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Genetic technology using site-specific recombinases, such as
the Cre-loxP system, has been widely employed for labeling
specific cell populations and for studying their functions in vivo.
To enhance the precision of cell lineage tracing and functional
study, a similar site-specific recombinase system termed Dre-
rox has been recently used in combination with Cre-loxP. To
enable more specific cell lineage tracing and ablation through
dual recombinase activity, we generated two mouse lines that
render Dre- or Dre+Cre-mediated recombination to excise a
stop codon sequence that prevents the expression of diphtheria
toxin receptor (DTR) knocked into the ubiquitously expressed
and safe Rosa26 locus. Using different Dre- and Cre-expressing
mouse lines, we showed that the surrogate gene reporters
tdTomato and DTR were simultaneously expressed in target
cells and in their descendants, and we observed efficient abla-
tion of tdTomato+ cells after diphtheria toxin administration.
These mouse lines were used to simultaneously trace and
deplete the target cells of interest through the inducible
expression of a reporter and DTR using dual Cre and Dre
recombinases, allowing a more precise and efficient study of the
role of specific cell subsets within a heterogeneous population in
pathophysiological conditions in vivo.

Recent advances in dissecting cellular heterogeneity at a
single-cell resolution have identified many unappreciated cell
subsets during multiple biological processes. Nevertheless,
they are often poorly characterized cell populations. Targeted
cell ablation would allow us to determine the scarcely under-
stood function of a specific cell lineage in vivo. In addition to
the conventional Cre-loxP system, Dre-rox can be used in
combination with Cre-loxP for a more precise study of
different cell lineages (1). Dre recombinase, orthogonal to Cre
recombinase, which recognizes the rox site, was discovered in
P1-like phages and yielded highly efficient recombination (2).
While Cre-mediated expression of diphtheria toxin receptor
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(DTR) is one of the most widely used strategies for targeted cell
ablation (3), there is no model employing Dre-mediated
expression of DTR in mice. Diphtheria toxin (DT) is a bacte-
rial exotoxin that targets human cells but not murine cells (4). It
is a secretory single polypeptide produced from Corynebacte-
rium diphtheriae and consists of two subunits, A and B (DT-A
and DT -B). Its action requires the expression of DTR on living
cells (5). Following cell surface binding of DT-B and receptor-
mediated endocytosis of DTR, subunit A (DT-A, or DTA)
translocates from the acidic late endosome to the cytosol where
it ADP-ribosylates a diphthamide residue of elongation factor 2
(6, 7), terminating protein synthesis (8–11) and ultimately
triggering cell death (12). Although DT-A acts on all eukaryotic
elongation factor 2, murine and rat cells are insensitive to DT
(13, 14). In humans and apes, which are DT-sensitive species,
DTR has been identified as a membrane-anchored heparin-
binding epidermal growth factor (HB-EGF)–like precursor (5).
HB-EGF precursors of murine and rat cells fail to bind to DT-B
and thus are not bona fide receptors (15), rendering them
resistant to the toxin (13, 14). Accordingly, transgenic expres-
sion of DTR encoded by the simian HB-EGF precursor (Hbegf)
in DT-resistant mouse cells would confer DT sensitivity. Here,
we attempted to generate mouse lines that rendered Dre- or
Dre+Cre-mediated inducible DTR expression, facilitating cell
ablation in the target cells of interest.

Cre-loxP system is a powerful tool for genetic lineage
tracing and cell ablation studies (16). However, the degree of
recombination in cells of Rosa26-reporter or Rosa26-iDTR
mice varies significantly between different Rosa26 alleles
used as readouts (17, 18). Indeed, previous studies have also
reported that fate mapping results elucidated by different Cre-
mediated reporter alleles were inconsistent with the use of
different Rosa26 lines (17, 19). Such discrepancies can be
attributed to the varying efficiency of Cre-loxP–mediated
recombination. In fact, the intervening distance between the
loxP sites flanking the Stop fragment affects recombination
efficiency (20, 21). A number of Cre lines engender inconsis-
tent fate maps depending on the reporter lines employed,
which include Nkx2.5-Cre, Pcp2-Cre, Chat-Cre, Wt1-Cre, and
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Dual Cre and Dre recombinases-induced cell ablation
Isl1-Cre (17, 18, 22–25). Different loci within the same cell
may also display varying recombination efficiencies (26), sug-
gesting that Cre-loxP recombination is position-dependent
and the readout from one locus (such as Rosa26) may not be
necessarily in line with that derived from a different one (such
as Hprt or Hipp11) (21, 27).

Considering these limitations, it is difficult to compare fate
mapping results that were generated from even the same gene
promoter–mediated Cre that targeted different surrogate re-
porters. Similarly, it may not be correct to assume that the
efficiency of lineage tracing by the same gene promoter–
mediated Cre would be the same as that of cell ablation
given that the recombination efficacy at one Rosa allele (e.g.,
Rosa26-lox-stop-lox(LSL)-Reporter) may not be as efficient as
that at another allele (e.g., Rosa26-LSL-DTR). To circumvent
this issue, we generated two Rosa26-reporter-DTR mouse lines
to achieve synchronized expression of a surrogate reporter and
DTR upon Dre- or Dre+Cre-mediated recombination, allow-
ing for lineage tracing and genetic ablation of DTR-expressing
cells with the same efficiency after DT administration.
Results

To enable synchronized expression of a reporter and DTR
by targeting one genomic locus, we placed a “self-cleaving” 2A
peptide sequence between tdTomato and DTR (Fig. 1A). This
design would allow for simultaneous generation of tdTomato
and DTR from a single transcript, enhancing efficiency by
avoiding the use of an internal ribosome entry sequence and
the generation of a second transcript (28). We targeted a
complementary DNA (cDNA)-containing tdTomato-2A-DTR
sequence in the well-characterized Rosa26 locus (29). To
allow conditional expression of tdTomato and DTR, we also
inserted a rox-flanked transcriptional Stop fragment upstream
of the tdTomato-2A-DTR cDNA (Fig. 1A). Transcription of
R26-R-tdT-DTR is normally blocked by the Stop sequence that
is excised upon activation of the Dre recombinase, yielding
heritable expression of tdTomato-2A-DTR in Dre+(Dre-posi-
tive) cell lineages (30) (Fig. 1B). Due to the presence of a 2A
sequence (31), the single tdTomato-2A-DTR transcript was
translated as a single polypeptide that was subsequently
cleaved to generate separate tdTomato and DTR proteins.
Thus, DTR+ (DTR-positive) cells simultaneously expressed
tdTomato that could be potentially ablated after DT treatment
(Fig. 1C). Genotypic characterization by PCR verified correct
genetic targeting of tdTomato-2A-DTR in the murine Rosa26
locus (Fig. 1D). Immunostaining for tdTomato on sections of
multiple organs collected from R26-R-tdT-DTR showed no
tdTomato signal, suggesting no leakiness of this allele without
recombinase-mediated recombination (Fig. 1E).

Next, we used an endothelial cell-specific Dre line, Cdh5-
Dre (32), to cross with R26-R-tdT-DTR (Fig. 2, A and B), and
examined whether tdTomato and DTR were simultaneously
and specifically expressed in endothelial cells. By whole-mount
epifluorescence of several organs, we detected tdTomato
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signals in 6-week-old Cdh5-Dre;R26-R-tdT-DTR mice (Fig. 2,
C and D), suggesting that expression of tdTomato was only
induced after Dre-rox recombination. To confirm that the
tdTomato signal was confined to endothelial cells, we per-
formed immunostaining for tdTomato, DTR, and CD31 on
sections of 6-week-old Cdh5-Dre;R26-R-tdT-DTR mice. We
found that tdTomato was specifically expressed in endothelial
cells, and tdTomato colocalized with DTR in the same cells
(Fig. 2E). Moreover, treatment with DT led to severe bleeding
in the intestine of these mice (Fig. 2, F and G) that died shortly
after DT treatment (Fig. 2H). Immunostaining for tdTomato,
DTR, and CD31 shows that compromised pattern of tdTo-
mato+DTR+ endothelial cells of intestine in DT-treated mice
compared with the control (Fig. 2I). Altogether, these data
illustrated that the R26-R-tdT-DTR mice could be used for
tracing and depletion of specific cell populations mediated by
Dre recombinase.

While Cre-loxP has been widely used in lineage tracing
studies (33–35), expression of Cre recombinase in nontarget
cell populations may compromise the precision of lineage
tracing (36, 37). Dual recombinases using Cre and Dre would
provide an alternative approach for more precise lineage
tracing and gene targeting of a specific cell population (38). To
enable Cre+Dre responsive DTR, we next generated a new
reporter mouse line by inserting a loxP-flanked and rox-
flanked transcriptional Stop fragment upstream of tdTomato-
2A-DTR cDNA into the Rosa26 locus, combining the Cre-
loxP and Dre-rox systems. We named this line as R26-LR-
tdT-DTR (Fig. 3A), in which tdTomato-2A-DTR could be
activated in cells that expressed both Cre and Dre after the two
Stop cassettes being removed by Cre-loxP and Dre-rox
recombination, respectively (Fig. 3, B and C). The presence
of Cre or Dre recombinase alone would not result in the
expression of tdTomato-2A-DTR (Fig. 3C). DT treatment
would lead to ablation of tdTomato+DTR+ cells (Fig. 3D). We
next examined whether the loxP-flanked or rox-flanked-STOP
cassettes could block the expression of tdTomato-2A-DTR. To
achieve this, we crossed R26-LR-tdT-DTR with ACTB-Cre (37)
and CAG-Dre (2), respectively. ACTB is a housekeeping gene
expressed in cell cytoskeleton of cell in whole organism. Im-
munostaining for tdTomato on sections showed no tdTomato
expression in tissues collected from ACTB-Cre;R26-LR-tdT-
DTR or CAG-Dre;R26-LR-tdT-DTR (Fig. 3E), indicating that
loxP-flanked or rox-flanked STOP blocked the expression of
tdTomato-2A-DTR. These results also demonstrated no Cre-
rox or Dre-loxP recombination in our system.

To characterize the tdTomato and DTR activity in R26-LR-
tdT-DTR, we crossed it with ACTB-Cre and Tnni3-Dre (37),
which specifically target cardiomyocytes in the heart (Fig. 4A).
In this triple knockin mouse line, ACTB-Cre;Tnni3-Dre;R26-
LR-tdT-DTR, expression of Cre and Dre recombinases resul-
ted in tdTomato-2A-DTR expression in TNNI3+ car-
diomyocytes (Fig. 4B). To verify whether tdTomato-2A-DTR
expression and DTR function were specific to cardiomyocytes,
we performed PBS or DT injection in these mice (Fig. 4C). We
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Figure 1. Generation of the R26-R-tdT-DTR mouse line. A, a schematic figure showing the gene targeting strategy for generation of R26-R-tdT-DTR allele.
B, a cartoon figure showing expression of tdTomato and DTR after Dre-rox recombination–mediated removal of Stop cassette. C, a cartoon figure showing
tissue-specific expression of DTR and DT-induced cell ablation. D, genotyping verification of R26-R-tdT-DTR mice by PCR. E, immunostaining for tdTomato
shows no expression of tdTomato in R26-R-tdT-DTR mice. The scale bar represents 100 μm. Each image is representative of five individual biological
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Dual Cre and Dre recombinases-induced cell ablation
speculated that DT treatment could lead to severe heart injury
that limited the movement of the mice. Movement trajectory
line results from water mazing experiments showed that the
motion ability of mice treated with DT for 2 days was severely
impaired compared with the PBS-treated controls (Fig. 4D).
Echocardiographic results showed normal levels of ejection
fraction and fractional shortening of DT-treated mice (data not
shown) that displayed abnormal heart shape (Fig. 4, E and F).
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Whole-mount epifluorescence imaging showed tdTomato sig-
nals in both the DT- and PBS-treated mice. Notably, tdTomato
signals of the DT-treated mice were significantly weaker than
those of PBS-treated controls (Fig. 4G). Immunostaining results
further showed coexpression of DTR and tdTomato in car-
diomyocytes of PBS-treated mice, with the DTR signal being
located in the cell membrane while the tdTomato signal being
observed in the cytoplasm (Fig. 4H). In DT-treated hearts, we
noticed that tdTomato and DTR signals were lost in a large
proportion of myocardium (Fig. 4H). Immunostaining for car-
diac Troponin T (cTnT), a marker of cardiomyocyte (39), and
tdTomato further confirmed that ablation of the tdTomato+

area led to the loss of cTnT signals, indicating the specificity of
cell labeling and depletion after DT treatment (Fig. 4I).
Consistently, TUNEL assays for detection of cell necrosis
revealed more apoptotic signals in the DT-treated than control
hearts (Fig. 4J). Taken together, these data demonstrated that
R26-LR-tdT-DTR could be used for specific labeling and
J. Biol. Chem. (2022) 298(6) 101965 5
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ablation of distinct cell populations using the Cre-loxP andDre-
rox systems.

Having established the R26-LR-tdT-DTR mouse line as a
target model for constitutively active Cre and Dre, we next
asked whether cell labeling and depletion can be operated in a
temporal manner through inducible Cre and Dre recombi-
nases. It is known that hepatocytes of the liver are heteroge-
neous, as peri-central and peri-portal hepatocytes are distinct
in gene expression, cell proliferation, and function (40, 41). For
example, peri-central hepatocytes express CYP2E1 (cyto-
chrome P450, family 2, subfamily e, polypeptide 1) while peri-
portal hepatocytes express Mfsd2a (42). We first tested if our
system could specifically target and ablate peri-central hepa-
tocytes in mouse. We crossed R26-LR-tdT-DTR with Cyp2e1-
DreER to get a double knockin Cyp2e1-DreER;R26-LR-tdT-
DTR mouse line. We then performed AAV8-TBG-Cre injec-
tion that specifically targeted all hepatocytes (Fig. 5, A and B).
In this experimental strategy, loxP-flanked and rox-flanked
Stop cassettes of R26-LR-tdT-DTR would be excised by TBG
promoter–driven Cre and Cyp2e1 promoter–driven DreER
after tamoxifen-induced activation respectively, rendering
tdTomato and DTR expression in Cyp2e1+ hepatocytes
(Fig. 5C). Thereafter, we compared DT- and PBS-treated
mouse livers. Whole-mount epifluorescence analysis showed
that tdTomato signals were detected in PBS-treated livers but
not in DT-treated ones (Fig. 5D). Immunostaining for HNF4a,
DTR, and tdTomato on PBS-treated liver sections showed that
tdTomato and DTR were expressed in the majority of HNF4a+

hepatocytes close to the central veins (Fig. 5, E and F), con-
firming the highly efficient targeting strategy by inducible
recombinases. Moreover, immunostaining for CYP2E1and
tdTomato on sections showed that tdTomato signals were
detected in CYP2E1+ peri-central hepatocytes in PBS-treated
livers that were barely observed after DT treatment (Fig. 5,
G and H), indicating efficient ablation by DT. TUNEL signals
were detected in DT-treated mouse liver sections but not in
PBS-treated controls (Fig. 5I2). Previous studies reported that
CYP2E1 was expressed not only in the liver but also in kidneys
(43, 44). Indeed, we also found that CYP2E1 was expressed not
only in hepatocytes but also in E-cad+ epithelial cells of the
kidneys in Cyp2e1-DreER;Rosa26-rox-stop-rox-tdTomato
(R26-R-tdT) mouse (Fig. 5J). Specific targeting of hepatocytes
by AAV8-TBG-Cre ensured that loxP-flanked Stop would be
excised in the liver but not in other organs such as the kidneys
(Fig. 5, J and K). Therefore, AAV8-Cre and Cyp2e1-DreER
removed two Stop cassettes in hepatocytes but one Stop cas-
settes in renal epithelial cells, ensuring tdTomato and DTR
expression only in the liver (Fig. 5, J and K).

Next, we asked whether the loxP-flanked Stop cassette could
be excised by inducible Cre recombinase. We crossed Mfsd2a-
CreERwith R26-LR-tdT-DTR to get theMfsd2a-CreER;R26-LR-
tdT-DTR double knockin mice for targeting peri-portal hepa-
tocytes. We treated these mice with AAV8-TBG-Dre and
tamoxifen to enable tdTomato and DTR expression in Mfsd2a+

peri-portal hepatocytes, and with DT for ablation of tdTomato+

hepatocytes (Fig. 6, A and B). The liver specific TBG promoter–
driven Dre recombinase removed rox-flanked Stop of R26-LR-
tdT-DTR. Tamoxifen induced the activation of Mfsd2a-CreER
that subsequently removed loxP-flanked Stop, driving expres-
sion of tdTomato-2A-DTR in the Rosa26 locus (Fig. 6C). We
next collected livers from PBS- or DT-treated mice for analysis
(Fig. 6B). Whole-mount epifluorescence results showed that
tdTomato signals were detected in PBS- but not DT-treated
mouse livers (Fig. 6D). Immunostaining for HNF4a, DT, and
tdTomato on PBS-treated livers revealed that tdTomato and
DTR were expressed in hepatocytes close to peri-portal veins
(Fig. 6, E and F). Highly efficient depletion of tdTomato+ he-
patocytes was demonstrated in the DT-treated livers compared
with the PBS-treated ones (Fig. 6, G and H) and evidenced by
TUNEL+ signals in the DT-treated group (Fig. 6I). Since
MFSD2A was expressed not only in hepatocytes but also in
endothelial cells of the brain (42, 45), we found tdTomato+PE-
CAM+ endothelial cells and tdTomato+NeuN+ neurons of the
brain, as well as tdTomato+E-cad+ epithelial cells of the small
intestine in Mfsd2a-CreER;Rosa26-loxP-stop-loxP-tdTomato
(R26-L-tdT) mice (Fig. 6J). Furthermore, we attempted to ach-
ieve specific targeting of hepatocytes by AAV8-TBG-Dre that
removed loxP-flanked Stop in hepatocytes but not in cells of
other organs. Administration of AAV8-Dre and activation of
Mfsd2a-CreER following tamoxifen removed two Stop cassettes
in hepatocytes but one Stop cassettes in brain endothelial, brain
neuronal, and intestinal epithelial cells, ensuring tdTomato and
DTR expression and, therefore, depletion of tdTomato+ hepa-
tocytes (Fig. 6, J and K). Taken together, our studies provided a
dual recombinases–driven inducible tdTomato-DTR system for
cell type–specific tracing and elimination in vivo.
Discussion

In this study, we generated two reporter mouse lines, R26-R-
tdT-DTR and R26-LR-tdT-DTR, for in vivo genetic lineage
tracing and cell subset elimination simultaneously.R26-LR-tdT-
DTR permits dual recombinases–mediated activation of re-
porter and DTR, enhancing the precision of genetic targeting
compared with that driven by a single recombinase. We pro-
vided working examples by targeting specific subpopulations of
hepatocytes, such as peri-central and peri-portal hepatocytes,
through dual recombinases–mediated cell labeling and ablation.
Additionally, the reporter and DTR expression in one allele not
only reduced the numbers of mouse crossing to ensure incor-
poration of reporter and DTR into the Rosa26 locus but also
facilitated clearer data interpretation with the same efficiency of
labeling and depletion in the reporter+DTR-expressing cells.
These two mouse lines would be widely applicable to study the
in vivo function of heterogeneous cell populations not restricted
to the cardiovascular and liver research fields but also in mul-
tiple organ systems during pathophysiological development.

One effective approach to more precisely targeting a distinct
cell subset is to use two marker genes to define a cell popu-
lation. Taking advantage of two orthogonal recombinases Cre
and Dre, we recently used the combination of the Cre-loxP
and Dre-rox systems to lineage trace stem cells in lung and
artery wall (35, 46), record cell proliferation in liver and heart
(40, 47), trace EMT in cancer metastasis and fibrosis (48, 49),
J. Biol. Chem. (2022) 298(6) 101965 7
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treated with PBS. White scale bar represents 100 μm. C, central vein. G, immunostaining for CYP2E1, tdTomato, and E-cad on liver sections from mice
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geted hepatocytes specifically by using R26-LR-tdT-DTR mice and AAV8-TBG-Cre injection, while Cyp2e1-DreER targeted hepatocytes and kidney
epithelial cells by using R26-R-tdT. Each image is representative of five individual biological samples. DTR, diphtheria toxin receptor; DT, diphtheria
toxin.
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and elucidate the role of cardiac stem cells during heart repair
(50, 51). Such an intersectional genetic approach has led to
powerful application, assisting the understanding of cellular
mechanisms during development, tissue homeostasis, regen-
eration, tumor growth, and metastasis (52, 53). However, the
broad application of a dual recombinases–mediated genetic
approach has been used for cell labeling only. To study the
function of a particular cell type within a heterogeneous
population, we developed the R26-LR-tdT-DTR mouse line
driven by both Cre-loxP and Dre-rox recombination systems,
rendering cells to express both tdTomato and DTR for
simultaneous cell labeling and elimination. The advantage of
this line is that it synchronizes the efficiency of tdTomato and
DTR expression, so that tdTomato could be a faithful readout
of DTR-expressing cells. As working examples, we crossed
R26-LR-tdT-DTR with ACTB-Cre and Tnni3-Dre to excise
loxP-flanked and rox-flanked Stop cassettes in Tnni3+ car-
diomyocytes. Therefore, induced cell death was only confined
to DTR-expressing cardiomyocytes.

The mammalian liver has remarkable regenerative capability
after injury. The hepatocytes of the liver lobule are heteroge-
neous in gene expression, proliferation rate, and metabolic
functions (54–56). For example, peri-central hepatocytes ex-
press CYP2E1 and execute glycolysis and drug metabolism,
while peri-portal hepatocytes express MFSD2A and execute
gluconeogenesis and ammonia detoxification (41). Considering
the distinct gene expression and functions of different hepato-
cyte subsets, we aimed to label these subpopulations specifically
in vivo and eliminate them via DTR activation. While CYP2E1
andMFSD2A are highly enriched in peri-portal and peri-central
regions of liver lobule, these genes are not only restricted to
hepatocytes as their expression could also be detected in other
cell types of the brain, kidneys, and intestine.We, therefore, took
advantage of intersectional genetic method to genetically ablate
CYP2E1+ or MFSD2A+ hepatocytes through Cre+Dre-
mediated DTR expression in R26-LR-tdT-DTR. Compared
with single recombinase-mediated genetic targeting, dual
recombinases–mediated tracing and ablation were specific
without unwanted ablation of nontarget cells outside the liver.
Indeed, our results confirmed that cell death was confined to
CYP2E1+ or MFSD2A+ hepatocytes.

In summary, we generated two novel mouse lines to ensure
simultaneous expression of tdTomato and DTR operated with
a synchronized efficiency driven by Dre or Cre+Dre recom-
binases, allowing lineage tracing and inducible ablation of a
distinct cell subset within a heterogeneous population. This
novel R26-LR-tdT-DTRmouse line could be widely used in cell
models driven by dual recombinases to achieve more specific,
efficient, and temporally controlled genetic targeting for
studying cell function during the pathophysiological develop-
ment within multiple organ systems in vivo.
Experimental procedures

Mouse lines

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
10 J. Biol. Chem. (2022) 298(6) 101965
Laboratory Animals of the Chinese Academy of Sciences.
The protocol was approved by the Institutional Animal Care
and Use Committee of the Shanghai Institute of Biochem-
istry and Cell Biology, Chinese Academy of Sciences. The
R26-R-tdT-DTR and R26-LR-tdT-DTR mouse lines were
generated by Shanghai Model Organisms and will be shared
upon request.

For R26-R-tdT-DTR and R26-LR-tdT-DTR, targeting vec-
tors were designed to contain a CAG promoter, a rox-flanked
Stop fragment, and a loxP-flanked Stop fragment followed by a
tdTomato fluorescent protein, a 2A peptide, and the simian
DTR. The cassette of pCAG-rox-Stop-rox-tdTomato-2A-DTR
or pCAG-loxP-stop-loxP-rox-Stop-rox-tdTomato-2A-DTR
was inserted into the Rosa26 locus via electroporation of
C57BL/6-derived embryonic stem cells. Stop is a Neo gene
followed by multiple poly-A sequences. Correctly targeted
embryonic stem cells were microinjected into C57BL/6 blas-
tocysts. The resulting chimeric founders were crossed with
WT C57BL/6 mice to generate heterozygous offsprings. For
R26-R-tdT-DTR, in the absence of Dre, the pCAG promoter
cannot drive tdTomato-2A-DTR expression due to the pres-
ence of the Stop fragment. After mating to mice carrying Dre
recombinase, Dre-mediated excision results in the deletion of
Stop, and the pCAG promoter would then drive the expression
of tdTomato-2A-DTR. For R26-LR-tdT-DTR, the expression
of tdTomato-2A-DTR requires both Cre- and Dre-mediated
recombination simultaneously.

DT treatment

Six to eight week old control and Cdh5-Dre;R26-R-tdT-
DTR, ACTB-Cre;Tnni3-Dre;R26-LR-tdT-DTR, Cyp2e1-
DreER;R26-LR-tdT-DTR (AAV8-TBG-Cre injected), Mfsd2a-
CreER;R26-LR-tdT-DTR (AAV8-TBG-Cre injected) mice were
injected intraperitoneally with DT (Sigma D0564) at a dose of
10 ng/g.

Genomic PCR

We extracted genomic DNA from mouse tails. The tail
tissue was lysed in a lysis buffer at 65 �C for 12 h and then
centrifuged at 15,000 rpm for 8 min to obtain a genomic DNA
supernatant. Next, we used isopropanol to precipitate the
DNA that was washed with 70% ethanol and centrifuged at
15,000 rpm for 3 min. Finally, the DNA was dissolved in
ddH2O.

Water-maze experiment

We put the ACTB-Cre;Tnni3-Dre;R26-LR-tdT-DTR mice in
a large box with a diagonal of 70 cm and videotaped the mice
for 1 min to capture their free movements. For the control
group (+PBS) and the experiment group (+DT, before DT-
treatment), the mice moved randomly and continuously in
the box out of curiosity. Two days after DT or PBS injection,
we videotaped the mice of the control group and the experi-
ment group for 1 min again. The DT-treated mice showed
almost no movement compared to that of the control mice.
After collecting videos, we imported the videos into Fiji
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software (https://imagej.net/software/fiji/) for analysis. For
mouse movements tracking，we used “Animal Tracker” plu-
gin to draw motion trajectory that is indicated by yellow lines.

Echocardiograph

Anesthetized mice underwent transthoracic echocardiog-
raphy using a VisualSonics’ Vevo770 micro-ultrasound system
(FUJIFILM VisualSonics). All measurements were performed
on control and ACTB-Cre;Tnni3-Dre;R26-LR-tdT-DTR mice
at 6 to 8 weeks old. Left ventricle ejection fraction and frac-
tional shortening were measured as a surrogate for cardiac
function.

Tissue collection and immunostaining

Immunostaining was performed according to previously
described protocols (57). Briefly, mouse organs were collected in
PBS on ice and then fixed in 4% paraformaldehyde at 4 �C for 1 h.
After washing in PBS, tissues were treated with 30% sucrose
overnight. They were then embedded in optimum cutting tissue
(OCT, Sakura Finetek) and snap-frozen. Ten micrometer cry-
osections were collected on positively charged slides. Tissues
were blocked with PBS supplemented with 0.1% Triton X-100
and 5% normal donkey serum (Jackson ImmunoResearch Lab-
oratories, Inc) for 1 h at room temperature, followed by primary
antibody incubation overnight at 4 �C. Signals were developed
with Alexa fluorescent secondary antibodies (Invitrogen) and
DAPI (Vector Laboratories) for nuclei couterstaining. Primary
antibodies against the following proteins and dilutionswere used:
human HB-EGF(DTR)( AF-259-NA; 1:100, R & D systems),
tdTomato(600-401-379, lot15724; 1:1000; Rockland), cTnT
(Troponin I)( ab56357;1:200, Abcam), CD31(553370;1:500; BD
PHharmingen), E-cadherin(AF748;1:500, R & D systems),
Glutamine Synthetase (ab49873;1:1000, Abcam), tdToma-
to(5F8;1:100, ChromoTek), HNF4a(3113s;1:1000, Cell Signal-
ling), CYP2E1(ab28146;1:100, Abcam), NeuN(MAB377X;1:200,
Merck). Second antibodies were used: Immpress-a-goat Ig
(horse) (MP-7405; 1:3, Vector Lab), Alexa donkey a-rat 647
(ab150155; 1:1000; Abcam), Alexa donkey a-goat 488 (A11055;
1:1000; Invitrogen), Alexa donkey a-rabbit 488 (A21206; 1:1000;
Invitrogen), Alexa donkey a-rabbit 555 (A31572; 1:1000; Invi-
trogen), Alexa donkey a-goat 555 (A21432; 1:1000; Invitrogen),
Alexa Fluor® 488AffiniPure Donkey a-Goat IgG (H+L) (705-545-
147; 1:1000; JIR). Images were acquired on an Olympus FV3000
confocal microscope (Olympus Corporation) and a Nikon A1
confocal microscope (Nokon Instruments Inc).

Whole-mount epifluorescence microscopy

Collected organs were washed in PBS and then placed on
agar plate for whole-mount epifluorescence acquirement using
the Zeiss AxioZoom V16 (Zeiss Group).

TUNEL assay

TUNEL staining was performed using the In Situ Cell Death
Detection Kit, Fluorescein (Roche, 11684795910, Roche).
Frozen tissue sections were fixed with 4% paraformaldehyde
for 10 to 20 min at room temperature, washed for 30 min with
PBS, and the slides were then transferred into PBS/tween (0.1%
Triton X-100 in PBS) for 5 min at 4 �C. Slides were incubated
with TUNEL reaction mixture for 1 h at 37 �C, and washed
with PBS for 3 times. Images were acquired on an Olympus
FV3000 fluorescent microscope.
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