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Early outbreak detection is a key aspect in the containment of infectious diseases, as

it enables the identification and isolation of infected individuals before the disease can

spread to a larger population. Instead of detecting unexpected increases of infections

by monitoring confirmed cases, syndromic surveillance aims at the detection of cases

with early symptoms, which allows a more timely disclosure of outbreaks. However,

the definition of these disease patterns is often challenging, as early symptoms are

usually shared among many diseases and a particular disease can have several clinical

pictures in the early phase of an infection. As a first step toward the goal to support

epidemiologists in the process of defining reliable disease patterns, we present a novel,

data-driven approach to discover such patterns in historic data. The key idea is to take

into account the correlation between indicators in a health-related data source and the

reported number of infections in the respective geographic region. In an preliminary

experimental study, we use data from several emergency departments to discover

disease patterns for three infectious diseases. Our results show the potential of the

proposed approach to find patterns that correlate with the reported infections and to

identify indicators that are related to the respective diseases. It also motivates the need

for additional measures to overcome practical limitations, such as the requirement to

deal with noisy and unbalanced data, and demonstrates the importance of incorporating

feedback of domain experts into the learning procedure.

Keywords: outbreak detection, syndromic surveillance, rule learning, knowledge discovery, time series analysis

1. INTRODUCTION

Throughout history, major outbreaks of infectious diseases have caused millions of deaths and,
therefore, pose a serious threat to public health. Among themost well-known outbreaks is theGreat
Influenza Pandemic between the years 1918 and 1920, which has killed approximately 40 million
people worldwide, as well as the recent, still ongoing, pandemic of SARS-CoV-2 (Barro et al., 2020).
A fundamental strategy to diminish or even prevent the spreading of infectious diseases is to detect
local outbreaks as early as possible in order to identify and isolate infected individuals. For the early
detection of unexpected increases in the number of infections, which may be an indicator for an
outbreak, infectious diseases are under constant surveillance by epidemiologists.

Besides tracking the number of confirmed infections based on laboratory testing, a promising
approach to outbreak detection is syndromic surveillance (Henning, 2004), which focuses on
monitoring the number of cases with early symptoms. Compared to laboratory testing, which can
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take several days until results are available, it allows for a
more timely detection of outbreaks. Moreover, a much larger
population can be put under surveillance by using health-related
data sources that do not depend on confirmed results. For
example, the number of antipyretic drug sales in pharmacies
could be considered as an indicator for an outbreak of influenza.
Or, based on data that is gathered in emergency departments, the
number of patients with a fever or other related symptoms could
serve as another indicator for this particular disease.

One of the major challenges in syndromic surveillance is the
definition of such indicators, also referred to as syndromes or
disease patterns. They highly depend on the infectious disease
and the data source under surveillance. Since early symptoms
are usually shared among many diseases and because a particular
disease can have several clinical pictures at early stages of an
infection, it is difficult to obtain reliable syndromes. For this
reason, the definition of disease patterns is usually based solely
on expert knowledge of epidemiologists, a time-consuming and
laborious process (Mandl et al., 2004). Thismotivates the demand
for tools that allow for a user-guided generation and comparison
of syndrome definitions. To be useful in practice, such tools
should be flexible enough to be applied to different types of
data (Hopkins et al., 2017).

In this work, we investigate a data-driven approach that
aims at supporting epidemiologists in the process of identifying
disease patterns for infectious diseases. It discovers syndrome
definitions from health-related data sources, based on their
correlation to the reported number of infections in the respective
geographical area. As the first contribution of this work, we
introduce a formal definition of this correlation-based discovery
task. Our second contribution is an algorithm for the automatic
extraction of disease patterns that utilizes techniques from
the field of inductive rule learning. To provide insight into
the data, the syndromes it discovers may be suggested to
epidemiologists, who can adjust the input or the parameters of
the algorithm to interactively refine the syndromes according to
their domain knowledge. To better understand the capabilities
and shortcomings of the proposed method, we evaluate its
ability to reconstruct randomly generated disease patterns with
varying characteristics. Furthermore, we apply our approach
to emergency department data to learn disease patterns for
Influenza, Norovirus and SARS-CoV-2. To assess the quality of
the obtained patterns, we discuss the indicators they are based on
and relate them to the number of infections according to publicly
available reports, as well as handcrafted syndrome definitions.

2. PRELIMINARIES

In the following, we formalize the problem that we address in the
present work, including a definition of relevant notation and an
overview of related work.

2.1. Problem Definition
We are concerned with the deduction of patterns from a health-
related data source X = {x1, . . . , xN} ⊂ X . It incorporates
information about individual instances xn ∈ X from a population
X , which are represented in terms of a finite set of predefined

attributes A = {a1, . . . , aK}. An instance x = (x1, . . . , xK),
e.g., representing a patient that has received treatment in an
emergency department, assigns discrete or numerical values xk to
the k-th attribute ak. For example, discrete attributes can be used
to specify a patient’s gender, whereas numerical attributes are
suitable to encode continuous values, such as body temperature,
blood pressure, or the like. The values for individual attributes
may also be missing, e.g., because some medical tests have not
been carried out as part of an emergency treatment. In addition,
each instance in a data source is subject to a mapping h :N+ →

N+. It associates the n-th instance with a corresponding period
in time, identified by a timestamp t = h (n). Instances that
correspond to the same interval, e.g., to the same week, are
assigned the same timestamp t : 1 ≤ t ≤ T.

For each timestamp t, the instances in a data source may be
associated with, a corresponding target variable yt ∈ y must be
provided as part of a secondary data source y =

(

y1, . . . , yT
)

∈ Y .
The target space Y corresponds to the number of infections that
may occur within consecutive periods of time. Consequently, a
particular target variable yt ∈ N+ specifies how many cases
related to a particular infectious disease have been reported for
the t-th time interval.

The learning task, which we address in this work, requires to
find an interpretable model f :X → Y . Given a set of instances
X ⊂ X that are mapped to corresponding time intervals via a
function h, it provides an estimate ŷ = f

(

X, h
)

=
(

ŷ1, . . . , ŷT
)

∈

Y of the number of infections per time interval. The selection of
instances and the number of reported cases, which are provided
for the training of such model, must neither originate from
the same source, nor comprise information about identical
subgroups of the population. As a consequence, the estimates of
a model are not obliged to reflect the provided target variables
in terms of their absolute values. Instead, we are interested in
capturing the correlation between indicators that may be derived
from the training instances and the number of infections that
have arised during the considered timespan. To assess the quality
of a model, we compare the estimates it provides to the target
variables with respect to a suitable correlation coefficient, such as
Spearman’s ρ, Kendall’s τ , or Pearson’s correlation. For example,
one could align patient data from a medical office with locally
reported flu cases. In Figure 1, we show the number of patients
per timestamp that fulfill two exemplary syndrome definitions
of this particular disease. One of the syndromes (“fever AND

cough”) covers less cases than the other, but has a higher Pearson
correlation coefficient (0.98 compared to 0.88) and, therefore,
matches the locally reported cases more closely.

2.2. Related Work
Disease patterns for syndromic surveillance are usually defined
according to the knowledge of domain experts. This requires
a manual examination of the available health-related data to
identify indicators that may be related to a particular disease
at hand. For example, Edge et al., 2006 and Muchaal et al.
(2015) analyze information about the sales of pharmaceuticals
to reason about the spread of Norovirus infections, based on
their effectiveness against gastrointestinal symptoms. Similarly,
the data that is gathered in emergency departments may also
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FIGURE 1 | Exemplary comparison of two syndrome definitions (blue lines) with reported cases (orange line). The Pearson’s correlation for “fever AND cough” is 0.98

and for “cough OR runny nose OR sore throat” is 0.88.

serve as a basis for the definition of disease patterns. In this
case, definitions are usually based on the symptoms of individual
patients and the diagnoses made by the medical staff. For
example, Ivanov et al. (2002) and Suyama et al. (2003) rely on
standardized codes for the International Classification of Diseases
(ICD) (Trott, 1977). Boender et al. (2021) additionally use
chief complaints of the patients at the emergency departments.
The majority of syndrome definitions are targeted at common
infectious diseases, such as gastrointestinal infections, influenza-
like illnesses, or respiratory diseases (e.g., Suyama et al.,
2003; Heffernan et al., 2004; Boender et al., 2021; Bouchouar
et al., 2021). However, they are also used to detect other
health-related epidemics, e.g., increased usage of psychoactive
substances (Nolan et al., 2017).

The deduction of indicators from unstructured data, such
as textual reports of complaints or diagnoses, is particularly
challenging. To be able to deal with such data, text documents
are often represented in terms of keywords they consist of. For
example, (Lall et al., 2017) use syndromes that apply to the
keywords contained inmedical reports. Similarly, Heffernan et al.
(2004) use a list of exclusive keywords to reduce the chance
of misclassifications, Bouchouar et al. (2021) utilizes regular
expressions to extract symptoms from texts and Ivanov et al.
(2002) use a classifier system that takes textual data as an input
to assign syndromes to individual patients. In order to train a
classifier, the latter approach requires labeled training data that
must manually be created by experts. The analysis of textual data
is even more profound in approaches to syndromic surveillance
that are based on web data. For example, Velardi et al. (2014)
analyze Twitter messages to capture indicators for the spread of
influenza-like illnesses. Starting with a handcrafted set of medical
conditions that are related to the respective disease, they learn a
language model that aims to identify closely related terms based
on clustering.

The problem of learning syndrome definitions in a data-
driven way, without relying on expert knowledge, has for
example been addressed by Kalimeri et al. (2019). The
authors of this work propose an unsupervised, probabilistic

framework based on matrix factorization. Their goal is to
identify patterns of symptoms in structured data that has
been obtained from participatory systems. Given a set of
19 symptoms, e.g., fever or vomiting, they construct a
matrix that incorporates information about the occurrences
of individual symptoms over time. Ultimately, syndromes
can be generated from this matrix by extracting latent
features that correspond to linear combinations of groups
of symptoms.

Another method that relies on structured data is proposed
by Goldstein et al. (2011). It is aimed at capturing the
likelihood of syndromes for a particular infectious disease.
The authors propose to use expectation maximization and
deconvolution to identify syndromes, which are highly
correlated with the occurrences of symptoms that have
been reported in regular time intervals. However, their
approach does only allow to evaluate and compare disease
patterns that have been specified in advance. Even though
the aforementioned algorithms deal with structured data
that is less cumbersome to handle than unstructured inputs,
they have only be applied to small and pre-selected sets
of features.

The problem of learning from assignments of target variables
to sets of instances, rather than individual instances, is known as
multiple instance learning (Carbonneau et al., 2018). Chevaleyre
and Zucker (2001) tackle such task by adapting the quality
criterion used by the well-known rule learning method RIPPER.
To be able to deduce classification rules from sets of instances,
Bjerring and Frank (2011) incorporate the separate-and-conquer
rule induction technique into a tree learner. Both approaches
are limited to the assignment of a binary signal to a bag of
instances and are not intended to cope with multiple instance
regression tasks (Ray and Page, 2001). The mapping of numeric
values to bags of instances, as in the syndrome definition
learning task at hand, is a much less explored problem in
the literature. We are not aware of any existing work that
approaches this kind of problem with the goal to obtain
rule-based models.
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3. LEARNING OF SYNDROME
DEFINITIONS

In the following, we propose an algorithm for the automatic
induction of syndrome definitions, based on the indicators that
can be constructed from a health-related data source. Each
indicator cm, which is included in such a model, refers to a
certain attribute that is present in the data. It compares the values,
which individual instances assign to this particular attribute, to
a constant using relational operators, such as = if the attribute
is discrete, or ≤ and > if it is numerical. By definition, if an
indicator is concerned with an attribute for which an instance’s
value is missing, the indicator is not satisfied. We strive for a
combination of different indicators via logical AND (∧) and OR

(∨) operators. The model that is eventually produced is given
in disjunctive normal form, i.e., as a disjunction of conjunctions.
Such a logical expression r = r1∨· · ·∨rL with rl = cl,1∧· · ·∧cl,M
evaluates to r (xn) = 1 (true) or r (xn) = 0 (false), depending
on whether it is satisfied by a given instance xn or not. If the
context is clear, we abbreviate cl,i with ci. For each time interval
t ∈ [1, . . . ,T], the number of infected cases, as estimated by a
logical expression r, calculate as

ŷ = r (X) =
(

∑

xn∈X
Jh (n) = tKr (xn)

)

1≤t≤T
, (1)

where JpK = 1 if the predicate p is true, and 0 otherwise. That
is, for a particular time interval, the number of infections is given
as the total number of instances that belong to the time interval
according to the mapping h and match the indicators that are
included in the logical expression.We refer to a logical expression
r that does not consist of any indicators as the empty hypothesis.
In such case, where r (3xn) = 0,∀xn, the estimates for all time
intervals are zero.

The representation of syndromes introduced above is closely
related to sets of conjunctive rules rl as commonly used in
inductive rule learning—an established and well-researched area
of machine learning (e.g., Fürnkranz et al., 2012 provide an
extensive overview on the topic). Consequently, we rely on
commonly used techniques from this particular field of research
to learn the definitions of syndromes. We use a sequential
algorithm that starts with an empty hypothesis to which new
conjunctions of indicators r1, . . . , rL are added step by step. Given
a data source that incorporates many features, the number of
possible combinations of indicators can be very large. For this
reason, we rely on top-down hill climbing to search for suitable
combinations.With such an approach, conjunctions of indicators
that can potentially be added to a model are constructed greedily.
At first, single indicators are taken into account individually.
They are evaluated by computing the overall quality of a model
that results from the addition of an indicator. The one that
results in the greatest quality is ultimately selected. Afterwards,
combinations that possibly result from a conjunction of already
chosen indicators with an additional one are evaluated in the
same way. The search continues to add more indicators, resulting
in more restricted patterns that apply to fewer instances, as
long as an improvement of the model’s quality can be achieved.

Optionally, the maximum number of indicators per conjunction
M can be limited via a parameter. If M = 1, the algorithm
is restricted to learn disjunctions of indicators. Furthermore,
we enforce a minimum support s ∈ R with 0 < s < 1,
which specifies the number of instances N · s a conjunction of
indicators must apply to. Once it has decided for a conjunction
of indicators to be included in the model, the algorithm attempts
to learn another conjunction to deal with instances that have
not yet been adequately addressed by the model. The training
procedure terminates as soon as it is unable to find a new pattern
that improves upon the quality of the model. In addition, an
upper bound can be imposed on the number of disjunctions L
by the user.

The search for suitable indicators and combinations thereof
is guided by a target function to be optimized at each training
iteration. It assesses the quality that results from adding an
additional conjunction of indicators to an existing model in
terms of a numeric score. We denote the estimates that are
provided by a model after the l-th iteration as ŷ(l). When adding
a conjunction of indicators rl to an existing model, the estimates
of the modified model for each available time interval can be
computed incrementally as

ŷ(
l) = r(l) (X) = r(l−1) (X) + rl (X) . (2)

Typically, the addition of indicators to a model does only
affect the estimates for certain time intervals. The estimates
for time intervals that are unaffected by the indicators remain
the same as in the previous training iteration. We compare a
model’s estimates for consecutive time intervals to the numbers
infections that are reported for each time interval, referred to
as the ground truth, and assess their quality in terms of the
Pearson correlation coefficient. In case of a positive correlation
coefficient, the numbers of infections increase over time, whereas
they decrease in case of a negative coefficient. Regardless of the
overall trend in the number of infections, the provided estimates
are strongly correlated with the ground truth, if the measure
indicates a strong positive or negative correlation. We, therefore,
assess the quality of a model in terms of the absolute Pearson
correlation coefficient. At a particular training iteration, it can be
computed in a single pass over the target time series y and the

current estimates ŷ(l) according to the formula

mP

(

y, ŷ(l)
)

:=

∣

∣

∣

∣

∣

∣

∣

∣

T
∑T

t yt ŷt
∑T

t yt
∑T

t ŷt
√

T
∑T

t y
2
t −

(

∑T
t yt

)2
√

T
∑T

t ŷ
2
t −

(

∑T
t ŷt

)2

∣

∣

∣

∣

∣

∣

∣

∣

.

(3)
If the score that is computed for a potential modification
according to the target function mP is greater than the quality
of the current model, it is considered an improvement. Among
all possible modifications that are considered during a particular
training iteration, the one with the greatest score is preferred. By
using a measure of correlation, such as the Pearson correlation
coefficient, we ensure that a model’s estimate for individual time
intervals must not necessarily be close to the corresponding
number of infections that are reported for the same time interval
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in terms of their absolute value. Instead, the estimated time series
should correlate to the reported number of infections over time,
i.e., it should replicate temporal patterns in the data, such as
seasonal peaks with high numbers of infections. Relying on a
correlation measure, rather than comparing a model’s estimates
to the ground truth in terms of absolute values, enables to learn
from training instances that do not necessarily describe all cases
that are included in the ground truth.

4. EVALUATION

To evaluate the previously proposed learning approach, we have
implemented the methodology introduced above by making
use of the publicly available source code of the BOOMER rule
learning algorithm (Rapp et al., 2020). In adherence to the
principles of reproducible research, our implementation can be
accessed online1. A major goal of the empirical study, which is
outlined in the following, is to investigate whether the proposed
methodology is able to deduce patterns from health-related data
that correlate with the number of infections supplied via a
secondary data source.

In a first step, we conducted a series of experiments using
synthetic syndrome definitions. The objective was to validate the
algorithm and to better understand its capabilities and limitations
when it comes to the reconstruction of known disease patterns
in a controlled environment. On the one hand, we considered
synthetic syndromes with varying characteristics and complexity.
On the other hand, we investigated the impact that the temporal
granularity of the available data has on the learning approach.
As elaborated below, the health-related data used in this work
is available on a daily basis. By using synthetic syndromes, we
were able to validate the algorithm’s behavior when dealing with
a broader or more fine-grained granularity as well. The use
of synthetic syndromes also allows to investigate the ability of
the proposed approach independently of the negative effects of
artifacts that may be present in real data. This includes delays of
reports, inaccuracies in the reported dates or instances that are
present in one data source, but not in the other. For example,
cases may have been reported in one of the considered districts,
but have not been treated in one of the emergency departments
included in our dataset. Vice versa, it is also possible that cases
have been treated at one of the considered departments but have
not been reported to the public agencies.

Such artifacts almost certainly play a role in our second
experiment, where we tried to discover patterns that correlate
with the publicly reported cases. We selected cases from the
notifiable diseases of Influenza and Norovirus, which have
extensively been studied in existing work (e.g., Heffernan et al.,
2004; Muchaal et al., 2015; Kalimeri et al., 2019), as well as of
the recently emerged SARS-CoV-2, which has for example been
analyzed by Bouchouar et al. (2021). To evaluate whether the
algorithm is able to identifymeaningful indicators that are related
to these particular diseases, we provide a detailed discussion
of the discovered syndromes and compare them to manually
defined disease patterns.

1https://github.com/mrapp-ke/SyndromeLearner

TABLE 1 | Attributes included in the emergency department data.

Missing

Name Type #Values values in %

1 Diagnosis

MTS presentation Discrete 57 0.01

MTS indicator Discrete 179 5.10

ICD code Discrete 5901 65.45

ICD code (short) Discrete 1509 65.45

2 Demographic Information

Gender Discrete 3 0.00

Age Discrete 21 0.00

3 Vital Parameters

Blood pressure systolic Numeric − 57.19

Blood pressure diastolic Numeric − 57.22

Temperature Numeric − 59.31

Respiration rate Numeric − 59.55

Pulse frequency Numeric − 91.91

Oxygen saturation Numeric − 57.18

4 Contextual Information

No isolation Discrete 11 1.81

Transport Discrete 6 59.74

Disposition Discrete 13 90.56

4.1. Experimental Setup
4.1.1. Health-Related Data
In line with related work on syndromic surveillance (e.g., Ivanov
et al., 2002; Suyama et al., 2003; Boender et al., 2021), we relied on
routinely collected and fully anonymized data from 12 German
emergency departments, which capture information about
patients that have consulted these institutions between January
2017 and April 2021. Although the emergency department data
that we have used for our experiments provides valuable insights
into the clinical symptoms of thousands of patients, it is restricted
to cases that required medical treatment. As it does not include
patients with early or mild symptoms that did not demand
for medical attention, the data does only entail information
about a small subpopulation. We consider the limited availability
of training data, which is inherent to many machine learning
problems and is not restricted to the type of data used in this
work, as one of the main challenges of the learning task at hand.
We hope to address this practical limitation by focusing on the
correlation with the reported number of infections according
to a secondary data source, which provides a more exact
estimate of the overall population’s size, rather than modeling
the exact number of infectious cases that are present in the
health-related data.

As shown in Table 1, we have extracted 15 attributes
from the emergency department data. Each of the available
attributes corresponds to one out of four categories. The first
category, diagnosis, includes an initial assessment in terms of the
Manchester Triage System (MTS) (Gräff et al., 2014). It is obtained
for each patient upon arrival at an emergency department.
Besides, this first category also comprises an ICD code (Trott,
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TABLE 2 | Pearson correlation between cases identified by automatically learned

syndromes on different feature categories and actually reported cases, as well as

cases that match the handcrafted syndrome definitions.

Feature categories Reported Handcrafted

1 2 3 4 cases syndromes

Influenza

X 0.9354 0.9917

X X 0.9357 0.9796

X X 0.9480 0.9768

X X 0.9366 0.9948

X X X X 0.9493 0.9800

SARS-CoV-2

X 0.9399 0.9473

X X 0.9454 0.9219

X X 0.9528 0.8689

X X 0.9464 0.9506

X X X X 0.9528 0.8689

Norovirus

X 0.7669 0.2761

X X 0.7669 0.2761

X X 0.7303 0.1470

X X 0.7167 0.1608

X X X X 0.7242 0.1672

1977) that represents a physician’s assessment. In addition to
the full ICD code, we also consider a more general variant
that consists of the leading character and the first two digits
(e.g., U07 instead of U07.1). Features that belong to second
category, demographic information, indicate the gender and age
of patients, whereas vital parameters correspond to measurement
data, such as blood pressure or pulse frequency, that may have
been registered by medical staff. Features of the last category,
contextual information, may provide information about why
a patient was possibly quarantined (isolation), the means of
transport used to get to the emergency department (transport),
and the status when exiting the department (disposition).

In accordance with the findings of Hartnett et al. (2020),
we observed a reduced number of emergency department visits
during the first weeks of the SARS-CoV-2 pandemic. However,
preliminary experiments suggested that this anomaly has no
effect on the operation of our algorithm. To obtain a single
dataset, we have merged the data from the considered emergency
departments. It consists of approximately 1,900,000 instances.
Each of the instances corresponds to a particular week (i.e.,
around 8,500 instances per week). Additional information about
the emergency data used in this work is provided by Boender
et al. (2021), who used a slightly different subset of the data set
to evaluate their handcrafted syndrome definitions.

In contrast to existing work on the detection of disease
patterns (e.g., Goldstein et al., 2011; Kalimeri et al., 2019), we
have not applied any pre-processing techniques to the health-
related data. As a consequence, the data contains a lot of
noise, e.g., diagnoses related to injuries, and many missing
values (cf. Table 2). Manual preparation of the data, such as

the selection of symptoms that are known to be related to an
infectious disease, can be expected to reduce the level of noise and
therefore reduce the risk of finding patterns that are irrelevant
to a particular disease. Nevertheless, we have decided against
such a pre-processing step, because it demands for a manual
analysis of the data by domain experts. When dealing with large
amounts of data this process can become very time consuming
and must be repeated for different data sources and diseases.
Instead, we aim to develop a tool that helps experts in the process
of finding syndrome definitions and keeps the need for manual
inspection of the data at a low level. We therefore strive for
a machine learning method that is able to deal with different
types of data sources and works independently of any particular
disease without the need for costly pre-processing techniques.
Ideally, it should be able to identify patterns that are most
relevant to a particular disease on its own. Compared to a manual
analysis of the underlying data source, an inspection of the
resulting syndrome definitions, which we consider indispensable
to testify the correctness of syndromes and to identify issues
that may result from noise or other anomalies in the data,
is less complex and time consuming. However, we focus on
the conceptual and algorithmic fundamentals of a data-driven
approach to syndromic surveillance in our experiments and
leave the discussion of how to incorporate feedback that may be
provided by domain experts into the learning procedure to the
analysis of opportunities and limitations in section 5.

4.1.2. Number of Infections
The number of cases corresponding to the infectious diseases
Influenza, Norovirus and SARS-CoV-2 have been retrieved from
the SurvStat2 platform. It is provided by the Robert Koch-
Institut, which is a German federal government agency and
research institute that is responsible for disease control and
prevention. It maintains a database of cases notifiable diseases,
reported under the German “Act on the Prevention and Control
of Infectious Diseases in Man” (“Infektionsschutzgesetz.”) The
SurvStat platform allows to retrieve aggregated data from this
database. Its use comes with limited control over the temporal
and spatial aggregation of the data, which is only available
at a weekly basis and is aggregated across German districts
(“Landkreise” and “Stadtkreise.”) To match the information in
the health-related dataset, we use the weekly reported numbers
for the districts where the considered emergency departments
are located.

4.1.3. Parameter Setting
For all experiments that are discussed in the following, we
have set the minimum support to s = 0.0001. With respect
to the approximately 1,900,000 instances contained in the
training dataset, this means that each conjunction of indicators
considered by the algorithm must apply to at least 190 patients.
The parameter s is necessary, because we assess the quality of
syndromes in terms of their correlation with the ground truth,
rather than taking the absolute number of estimated infections
into account. By enforcing a minimum support, conjunctions of

2https://survstat.rki.de
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indicators that apply to very few instances are discarded. On the
one hand, this reduces the training time, as infrequent indicators
can be ignored. On the other hand, this ensures that the
syndromes apply to minimum fraction of the training instances
and therefore are more general. This is necessary, because we
assess the quality of syndromes in terms of their correlation to
the ground truth, rather than taking the number of estimated
infections into account. Larger values for s restrict the freedoms
of the algorithm and may prevent it from learning syndromes
that correlate with the ground truth if chosen too restrictively.
In preliminary experiments, we have found a minimum support
of s = 0.0001 to produce reasonable results, while keeping the
training time at an acceptable level (typically under 1 min). In
addition, we have limited the maximum number of disjunctions
in a model to L = 50, which ensures that complex patterns can
potentially be learned. However, the algorithm usually terminates
before this threshold is reached.

4.2. Reconstruction of Synthetic
Syndromes
In our first experiment, we validated the ability of our algorithm
to discover disease patterns under the assumption that the
reported cases are actually present in the data. For this purpose,
we defined synthetic syndromes with varying characteristics
from the emergency department data. For each syndrome, we
determined the number of instances they apply to over time. The
goal of the algorithm was to reconstruct the original syndrome
definitions, exclusively based on the correlation with the
corresponding number of cases. For this experiment, we focused
on syndromes that use ICD codes andMTS representations, since
these indicators are most commonly used in related work (e.g.,
Ivanov et al., 2002; Suyama et al., 2003; Boender et al., 2021).
We have not used short versions of the ICD codes due to their
overlap with the full codes. The following three different types of
synthetic syndromes were considered:

1. Conjunctions of indicators (AND):

r = c1 ∧ . . . ∧ cM , whereM ∈ {2, 3}

2. Disjunctions of indicators (OR):

r1 ∨ . . . ∨ rL, where rl = c and L ∈ [2, 9]

3. Disjunctions of conjunctions (AND-OR):

r1 ∨ . . . ∨ rL, where rl = c1 ∧ c2 and L ∈ [2, 5]

For each syndrome type, we generated 100 artificial definitions
by randomly selecting indicators that are present in the data,
such that each indicator and each conjunction of indicators
applies to at least 200 patients. This ensures that the syndromes
that are ultimately generated apply to this particular number
of patients at minimum. In addition, we have considered three
temporal granularities to determine the number of cases different
syndromes apply to. Experiments have been conducted with
counts that are available on a daily, weekly, or monthly basis.
To quantify to which extent our approach is able to reconstruct

the original syndrome definitions, we compute the percentage
of correctly identified patterns, i.e., syndromes that use the
exact same indicators, referred to as the reconstruction rate. A
visualization of the experimental results is given in Figure 2.

Generally, we can observe that the algorithm’s ability to
capture the predefined disease patterns benefits from a more
fine-grained granularity of the available data (e.g., daily instead
of weekly reported numbers). This meets our expectations, as a
greater temporal resolution results in more specific patterns of
covered cases, given a particular syndrome. As a result, it is easier
to identify the indicators that allow to replicate a certain disease
pattern and separate them from unrelated ones. In particular,
syndromes that are exclusively based on disjunctions (OR) or
conjunctions (AND), regardless of their complexity, can reliably
be captured when supplied with daily numbers. When dealing
with a broader temporal granularity, the uniqueness of disease
patterns vanishes and they become more likely to interfere with
the numbers resulting from similar syndromes.

Regarding the different types of predefined syndromes, it
can be seen that their reconstruction becomes more difficult
as their complexity increases. Especially when dealing with
syndromes that include both, disjunctions and conjunctions
(AND-OR), the reconstruction rate mostly depends on the
number of indicators, whereas the temporal resolution plays
a less important role. One the one hand, complex syndrome
definitions apply to fewer training instances, which increases
the imbalance of the learning task at hand. To overcome the
practical limitations that result from imbalanced data, techniques
for over- and undersampling are commonly used in machine
learning. However, such techniques demand for the availability
of labeled data. On the other hand, the results do also show
the limitations of a greedy hill climbing strategy when it comes
to the reconstruction of complex patterns. To overcome this
shortcoming, approaches for the re-examination of previously
induced rules, such as pruning techniques, could be considered.
It is also possible to extend the search space that is explored by
the training algorithm, e.g., by conducting a beam search, where
several promising solutions are explored instead of focusing on a
single one at each step. However, if the patterns, which have been
found by the algorithm, only slightly differ from the predefined
syndromes (e.g., by omitting or including infrequent ICD codes).
While we did not evaluate this in depth, we believe they could
still comprise useful information, e.g., by providing alternative,
but nearly equivalent, descriptions of the syndrome.

4.3. Discovery of Syndrome Definitions
From Real-World Data
In our second experiment, we used the proposed algorithm to
obtain syndrome definitions for the infectious diseases Influenza,
Norovirus, and SARS-CoV-2. In the literature, the quality of
syndromes is either evaluated by experts (e.g., Ivanov et al., 2002;
Heffernan et al., 2004; Lall et al., 2017; Bouchouar et al., 2021) or
by measuring the correlation with reported infections, reported
deaths or expert definitions (e.g., Suyama et al., 2003; Edge et al.,
2006; Velardi et al., 2014; Muchaal et al., 2015; Nolan et al.,
2017; Kalimeri et al., 2019). We follow the latter approach by
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FIGURE 2 | Percentage of successfully reconstructed syndrome definitions of different types for varying complexities of the predefined syndromes.

reporting the Pearson correlation coefficient of the automatically
discovered disease patterns with the publicly reported number of
infections supplied for training, as well as syndromes that have
been handcrafted by ourselves. In addition, we provide a detailed
discussion of the indicators included in our models.

Inspired by the expert syndrome definitions for Influenza
and SARS-CoV-2 used by Boender et al. (2021), we created a
set of similar, but much simpler, definitions solely based on
ICD codes. They incorporate the ICD codes that correspond
to suspected or confirmed cases of a particular disease, i.e.,
J10 (Influenza due to identified seasonal influenza virus) or J11
(Influenza, virus not identified) for Influenza, A08 (viral and
other specified intestinal infections) for Norovirus and U07.1
(COVID-19, virus identified) or U07.2 (COVID-19, virus not
identified) for SARS-CoV-2. We have found the number of cases,
these ICD codes apply to, to be very similar to those matched by
the aforementioned expert definitions.

For each of the considered diseases, we trained several models
using different sets of features. First of all, for a fair comparison
with the handcrafted syndromes, we provided our algorithmwith
the features that belong to the first category in Table 1, i.e., ICD
codes andMTS representations. A visualization of the number of
infections that correspond to the disease patterns that have been
discovered with respect to these features is shown in Figure 3.
Each one of them includes a comparison with the reported
number of infections supplied for training and the number of
cases our handcrafted syndromes apply to, respectively. Note,
that the numbers that correspond to the syndrome definitions
are generally much lower than the reported numbers, as only
a small fraction of detected cases have actually been treated in
emergency apartments. A detailed discussion of the discovered
disease patterns is provided in the following section.

In addition to ICD codes and MTS representations, we have
also conducted experiments, where we provided the algorithm
with one additional set of features, as well as with all features
available. To validate whether the availability of additional
features comes with an advantage for an accurate reproduction of
the infected cases, we rely on the Pearson correlation coefficients
that result from different feature selections in Table 2. For all

experiments, we report the correlation of the autonomously
learned syndromes with both, the number of reported cases
used for training and the cases captured by the handcrafted
syndromes. In the case of Influenza and SARS-CoV-2, the
inclusion of vital parameters introduces a minor advantage
for matching the reported numbers. Understandably, the use
of additional features typically reduces correlation with the
handcrafted syndromes, as they do notmake use of these features.
In the case of Norovirus, the Pearson correlation does not benefit
from the availability of vital parameters. Regardless of any specific
disease, this does also apply to the contextual and demographic
information. We consider the absence of demographic indicators
as positive, as none of the diseases appears to be specific to gender
or age.

4.4. Discussion of Discovered Syndrome
Definitions
As the use of ICD codes and MTS representations is sufficient
in most cases to match the reported number of infections, we
mostly focus on models that have been trained with respect
to these features in the following discussion. A selection of
exemplary syndromes that have been learned by our algorithm
is shown in Table 3.

4.4.1. Influenza
The disease pattern that has been learned by our algorithm for
modeling Influenza strongly correlate with both, the reported
number of infections and the numbers that result from our
handcrafted syndromes. In Figure 3, one can clearly observe an
increase of infections during the first months of each year. The
indicators that have been selected by our algorithm for modeling
the number of Influenza cases include the ICD codes J10 and
J11 that are also included in our handcrafted definition. These
indicators have been selected during the first iterations of the
algorithm and therefore are considered more important than
the subsequent ones. As indicated by using different shades of
blue in Figure 3, patterns found during early iterations (dark
blue) mostly focus on the strongly pronounced seasonal peaks.
Indicators that have been selected at later iterations (lighter blue)
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FIGURE 3 | Number of cases that satisfy the automatically discovered syndrome definitions (blue area) compared to the actual cases (left, orange line) and

handcrafted syndromes (right, black line) for three diseases Influenza (A), SARS-CoV-2 (B), and Norovirus (C).
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TABLE 3 | Exemplary automatically induced syndrome definitions.

1 Influenza

J10 ∨ J11 ∨ “new confusion condition” ∨ Z96.0 ∨ …

1 SARS-CoV-2

(J12 ∧ “breathing problems”) ∨ U07.1 ∨ “pain in lower abdomen” ∨ …

1 Norovirus

J21.0 ∨ D40 ∨ (J34 ∧ “recent problem”)

1 3 Influenza

J10

∨ (J11 ∧ diastolic ≤ 92.5 ∧ systolic ≤ 156.5 ∧ temperature > 38.5)

∨ (temperature ≤ 40.5 ∧ diastolic ≤ 108.5 ∧ systolic ≤ 162 ∧ 187.5 ≤ heart

rate ≤ 207.5)

∨ …

1 2 3 4 Influenza

J10

∨ (J11 ∧ diastolic ≤ 92.5 ∧ systolic ≤ 156.5 ∧ temperature > 38.5)

∨ (temperature ≤ 40.5 ∧ diastolic ≤ 110 ∧ systolic ≤ 162 ∧ 187.5 ≤ heart

rate ≤ 212.5

∧ no isolation ∧ patient sent home)

∨ …

D40, Neoplasm of uncertain/unknown behaviour of male genital organs; J21.0, Acute

bronchiolitis due to respiratory syncytial virus; J10, Influenza due to identified seasonal

influenza virus; J34, Other disorders of nose and nasal sinuses; J11, Influenza, virus

not identified; U07.1, COVID-19, virus identified; J12, Viral pneumonia, not elsewhere

classified; Z96.0, Presence of urogenital implants.

are more likely to match irrelevant cases and hence are often
unrelated to the respective disease. In the case of Influenza, this
includes clearly irrelevant ICD codes, such as Z96.0 (presence of
urogenital implants) or S53.1 (dislocation of elbow, unspecified)
as fourth and fifth indicator, but also codes that may be related
to Influenza-like illnesses, such as J18.8 (other pneumonia) or
J34.2 (deviated nasal septum) at positions 10 and 15. When
the algorithm has access to vital parameters, the indicator J11
is combined with information about blood pressure and body
temperature as follows:

J11 ∧ blood pressure diastolic ≤ 92.5

∧ blood pressure systolic ≤ 156.5

∧ temperature > 38.5

Due to the lack of domain knowledge, we are not qualified to
decide whether such a pattern is in fact characteristic of Influenza.
However, it shows the demand for experts, who are indispensable
for the evaluation of machine-learned models and may use such
a pattern as a starting point for a more detailed analysis of the
underlying data.

4.4.2. SARS-CoV-2
Similar to Influenza, the number of infections with SARS-CoV-
2 according to the ground truth, the handcrafted syndromes
and the machine-learned definitions are strongly correlated. As
seen in Figure 3, the different peaks of SARS-CoV-2 infections
according to the publicly reported numbers are replicated by
both, the handcrafted syndromes and the automatically learned
patterns. When used to learn patterns for SARS-CoV-2, our

algorithm considers the MTS presentation “breathing problem,”
as well as the ICD codes J12 (viral pneumonia) and U07.1
(COVID-19, virus identified), as most relevant. The latter of
these ICD codes is also included in the handcrafted syndrome
definition. Besides clearly irrelevant indicators, it further selects
the ICD code J34.2 (deviated nasal septum) at a later stage of
training that may be related to this particular illness. When
provided with vital parameters, the algorithm decides to use the
ICD code J12 in combination with data about a patient’s blood
pressure and temperature in its most relevant pattern:

J12 ∧ 81.5 < blood pressure systolic ≤ 149.5

∧ blood pressure diastolic ≤ 77.5

∧ temperature > 36.5

4.4.3. Norovirus
As depicted in Figure 3, the correlation between syndromes
and reported numbers is less strong with respect to Norovirus.
However, compared to the handcrafted syndromes, the
automatically discovered patterns appear to better capture the
seasonal outbreaks of this particular disease. Unfortunately,
the algorithm fails to identify any ICD codes that are related
to this particular illness, such as the ones included in our
manual definition or codes related to symptoms like diarrhea.
Instead, it uses indicators like J21.0 (Acute bronchiolitis due
to respiratory syncytial virus) or J34 (Other disorders of nose
and nasal sinuses) in combination with other indicators to
match the reported numbers. This is most probably due to the
similar seasonality of Norovirus and Influenza-like illnesses.
This illustrates another difficulty one may encounter when
pursuing a data-driven approach to syndromic surveillance. If
high numbers of infections with respect to multiple diseases
occur during a similar timespan, the algorithm is not able to
distinguish between indicators that relate to different types of
infections. In such case it is necessary to provide additional
knowledge to the learning algorithm, as it is unable to grasp the
semantics of individual features on its own. In particular, this
motivates the need for an interactive learning approach, where
a human expert interacts with the computer in order to guide
the construction of models. For example, by prohibiting the use
of certain indicators or features that have been identified to be
irrelevant to the problem at hand.

5. DISCUSSION AND LIMITATIONS

Our experimental evaluation using both, synthetic and real-
world data, provided several insights into the problem domain
addressed in this work. First of all, we were able to demonstrate
that a correlation-based learning approach for the extraction
of disease patterns is indeed capable of identifying meaningful
indicators that are closely related to a particular disease under
surveillance. In particular, the learned definitions showed a
similar fit to the real distributions as handcrafted expert
definitions (Figure 3). Also, the experiments with synthetic
syndrome definitions showed a good reconstruction rate,
and the discovered real-world syndrome definitions contained
plausible features.
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Nevertheless, the frequent inclusion of unrelated indicators
revealed some challenges and limitations of such an approach.
Most of them relate to the fact that the training procedure has
only limited access to the target information associated with
each patient. In contrast to fully labeled data, where information
about each patient’s medical conditions are available, the learning
method is restricted to broad information about a large group
of individuals. In addition, the use of temporally aggregated
data, depending on its granularity, introduces ambiguity into
the learning process. As a result of these constraints, several
solutions that satisfy the evaluation criterion to be optimized
by the learner exist, even though many of them are undesirable
from the perspective of domain experts. This is evident from
the fact that the tested algorithm, regardless of the disease and
the features used for training, was always able to find strongly
correlated patterns, despite the use of unrelated indicators. As
another source of problems, we identified the noise, potential
inconsistencies and missing pieces of information that may
be encountered when dealing with unprocessed and unfiltered
real-world data. The consequences become most obvious when
taking a look at the results with respect to Norovirus, where
the algorithm failed to detect meaningful syndrome descriptions
due to the overlap to other, more frequent, diseases with
a similar seasonality and more pronounced patterns in the
reported numbers.

So far, we were only interested in the identification of patterns
that match the target variables as accurate as possible. However,
the goal of machine learning approaches usually is to obtain
predictions for unseen data. To be able to generalize well beyond
the provided training data, this requires models to be resistant
against noise and demands for techniques that effectively prevent
overfitting. The incorporation of such techniques into our
learning approach may improve its ability to find useful patterns
despite the noise and ambiguities that are present in the data.
For example, successful rule learning algorithms often come with
pruning techniques that aim at removing problematic clauses
from rules after they have been learned. This requires to split
up the training data into multiple partitions in order to be able
to obtain unbiased estimates of a rule’s quality, independent of
the data used for its induction. By splitting up the time series
data, the quality of indicators that are taken into account for
the construction of syndromes could more reliably be assessed in
terms of multiple, independent estimates determined on different
portions of the data. Despite such technical solutions, we believe
that the active participation of domain experts is indispensable
for the success of machine-guided syndromic surveillance. An
interactive learning approach, where the syndromes that are
discovered by an algorithm are suggested to epidemiologists
and feedback is fed back into the system, may prevent the
inclusion of undesired patterns and would most likely help to
increase the acceptance of machine learning methods among
healthcare professionals.

Furthermore, we consider the use of the Pearson correlation
coefficient as a limitation of our approach. When modeling
the outbreak of a disease, it is especially important to properly
reflect the points in time that correspond to high numbers of
infections. Other correlation measures, like weighted variants

of the Pearson correlation coefficent, may provide advantages
in this regard. We expect this aspect to be particularly relevant
when modeling rather infrequent diseases with generally low
incidences. Another problem are possible discrepancies between
the data obtained from the emergency departments and the data
that incorporates information about the number of infections,
e.g., resulting from reporting delays. To circumvent potential
issues that may result from such inconsistencies, approaches
that have specifically been designed for measuring the similarity
between temporal sequences, like dynamic time warping (Müller,
2007), could be used in the future. They allow for certain static,
and even dynamic, displacements of the sequences to compare.

6. CONCLUSION

In this work, we have presented a novel approach for the
automatic induction of syndrome definitions from health-related
data sources. As it aims at finding patterns that correlate with
the reported numbers of infections, as provided by publicly
available data sources, there is no need for labeled training data.
This reduces the burdens imposed on domain experts, who
otherwise must manually create labeled data in a laborious and
time consuming process. Although the proposed algorithm is
able to identify meaningful indicators, due to artifacts in the
data and technical limitations, we have found that autonomously
created syndromes are likely to include indicators that are
unrelated to the disease under surveillance. As a result, the
knowledge of experts is still indispensable for the evaluation and
supervision of such a machine learning method. Nevertheless,
our investigation shows the potential of data-driven approaches
to syndromic surveillance, due to their ability to process large
amounts of data that cannot fully be understood and analyzed
by humans.

In the future, we plan to investigate technical improvements
to our algorithm that may help to prevent overfitting and allow
for a more extensive, yet computationally efficient, exploration
of promising combinations of indicators. In addition, valuable
insights can possibly be obtained by applying our approach
to different types of health-related data sources, as well as
by the investigation of different correlation measures that can
potentially be used to guide the search formeaningful syndromes.
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