fully

reversed by the drp-1 mutation in the eat-3(ad426); drp-1(cq5)

double mutant. It seems likely that increased expression of SOD-2

helps prevent damage from free radicals, but this increase is still

not enough to prevent the hypersensitivity of eat-3 mutants to

paraquat.

Discussion

C. elegans eat-3 mutants have many of the same features that were

previously observed with yeast Mgm1 mutants and mammalian

cells transfected with Opa1 siRNA. The mitochondria in eat-3

mutants are fragmented, these fragmented mitochondria are

further divided by inner membrane septae and fragmentation is

reversed by loss of Drp1. C. elegans eat-3 mutants are also affected at

Figure 8. Paraquat Sensitivity of the eat-3(ad426) Mutant and Its
Reversal by drp-1(cq5). (A) The histogram shows the percentages of
worms that survive from the L1 larval stage to adulthood when grown
on plates with increasing concentrations of paraquat. Fifty L1 larvae
with the indicated genotypes were transferred to five fresh plates for
each data point and monitored for five days. The entire experiment was
done in triplicate, except for drp-1(cq5); eat-3(ad426), which was done in
duplicate. The bars show averages and SD for the experiments. An
unpaired Student’s t test was used for statistical analysis. The single
asterisk indicates P,0.0001 and the double asterisk indicates P,0.0005
at 0.4 mM paraquat (n = 3). The N2 (wildtype) and eat-3(ad426) strains
were tested two more times to more accurately determine the IC50 (see
text). (B) A comparison between eat-3(ad426), eat-3(tm1107) and eat-
3(ad426); drp-1(cq11) at 0.4 mM paraquat. The histogram shows
averages of three experiments with their standard deviations. The
increased sensitivity of eat-3(tm1107) animals to paraquat confirms that
the effect is due to loss of eat-3 function, because it was observed with
two independent alleles (ad426 and tm1107). In this same manner,
reversal of paraquat sensitivity by the cq11 allele in eat-3(ad426); drp-
1(cq11) animals confirm that the reversal is due to loss of drp-1 function,
because it was also observed with two independent alleles (cq5 and
cq11). The absolute numbers for N2 and eat-3(ad426) in panels A and B
show minor differences because of variations between experiments,
but the trends are the same.
doi:10.1371/journal.pgen.1000022.g008
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the organismal level. The mutant animals grow slowly, are sluggish

and have greatly reduced broodsize, consistent with severely

compromised mitochondrial function. However, heterozygous eat-

3 mutations have no overt defects in worms, unlike heterozygous

Opa1 mutations in humans, which cause optic neuropathies

through haploinsufficiency. The eat-3 mutants are nevertheless still

useful for unraveling pathogenic mechanisms, since the pheno-

types in C. elegans and in mammal are both due to loss of protein

function and therefore their effects on other cellular pathways are

also most likely similar.

It was conceivable that the broodsize defects of eat-3 mutants are

due to increased apoptosis in the gonad. In wildtype worms,

approximately 50% of germ cells die prior to oogenesis, but more

death can be induced by DNA damage, by pathogens and by

other forms of stress. These death-inducing conditions all converge

on the classic apoptosis machinery that requires the caspase CED-

3 and the APAF1 homologue CED-4 [61]. We investigated the

possibility that apoptosis contributes to the pathogenesis of eat-3

mutants by analyzing eat-3; ced-3 and eat-3; ced-4 double mutants

and by counting the numbers of dying cells in eat-3 mutants. There

was no increase in the numbers of dying cells in eat-3 embryos, nor

was there suppression of the eat-3 broodsize defects in the double

mutants. C. elegans does have several other caspases (csp-1, csp-2

and csp-3), but RNAi of these genes had no effect on eat-3 animals

(data not shown) nor are they known to contribute to apoptotic cell

death in C. elegans [56]. Redundancy is not an issue with ced-4,

which encodes the only APAF1 homologue in C. elegans. In

summary, none of the RNAi treatments or chromosomal

mutations in cell death genes showed a suppressive effect on eat-

3 mutants, from which we conclude that caspase-dependent cell

death does not contribute to the pathology of eat-3 in worms.

Mammalian cells transfected with Opa1 siRNA are more

sensitive to apoptosis inducing agents [62], but there is also

evidence that patients with dominant optic atrophy have reduced

levels of ATP, which could trigger retinal ganglion cell

degeneration [42]. The gross anatomical phenotypes of C. elegans

eat-3 mutants, such as small size, slow growth and reduced

broodsize are consistent with caloric restriction as observed in

feeding mutants with pharyngeal defects [43,52]. The small brood

sizes of eat-3 mutants are not due to retention of eggs, nor are there

increased numbers of dead eggs or larvae on plates (data not

shown). There is, however, a paucity of nuclei in the gonads of eat-

3 RNAi animals (Figure 5C), consistent with the production of

fewer oocytes. Fewer oocytes could reflect reduced rates of mitotic

division at the distal tip of the gonad, since it was previously shown

that mutations in mitochondrial proteins can inhibit cell division

through the actions of AMP kinase and cyclin E [63]. Oocyte

production might also be compromised at later stages, since the

availability of yolk protein and other major constituents of oocytes

is affected by the metabolic state of the animal. Many of the eat-3

mutant phenotypes are therefore attributable to a general

breakdown in mitochondrial function.

Earlier studies of yeast Mgm1 mutants show progressive loss of

mtDNA [18,19]. Loss of mtDNA is also observed in patients with

dominant optic atrophy where it will affect assembly of oxidative

phosphorylation complexes [64]. Defects in oxidative phosphor-

ylation proteins can result in fewer and shorter cristae [65], which

would be confined to those matrix compartments that have lost

their mtDNA. Selective loss of cristae due to stochastic loss of

mtDNA agrees with our electron microscopy data, since that data

shows a heterogeneous mixture of mitochondrial matrix compart-

ments, some with severely disrupted cristae and others with

seemingly wildtype cristae (pairs of arrows in Figure 3D). The

observation of different types of matrices enclosed by a single

mitochondrial outer membrane suggests that the outer membranes

of eat-3 mutant mitochondria fuse irrespective of their mtDNA

content, but the mitochondrial inner membranes fail to fuse,

similar to the results obtained with Mgm1 in yeast [25].

The ability to suppress eat-3(ad426) defects with drp-1 RNAi and

mutations in drp-1 is consistent with stochastic loss of mtDNA in

eat-3 mutants. Mutations in the yeast DRP-1 homologue Dnm1

similarly suppress Mgm1 growth defects and they restore cristae

morphology [20]. There are, however, several observations

suggesting that the mitochondrial fusion defect and the resulting

loss of mtDNA might not be the only causes of sickness in eat-3

mutants: First, drp-1 RNAi does not rescue the C. elegans eat-

3(tm1107) deletion allele, while it does rescue the eat-3(ad426)

allele. Second, C. elegans fzo-1(tm1133) mutant animals are not as

severely affected as eat-3 mutants, nor are they rescued by drp-1

RNAi (data not shown), even though one might expect them to be

Figure 9. Increased Sensitivity to the Mitochondrial Matrix
Superoxide Dismutase sod-2. (A) Effects of sod-1, sod-2, sod-3, and
sod-5 RNAi on the broodsize of eat-3(ad426) animals. The histogram
shows the numbers of hatched worms on plates with eat-3(ad426)
animals with or without sod feeding RNAi as percentages of the
numbers of hatched worms on plates with wildtype (N2) worms with or
without feeding RNAi. (B) Effects of eat-3 RNAi on the broodsizes of sod-
1, sod-2, sod-3 and sod-5 mutants. Wildtype (N2) worms are compared
with the sod mutants, sod-1(tm776), sod-2(gk257), sod-3(gk235), sod-
4(gk101), and sod-5(tm1146). The histogram shows the numbers of
hatched worms on plates with eat-3 feeding RNAi as percentages of the
numbers of hatched worms on plates without feeding RNAi (vector
alone). Both (A) and (B) show the average results for three independent
experiments. For each point in each experiment five L4 larvae were
transferred to individual bacterial plates with or without feeding RNAi.
Eggs that hatched on those plates were counted as viable progeny. In
each experiment the average values of five plates were determined. The
error bars show SD for variation between the three experiments. An
unpaired Student’s t test was used for statistical analysis. The asterisk
indicates P,0.005 in (A) and P,0.05 in (B) (n = 3). (C) Expression levels
of Fe/Mn-SOD proteins relative to the expression levels in wildtype (N2)
animals. Expression was determined by probing Western blots with an
antibody that detects SOD-2 and SOD-3 proteins. Densitometric scans
of SOD were normalized to tubulin levels for each lane and then
expressed as a percentage of wildtype (N2) levels. The mutant strains
used here have fzo-1(tm1133), eat-3(ad426), eat-3(ad426); drp-1(cq5) and
eat-3(ad426cq8) alleles. (D) Expression levels in mutant animals grown
with or without feeding RNAi bacteria, as indicated below the
histogram. The mutant alleles used here are eat-3(ad426), sod-
2(gk257) and sod-3(gk235).
doi:10.1371/journal.pgen.1000022.g009
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equally susceptible to loss of mtDNA, since yeast Fzo1 mutants do

lose their mtDNA [12,48] and they are rescued by mutations in

Dnm1 [19,21,22]. Extensive loss of mtDNA also occurs in mouse

Mitofusin mutants (the mammalian homologues of Fzo1) [66]. We

conclude that lack of ATP due to loss of mtDNA is not enough to

explain why optic nerves are singled out for destruction in patients

with dominant optic atrophy.

Our results suggest an alternative explanation for the sickness of

C. elegans eat-3 mutants, which may also be relevant for the selective

degeneration of retinal ganglion cells in patients with dominant

optic atrophy. C. elegans eat-3 mutants are hypersensitive to

paraquat and sod-2 RNAi, suggesting increased production of free

radicals or an impaired disposal mechanism. A drp-1; eat-3 double

mutant and an fzo-1 mutant are not more sensitive to paraquat,

suggesting that there might be something specific about the effects

of eat-3 on mitochondria, for example contributing to the

maintenance of cristae, as was suggested for Opa1 in mammalian

cells [27,37,40,55,67]. The enhancement of eat-3 phenotypes by

sod-2 RNAi and a mutation in the sod-2 gene, but not by RNAi or

mutations in other superoxide dismutase genes, suggests that

damage from free radicals is confined to the mitochondrial matrix

or the mitochondrial inner membrane. The effects are most likely

not direct, since SOD-2 is a mitochondrial matrix protein while

EAT-3 is primarily localized to the mitochondrial intermembrane

space and other mutations that affect oxidative phosphorylation in

C. elegans, such as the mev-1 and gas-1 mutants with mutations in

complex I and II proteins, also show increased sensitivity to

paraquat [57]. Disruption of the electron transport chain, for

example through altered cristae morphology, can increase

production of free radicals, while conversely free radicals in the

mitochondrial matrix can further disrupt the electron transport

chain. These two problems are therefore likely to reinforce each

other, possibly leading to catastrophic breakdown of mitochon-

drial function.

If free radicals also contribute to dominant optic atrophy in

humans, then the underlying cause of this disease might be more

similar to that of other optic neuropathies than previously

understood. Patients with Leber’s hereditary neuropathy (LHON)

have mutations in subunits of Oxidative Phosphorylation complex

I, which increases free radical production by disrupting the flow of

electrons through complex I along with their more obvious effects

on ATP production [68-70]. Optic neuropathies triggered by

macular degeneration and optic neuropathies triggered by dietary

deficiencies are also linked to damage from free radicals in

mitochondria. Increased levels of free radicals in these diseases are

compounded by the effects of light entering the eyes, since light

triggers additional free radical production through absorption by

cytochrome c oxidase and flavin containing oxidases in mitochon-

dria [71]. Damage from free radicals will exacerbate the effects of

ATP deficiency and increased susceptibility to apoptosis in patients

with dominant optic atrophy. It is even possible that some of the

increased susceptibility to apoptosis in Opa1 deficient cells is

caused by damage from free radicals.

In conclusion, mutations in C. elegans eat-3 have many of the

same effects on mitochondrial morphology that were previously

observed with mutations in yeast Mgm1 and mammalian Opa1.

Mutations in key components of the major cell death pathway

show that this pathway does not affect the eat-3 phenotype.

Instead, eat-3 mutants are sensitive to damage from free radicals

and they show hallmarks of ATP deficiency. The effects of sod-2

loss of function and partial compensation by induced expression of

SOD-2 suggest that damage from free radicals is localized to the

mitochondrial matrix. These observations might help design more

effective treatments for patients with DOA.

Materials and Methods

Molecular Cloning
The D2013.5 gene of eat-3(ad426) was sequenced using

amplified genomic DNA from two independent PCR reactions.

The C. elegans eat-3 cDNAs yk10h8 and yk21c2 were obtained from

Y. Kohara (National Institute of Genetics, Mishima, Japan). The

pPD expression vectors were kindly provided by A. Fire, J. Ahnn,

G. Seydoux, and S. Xu (Carnegie Institution of Washington,

Baltimore, Maryland). The Peat-3::NLS::GFP::b-galactosidase con-

struct was made with an eat-3 gene promoter fragment (positions

23335 to 25288 of cosmid D2013), fused to the reporter sequences

of pPD95.67. The rescue construct contained this same promoter

fragment fused to the yk21c2 cDNA. This cDNA lacks the N-

terminal 70 amino acids. The missing sequence was generated by

PCR of genomic DNA. Mutations were introduced by PCR and

verified by sequencing. EAT-3 was expressed in muscle cells using

the myo-3 promoter of pPD96.52. The antisense construct has the

insert of yk21c2 cloned in the antisense orientation in pPD96.52.

Production of dsRNA, mitochondrial markers, microinjection,

light microscopy and feeding RNAi procedures were described

previously [8,72]. Feeding RNAi bacteria were kindly provided by

Dr. J. Ahringer (University of Cambridge, UK).

Worm Strains
C. elegans strains were obtained from the C. elegans stock-center

(CGC, University of Minnesota) and from Dr. S. Mitani (National

Bioresource Project of Japan. Tokyo Women’s Medical University

School of Medicine, Tokyo). Strains provided by Dr. Mitani were

backcrossed with wildtype (N2) animals to remove adventitious

mutations. Revertants of dyn-1(ky51) and eat-3(ad426) were generated

with EMS mutagenesis. The dyn-1(ky51) is temperature sensitive for

growth and motility [46]. L3 larvae of either strain were treated with

50 mM EMS as described [73]. F2 progeny of mutagenized animals

were screened for revertants by looking for restored growth and

motility. The dyn-1(ky51) animals were screened at the restrictive

temperature (25uC) while eat-3(ad426) animals were screened at

20uC. Newly identified mutants were backcrossed with wildtype (N2)

worms to determine whether the new mutations are intra- or

extragenic and to rid them of adventitious mutations. The three

revertants of dyn-1(ky51) were genetically inseparable from the

original dyn-1 mutation and five of the seven eat-3(ad426) revertants

were inseparable from eat-3, suggesting that these are intragenic

revertants. New mutations in the intragenic revertants were

identified by sequencing their respective dyn-1 and eat-3 genes.

New mutations in the two extragenic revertants of eat-3(ad426) were

identified by sequencing their drp-1 genes.

To determine paraquat sensitivity, increasing concentrations of

paraquat (N,N9-Dimethyl-4,49-bipyridinium dichloride from MP

Biomedicals LLC, Solon Ohio) were added to 30 mm NGM agar

plates. These plates were seeded with OP50 bacteria [73] and fifty

L1 larvae were transferred to each plate. The plates with worms

were incubated at 20uC and tracked for several days by counting

the numbers of worms that reached adulthood.

Electron Microscopy
Young gravid worms were mixed with E. coli or dry baker’s

yeast and 10% methanol [74]. This mixture was cryofixed in a

Bal-Tec HPM 010 high pressure freezer (Technotrade, Manche-

ster, New Hampshire), followed by freeze-substitution with 2%

osmium tetroxide and 0.1% uranyl acetate in acetone. The

temperature was slowly increased to 220uC and then to room

temperature. The samples were rinsed with acetone and infiltrated

with Epon-Araldite (1 hr in 1 part resin and 3 parts acetone; 2 hr
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in a 1:1 mixture; 4 hr in a 3:1 mixture; 1 hr and 16 hr in resin

alone). The samples were then incubated in resin with accelerator

for 4 hr, flat-embedded between Teflon-coated slides and cured in

a 60uC oven for 48 hr. Longitudinal sections (60 nm thick) were

post-stained with uranyl acetate and lead citrate. All specimens

were examined using a Tecnai 12 transmission electron micro-

scope at 100 kV. Membrane lengths and surface areas were

measured with NIH Image software.

For tomography, 500 nm thick sections were cut and stained

with uranyl-acetate and lead citrate. Colloidal gold particles

(10 nm) were applied as alignment markers. A tilt series of 122

images was made on the Albany AEI EM7 MkII HVEM at

1000 kV. The images were recorded around two orthogonal tilt

axes, each over an angular range of 120u with a 2u tilt interval.

The double-tilt images were aligned, further processed to make a

tomographic reconstruction, followed by surface rendering as

previously described [75].

Western Blotting
Samples for Western blot analysis were prepared by freeze/

thawing worms, followed by solubulization in SDS-PAGE sample

buffer, boiling for 10 min and clearing of debris by centrifugation

for 2 min at 3,000 rpm in an Eppendorf microfuge. Western blots

were probed with superoxide dismutase antibody from Abcam

(Cambridge, Massachusetts). Western blots were quantified with

densitometry using a Personal Densitometer SI and ImageQuant

software (Molecular Dynamics, Sunnyvale, California).

Supporting Information

Figure S1 Western blot showing EAT-3 expression levels in wild

type and mutant C. elegans. An antibody raised against recombi-

nant C. elegans EAT-3 protein detects a strong band of approximately

90 kDa in all strains except for eat-3(tm1107), which has a deletion in

the eat-3 gene. This band is the size predicted for mature protein,

assuming multi-step processing similar to that of yeast Mgm1. A faint

upper band of approximately 100 kDa is also detected in all strains

except for eat-3(tm1107). This upper band most likely results from the

initial cleavage of the mitochondrial leader sequence (computer

algorithms predict a product of 99 kDa). The line between lanes with

eat-3(ad426); drp-1(cq5) and eat-3(tm1107) samples shows that an

empty lane between the two, which served as a buffer against

spillover, was cut out. Tubulin and cytochrome serve as loading

controls. The EAT-3 antibody was raised in a rabbit against

recombinant protein. The recombinant protein was made by

expression in bacteria with a his-tag and purified with Ni-NTA

column chromatography. The serum was blot purified [76] and used

for Western blotting as described in the Materials and Methods

section. Tubulin antibody was from Sigma and cytochrome c

antibody was from Pharmingen. Those were raised against

mammalian proteins but show sufficient cross-reactivity with C.

elegans proteins for Western blots.

Found at: doi:10.1371/journal.pgen.1000022.s001 (0.51 MB TIF)

Figure S2 Reversal of mitochondrial fragmentation in eat-

3(tm1107) animals. (A) Mitochondria in muscle cells of an eat-

3(tm1107) animal stained with the membrane potential dependent

dye Rhodamine 6G [8]. (B) Mitochondria in muscle cells of an

eat-3(tm1107) animal grown with drp-1 feeding RNAi showing

reversal of the fragmented phenotype. This indicates that drp-1 loss

of function is epistatic to an eat-3 null allele. The scale bar is 5 mm.

Found at: doi:10.1371/journal.pgen.1000022.s002 (1.72 MB TIF)
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