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You don’t have the guts: a diverse set 
of fungi survive passage through Macrotermes 
bellicosus termite guts
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Abstract 

Background: Monoculture farming poses significant disease challenges, but fungus‑farming termites are able to 
successfully keep their monoculture crop free from contamination by other fungi. It has been hypothesised that obli‑
gate gut passage of all plant substrate used to manure the fungal symbiont is key to accomplish this. Here we refute 
this hypothesis in the fungus‑farming termite species Macrotermes bellicosus.

Results: We first used ITS amplicon sequencing to show that plant substrate foraged on by termite workers harbour 
diverse fungal communities, which potentially could challenge the farming symbiosis. Subsequently, we cultivated 
fungi from dissected sections of termite guts to show that fungal diversity does not decrease during gut passage. 
Therefore, we investigated if healthy combs harboured these undesirable fungal genera, and whether the presence of 
workers affected fungal diversity within combs. Removal of workers led to a surge in fungal diversity in combs, imply‑
ing that termite defences must be responsible for the near‑complete absence of other fungi in functioning termite 
gardens.

Conclusions: The rapid proliferation of some of these fungi when colonies are compromised indicates that some 
antagonists successfully employ a sit‑and‑wait strategy that allows them to remain dormant until conditions are 
favourable. Although this strategy requires potentially many years of waiting, it prevents these fungi from engaging in 
an evolutionary arms race with the termite host, which employs a series of complementary behavioural and chemical 
defences that may prove insurmountable.
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Background
Millions of years prior to human agriculture, monocul-
ture fungus farming evolved in attine ants (tribe: Attini) 
and fungus-growing termites (subfamily: Macrotermi-
tinae) in South America and Africa, respectively. Mono-
culture farming predictably increases risks of epidemic 

infections [1, 2], while high genetic diversity buffers 
resistance against disease [3]. This ‘monoculture effect’ 
is well-documented in human agriculture [4] and in leaf-
cutting ant monocultures, where specialized and poten-
tially virulent fungal pathogens tend to invade the fungal 
cultivar [5–7]. However, in sharp contrast to humans and 
ants, fungus-farming termites appear to have successfully 
overcome the problem of monocultures being susceptible 
to disease invasion [8].

Fungus farming in termites originated about 31 mil-
lion years ago in the termite subfamily Macrotermitinae 
(Termitidae) [9]. The termites cultivate a fungal symbiont 
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crop in the genus Termitomyces (Basidiomycota: Lyo-
phyllaceae) on foraged plant biomass. The obligate sym-
biosis has diversified to 11 termite genera cultivating 
more than 40 described Termitomyces species [10, 11]. 
The fungus is provided with shelter, optimal growth 
conditions [12] and a supply of pre-digested plant sub-
strates [13] foraged on by termite workers. In return, it 
provides termite nourishment from plant sources, which 
the termites cannot digest on their own [14]. The manur-
ing of fungus combs is through a strict process, where 
older workers forage on decaying plant biomass outside 
the nest, which is passed on to younger workers within 
the nest, who ingest it along with asexual Termitomyces 
spores in a ‘first gut passage’ [15, 16]. This gut passage is 
rapid and serves to efficiently mix Termitomyces spores 
with the macerated substrate, and this mix is deposited 
as fresh fungus comb [15], on which Termitomyces grows 
to decompose the plant substrate, produce mycelium and 
new asexual spores.

The maintenance of a dense Termitomyces monocul-
ture symbiont population creates an environment within 
which diseases are predicted to be able to rapidly spread 
[17, 18]. However, despite being in close contact with 
substrates containing potentially competing fungi [19], 
intact fungus-growing termite colonies do not appear 
to have antagonistic fungi growing within fungal combs, 
with 99.9% of Internal Transcribed Spacer (ITS) amplicon 
reads being of the mutualistic Termitomyces [8]. How-
ever, if colonies are physically compromised or workers 
are removed from the fungus comb, Termitomyces is rap-
idly infested and overgrown by generalist fungi [20] and 
members of the specialist fungal sub-genus Pseudoxy-
laria (Ascomycota: Xylariaceae) [21–27].

A number of complementary defence mechanisms 
appear to contribute to keep fungus gardens free from 
other fungi [8, 28]. These include termites avoiding 
antagonists [29], burying unwanted fungi [30], and utilis-
ing antimicrobial chemical compounds of termite [22], 
Termitomyces [8, 31, 32] and bacterial [8, 20, 33, 34] ori-
gins. In addition, it has been proposed that the obligate 
first gut passage of all plant substrate used to manure the 
fungus could serve as a filtering—potentially fungicidal 
step—accounting for the very low prevalence of non-Ter-
mitomyces fungi within fungus combs [16, 35].

Here we use culture-independent amplicon sequencing 
to characterize the fungal communities present within 
substrate foraged on by workers to examine which fun-
gal genera the symbiosis is exposed to during foraging. 
Secondly, we compare the diversity of culturable fungi 
that can be obtained from termite foreguts, middle sec-
tion (midgut, paunch and colon) and rectum. We hypoth-
esized that foraging material contains a high diversity of 
fungi and that fungal diversity would decrease during gut 

passage. As we did not find a reduction in fungal diver-
sity during gut passage, we subsequently used amplicon 
sequencing to investigate if healthy combs with workers 
present harboured the fungal genera that we obtained 
from guts, and if the removal of workers would lead to a 
surge in their growth.

Results
Assessment of fungal diversity in foraging substrates
We obtained 7,758,822 (mean ± SE: 83,428 ± 5,796) clean 
fungal ITS reads from all sequenced samples (experi-
ment a + experiment c, Additional file  1: Table  S2). Of 
eight foraging substrates that identified to M. bellicosus, 
six were successfully sequenced, resulting in 271,227 
(mean ± SE: 45,204 ± 12,813) fungal reads. We restrict 
our main text presentation of results to M. bellicosus, but 
show results for all species in Additional file 1: Table S2 
and Additional file  2: Figure S2. 1,403,519 (mean ± SE: 
50,125 ± 6,828) clean reads were used to assess worker 
impact on fungus comb health (experiment c). Sequences 
from both experiments were assigned to 1,970 unique 
Amplicon Sequence Variants (ASVs), of which 96.4% 
were identified to phylum, 94.9% to class, 93.0% to order, 
89.5% to family and 86.2% to genus level. Foraging sub-
strates were highly variable in their composition of fun-
gal genera, with no clear indications of dominant genera 
(Fig. 1c).

Diversity of culturable fungi in three segments of the gut
Sequencing our isolates revealed 51 fungal genera, from 
which 10 were found in foreguts, 30 in the middle sec-
tion, and 33 in the rectum (Additional file  3: Table  S3). 
During dissections, the foregut was often empty (Fig. 2b), 
and did not provide a satisfactory amount of material, as 
the genus richness was ~ 3 times less than in the following 
compartments. Therefore, we based subsequent analyses 
on the middle section and rectum only. The separation of 
half of the samples into smaller sub-samples of five and 
ten guts did not affect the number of genera isolated (LM, 
separation, F = 0.3315, p = 0.5739). Furthermore, there 
was no significant difference in genus richness between 
the middle section and rectum (GLM, compartment, 
F = 0.0361, P = 0.8520, Fig.  2c). There was no effect of 
nest of origin on genus richness (GLM, nest, F = 0.5298, 
p = 0.7503), nor on species composition (PERMANOVA, 
999 permutations,  R2 = 0.2711, F = 1.190, p = 0.21).

Effect of worker population size on fungus comb health
We investigated the effect of worker number on fun-
gal diversity in fungus combs. Forty-two of our comb 
samples were successfully sequenced, allowing for com-
parison of fungal diversity across sub-colonies with 0, 
50 or 200 workers. Fungal diversity, as measured by the 
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Fig. 1 a A Macrotermes bellicosus colony in Côte d’Ivoire (Photo: MP), b A foraging sheet constructed by workers covering the substrate (Photo: RP), 
c Relative abundance of the 15 most common fungal genera in the foraging substrates

a

c

5 mm
Rectum

Middle Section

Foregut
b

Fig. 2 a Minor worker grooming a major worker (Photo: NB). b Dissected gut showing the division into foregut, middle section consisting of 
midgut, paunch and colon, and rectum (Photo: LG). c Mean ± SD of observed fungal genus richness per gut compartment. Each dot represents one 
sample
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Inverse Simpson index, increased over time (GLM, Day, 
LR χ2 = 18.70, p < 0.0001, Fig. 3b), irrespective of worker 
numbers; however, the presence of workers significantly 
reduced this increase in fungal diversity (GLM, workers, 
LR χ2 = 7.303, p = 0.0069, Fig. 3b). In contrast, observed 
species richness was neither affected by day (GLM, Day, 
LR χ2 = 1.027, p = 0.5986, Fig. 3b) or the number of work-
ers (GLM, Day, LR χ2 = 0.8189, p = 0.3655, Fig. 3b). 79% 
of the fungal genera found in the foraging material were 
also identified in fungus combs. On day 6, fungus combs 
were dominated by Xylaria and Geniculisynnema, which 
has been proposed to be reclassified as Xylaria [36].

Discussion
Maintaining a monoculture crop fungus for years on 
decaying plant biomass without succumbing to patho-
gen outbreaks is a challenge that fungus-growing ter-
mites appear to successfully achieve. This must require 
very effective defence mechanisms, and it was proposed 
already almost a decade ago that obligate gut passage of 
all plant substrate could be an effective filter for removing 
environmental competitors or antagonistic fungi of Ter-
mitomyces [16]. Our findings strongly suggest that this is 
not the case: substrates harbour a high diversity of fungi, 
and we find no evidence that fungal diversity decreases 
as we move from the middle to the latter section of the 
gut. As expected, we did however confirm previous find-
ings that fungus combs are dominated by Termitomyces 
[8], and that the presence of workers is vital for ensuring 
that combs remain free from other fungi [28]. We discuss 
our results in the context that environmental fungi enter 
termite fungus combs, where alternative mechanisms 
prevent their proliferation until the integrity of the envi-
ronment and worker presence for one reason or another 
is compromised.

Foraging M. bellicosus workers encase their forag-
ing material in a thin sheet of soil and close it off from 
the environment (Fig.  1b), but the fungal diversity we 
observed below these sheets was appreciable, suggest-
ing that this environment is not sanitised by the forag-
ing workers. Unsurprisingly, many of the most abundant 
genera, such as Hypoxylon, Allocryptovalsa and Wiesne-
riomyces (Fig.  1c), are wood decomposers [37–39] and 
they may thus compete with Termitomyces if they enter 
fungal combs. Although in low abundance, members of 
the family Xylariaceae appeared in all M. bellicosus forag-
ing materials. BLASTn search indicated that 31% of these 
Xylariaceae amplicons most closely resembled members 
of the termite-specific sub-genus Pseudoxylaria [25], 
while 69% matched better with free-living Hypoxylon. 
All samples contained ASVs that most closely resem-
bled Pseudoxylaria, ranging from 1 to 4 (average = 2.2) 
different ASVs per foraging site. It is still unknown how 

Pseudoxylaria spreads from colony to colony, but this 
raises the possibility that spreading could take place 
through sharing of foraging tunnels, which is conceivable 
as larger termite mounds often host multiple farming ter-
mite species and even genera ([40, 41]; personal obser-
vations). Termitomyces was also present in some foraging 
sites (Additional file 1: Table S2, Additional file 2: Figure 
S2). While this could be due to accidental deposition 
by the foraging termites, we cannot rule out it is due to 
contamination, as Termitomyces was present in relatively 
high abundance and grouped to identical ASVs in many 
samples, even after filtering. Irrespective of whether or 
not Termitomyces is present in foraging sheets, it is clear 
that these foraging substrates are populated with a diver-
sity of fungi, including potential competitors or antago-
nists of Termitomyces.

Contrary to our expectations, fungi ingested by the ter-
mites were not eliminated during gut passage. Although 
we limited our search to culturable fungi, we found no 
evidence of any fungicidal effects of gut passage, sug-
gesting that foraging material deposited on the fungus 
comb as faeces is not sterile, and that gut passage most 
likely primarily serves to mix substrate with asexual Ter-
mitomyces spores [15, 16]. Although 99.9% of amplicon 
reads of our subsequent fungus comb analyses were 
Termitomyces (Additional file  2: Figure S3), 79% of the 
fungal genera that we identified from foraging materials 
were identified in low relative abundances within fungus 
combs. The 16 fungal genera unique to the fungus comb 
were all associated with soil and plant material, and thus 
likely picked up during termite foraging. Still, the 79% 
overlap is remarkable given the relatively low number 
of sites and colonies used, and even more so as foraging 
sites were rarely to our knowledge used by the colonies 
included in the sub-colony experiment. This speaks to 
the consistent presence of these fungi in the termite envi-
ronments. Their minute abundance within fungus combs 
confirms previous work that the fungus combs are con-
sistently and vastly dominated by Termitomyces [8], so 
that mechanisms must be in place that preclude prolifer-
ation of potential competitors brought in when termites 
forage.

The fungus combs that forage-dwelling fungi enter 
is a complex environment that plays at least some role 
in defence, as growth of other fungi is delayed for at 
least two days in the absence of workers (Fig. 3b). The 
mutualistic fungus Termitomyces produces compounds 
with antifungal properties [8, 31, 32], which together 
with compounds of termite or bacterial origins [8, 33, 
42] forms complex comb chemical mixtures. Although 
these complex communities of chemical compounds 
appear to suppress some putative antagonists, their 
functions and targets remain almost unequivocally 
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Fig. 3 a An example of fungal growth during the three sampling points, with clear presence of non‑Termitomyces growth on day four and 
complete Pseudoxylaria overgrowth on day 6. Images taken from colony IC0031 with 50 workers. Photos: RP. b Box plots of fungal genus diversity, 
calculated as the inverse Simpson index (top) and observed richness (bottom) as a function of the number of workers present (0, 50 or 200) and 
time (2, 4 and 6 days). c Relative abundance of the 10 most common genera present in the fungus comb. Although the comb mostly consists of 
Termitomyces, the genera Xylaria and Geniculisynnema (which has been proposed to be reclassified to Xylaria [36]) quickly rise in dominance when 
workers are absent
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unknown. However, antifungal compounds are unlikely 
to provide the full explanation for effective avoidance 
of non-Termitomyces fungal growth. The maintenance 
of an abiotic environment that is optimised for Ter-
mitomyces growth, coupled with a mode of substrate 
inoculation that ensures dense Termitomyces spore 
presence at the earliest stages of plant biomass decom-
position, likely provide the mutualistic fungus a key 
competitive edge. This is analogous to the frequency-
dependent selection that has been shown in the lab to 
help ensure that individual colonies maintain a single 
Termitomyces monoculture [1], and this could assist in 
ensuring effective dominance of the fungal crop within 
colonies in the wild. However, although this provides a 
competitive edge over other fungi, it is not enough to 
stop fungi from overgrowing the fungus comb when 
the termite worker force is reduced or absent, as our 
sub-colony experiment confirmed that worker presence 
is required to maintain comb homeostasis. Although 
the mechanisms are not fully understood, the causes 
are likely multiple. Oral secretions have been found to 
be fungistatic in several termite species [22, 43], and 
workers might use these to sanitise freshly-deposited 
faecal matter. Indeed, grooming of freshly deposited 
faecal pellets has been observed in Odontotermes sp. 
(Hongjie Li, personal communication), and faecal pel-
lets express fungistatic activity in a lower termite [44]. 
Furthermore, as workers are in continuous contact with 
the fungus comb, they likely passively deposit cuticu-
lar lipids [45], which harbour antimicrobial functions 
in many insects, including in lower termites [46, 47]. 
Lastly, Odontotermes obesus workers have been found 
to bury patches of infected fungus comb [30], which 
could act as a final defence once antagonists start 
growing.

In the presence of workers, combs are dominated by 
Termitomyces, but when colonies are compromised by 
their removal, competitors and mycopathogens quickly 
overgrow combs (Fig.  3). Although many foreign spe-
cies of fungi enter the fungus comb, only relatively few 
of these will dominate the fungus comb in the absence of 
workers, suggesting that many saprophytic fungi are not 
adapted to compete with Termitomyces within nests. The 
ones that do take over the fungus comb in the absence 
of workers are detected in low numbers in healthy fun-
gus comb, and are thus likely suppressed but not eradi-
cated from combs. This mirrors adaptations in members 
of the sub-genus Pseudoxylaria [26], which are special-
ists on termite fungus combs, but that do not grow or 
display antagonism in thriving colonies, yet will quickly 
overtake a colony once it has been compromised. This 
hypothesised sit and wait strategy has been proposed as a 
passive means with which Pseudoxylaria avoids defences 

from the termites and Termitomyces [26], which other-
wise could eventually suppress Pseudoxylaria to com-
plete removal.

Conclusions
The question remains how and why the termite-associ-
ated Pseudoxylaria—and potentially other fungi—have 
adopted this sit and wait strategy. Although we cannot 
rule out effective suppression of parasites by the termites 
after gut-passage, our results may present an alternative 
hypothesis. If the main antifungal termite defence was to 
kill fungi during gut passage, Pseudoxylaria would either 
not be able to utilize fungus comb resources, or would 
have evolved resistance mechanisms in response to this 
defence, driven by rewarding nutrients. If the latter was 
true, and gut passage was the main termite defence, we 
would expect Pseudoxylaria to take over fungus combs 
as soon as they could bypass gut passage. However, as 
termites tolerate low numbers of inactive exogenous 
fungi, including Pseudoxylaria, but take actions against 
those that start proliferating [30], they may select for 
Pseudoxylaria strains that employ this sit and wait strat-
egy. In this manner, coevolution between termite Pseu-
doxylaria and termites may have de-escalated virulence 
to prevent engaging in an evolutionary arms race: Ter-
mitomyces and termites tolerate Pseudoxylaria at low 
levels while the colony thrives, while it quickly consumes 
colony resources when chances arise. This requires that 
Pseudoxylaria remains within fungus combs in spite of 
the high turn-over of plant material, which would require 
growth to secure its foothold, but that growth is minimal 
to prevent detection and adverse responses from the ter-
mite and Termitomyces hosts.

Methods
Field site and study species
All collections and experiments were conducted at the 
Comoé National Park, Ivory Coast (8° 30′–9° 40′ N and 
3° 10′–4° 20′ W). We collected Macrotermes bellico-
sus, which often creates large, spire-like nests (Fig.  1a) 
inhabited by a royal pair and up to one million neuters 
[48], consisting of major soldiers, minor soldiers, major 
workers and minor workers. A large part of the nest con-
tains chimneys used for exchange of air and tempera-
ture regulation [49]. The centre of the nest consists of an 
ovoid area, containing the fungus combs as well as the 
royal chamber. Foraging is mainly done underground, 
and aboveground food-sources are covered by foraging 
sheets, under which the termites forage (Fig.  1b). The 
following methods section is divided into three separate 
experiments: (a) the assessment of fungal diversity in for-
aging substrates; (b) Diversity of culturable fungi in three 
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segments of the gut; (c) Effect of worker population size 
on fungus comb health.

Assessment of fungal diversity in foraging substrates
Collection of foraging material
Forage material was identified by having a fresh soil sheet 
covering a wooden substrate (Fig.  1b). We sampled the 
substrate from a total of 39 foraging sites by scraping off 
wood pieces into a sterile 50 ml falcon tube, which was 
transferred to a 2  ml screw-cap cryotube containing 
RNAlater, and stored at − 20  °C prior to DNA extrac-
tion. Workers and soldiers were collected for species 
identification.

Amplicon sequencing of fungal communities in plant 
substrates
Each substrate sample was homogenized in liquid nitro-
gen using a sterilized marble mortar and pestle. DNA was 
extracted using the DNeasy Plant Mini Kit (Qiagen), fol-
lowing the manufacturer’s protocol, and stored at − 80 °C 
until PCR. Amplicon sequencing libraries were prepared 
using a two-step PCR, targeting the ITS2 region with 
the degenerated primers gITS7 as the forward (modified 
from [50, 51]) and ITS4ngs as the reverse primer [51]. 
Amplification products were purified using the HighPrep 
PCR clean-up (MagBio Genomics, Galthersburg, USA). 
A second PCR reaction and PCR purification were per-
formed to add Illumina sequencing adapters and sample-
specific dual indexes (IDT Integrated DNA technologies, 
Coralville, USA) using PCRBIO HiFi for 15 amplification 
cycles and the HighPrep PCR Clean Up System for clean-
up. Sample concentrations were normalized using the 
SequalPrep Normalization Plate (96) Kit (Thermofisher, 
USA), after which they were pooled and libraries were 
concentrated using the DNA Clean and Concentrator-5 
Kit (Zymo Research, Irvine, USA). The pool concentra-
tion was determined using the Quant-iT High-Sensitiv-
ity DNA Assay Kit (Life Technologies, Carlsbad, USA) 
and libraries were diluted to 4 nM, the amplicon library 
was denatured and sequenced following manufacturer’s 
instructions on an Illumina MiSeq platform at the Sec-
tion of Microbiology—University of Copenhagen, using 
Reagent Kit v3 [2 × 300 cycles] (Illumina, San Diego, 
USA).

Data analysis
Cutadapt v.2.3 [52] was used to remove primer sequences 
used in the first PCR (gITS7-ITS4ngs), both on the 5′ 
and the reverse complement on 3′ ends, and discarding 
read pairs for which any of the two primers could not be 
detected. Reads were further processed for error-correc-
tion, merging and amplicon sequence variants (ASVs) 
generation using the DADA2 v.1.12.1 [53] RStudio 

package with default parameters except trimLeft = 8, 
trimRight = 8, truncQ = 10 and truncLen (0,0). UNITE 
fungal database v.8.2 [54] was used with the assignTax-
onomy function for taxonomic assignment of each ASV 
with default parameters. Three blanks were created 
before the first PCR to assess contamination. Our data 
revealed some overlap between ASV abundant in blanks 
and those present in the samples. In order to remove 
these contaminants, while still retaining biologically rel-
evant sequences, relative abundances of ASVs present in 
these blanks were compared to relative abundances of 
the respective ASVs in the samples. If the ratio of the two 
relative abundances (ASV in sample / blank) was lower 
than 0.1, the ASV was marked as a contaminant and 
removed from the dataset [55]. Phyloseq v.1.28.0 [56] was 
used to handle data, calculate richness and diversity esti-
mates and plot data, together with ggplot2 v.3.2.1 [57] in 
R v.3.6.2 [58].

Diversity of culturable fungi in three segments of the gut
Worker collections
Six colonies of Macrotermes bellicosus were collected, 
hereafter referred to as IC0007, IC0027, IC0028, IC0030, 
IC0031 and IC0034. Species identification was based on 
mound shape and morphological characteristics of the 
soldiers [59]. The colonies were opened with a pickaxe 
and once fungus combs were visible, 25 minor workers 
were collected and immediately placed on ice to keep gut 
microbial activity to a minimum during transport back to 
the research station. Minor workers were chosen as they 
were most numerous within the nest.

Gut dissections
Guts were dissected on a small piece of paper, previously 
sterilized in 90% ethanol. The paper was then dried close 
to a flame, after which it was soaked in sterile saline solu-
tion (0.2% PBS in distilled water) to avoid desiccation 
of the guts during dissection (Fig.  2a, b). Each gut was 
exposed, and three compartments were separated into 
individual Eppendorf® tubes containing 150  µl sterile 
saline solution. To ensure that we could measure fungal 
diversity in the last step of the gut passage, we divided the 
gut into foregut; midgut, paunch and colon (henceforth: 
middle section); and rectum (Fig. 2b).

To evaluate the optimal number of guts per sample to 
capture the culturable fungal diversity, we divided the six 
nests in two groups. In the first group, each Eppendorf® 
contained gut segments of 25 workers, while the second 
group had the 25 workers distributed over three tubes 
with 5, 10, and 10 guts, respectively. This resulted in a 
total of 36 samples (12 per gut compartment). Eppen-
dorf® tubes were placed at 4  °C, and transported to 
Copenhagen on ice.
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Fungal isolations from gut segments
For the gut-passage experiment, we chose to employ 
a culture-dependent approach instead of community 
sequencing, as sequencing would still pick up on fungal 
spores that might have lost viability due to any fungicidal 
or fungistatic effects of gut passage, and would therefore 
be unsuitable to answer our question [60, 61]. Therefore, 
approximately one month after collection, the content of 
each Eppendorf® tube was homogenized with a sterile 
pestle, and diluted in distilled water containing 0.2% PBS 
and 1% Tween® 20, to a volume of 1000  µl and diluted 
to achieve 1% and 0.1% of the original concentration. The 
content of each resultant tube (1% and 0.1%) was divided 
across five Petri dishes containing Potato Dextrose Agar 
(PDA; 39  g/l) with antibacterials (ampicillin, 50  µl/ml, 
chloramphenicol 35 µl/ml and streptomycin, 100 µl/ml). 
Petri dishes were sealed with Parafilm and incubated at 
25 °C until fungal growth was observed. Individual fungal 
Colony Forming Units (CFUs) were transferred to a new 
Petri dish (35 mm with PDA) to acquire pure cultures. In 
the case of many visually similar CFUs, at least three of 
each kind were isolated, resulting in a total of 736 fungal 
isolates, from which biomass was stored in glycerol (87%) 
/ peptone (1%) at -20 °C at the University of Copenhagen. 
Of the 36 gut samples, eight foreguts, two middle section 
and one hindgut did not have any fungal growth.

Barcoding of fungal isolates
Fungal isolates were grouped according to macromor-
phology, resulting in 154 morphotypes. We extracted and 
sequenced at least three isolates of each morphotype per 
gut sample, resulting in 507 extractions. DNA of each 
chosen isolate was extracted using a standard Chelex 
protocol (Sigma-Aldrich). 20 μl PCR were prepared using 
10 μl Phusion® High-Fidelity PCR Master Mix (New Eng-
land Biolabs), 0.2  μl 100 × purified BSA (New England 
Biolabs), 0.8  μl of each primer, 6.72  μl sterile distilled 
water, and 2  μl template. Primers used were ITS1 and 
ITS4 [62]. PCR conditions were 94 °C for 3 min, 40 cycles 
of 94 °C for 60 s, 55 °C for 60 s and 72 °C for 90 s, followed 
by a final extension at 72 °C for 7 min. Following ampli-
fication, target PCR products were visualised by agarose 
gel electrophoresis. Purification was done by addition of 
25% ExoSAP-IT™ (Applied Biosystems) to the PCR prod-
uct, after which they were sequenced at Eurofins (http://
www.eurofi nsge nomic s.eu), resulting in 270 successfully 
sequenced samples. Consensus sequences were gener-
ated in Geneious Prime 2020.1.2 when possible. In cases 
where either forward or reverse sequencing failed, only 
one sequence was used. The resulting sequences (n = 270) 
were matched to the NCBI nucleotide database using 
BLAST+, from which the top four hits were extracted 

and the best hit with a valid taxonomic genus name was 
kept [63]. Sequences with a query coverage lower than 
70% or identities lower than 80% were discarded (n = 22), 
resulting in a final set of 248 genotyped isolates.

Statistical analyses
The results of these two dilutions were merged to capture 
as much diversity as possible, resulting in a list of genera 
found for each collected sample. The effect of grouping 
(25, 10 or 5 guts per sample), gut compartment and nest 
was tested using a general linear model. Model assump-
tions were checked visually and normal distribution of 
the residuals was tested using a Shapiro–Wilk test. To 
test whether nests differed in the composition of fungal 
genera found in the gut, we ran a permutational ANOVA 
(adonis function, [64]), with the fungal community as the 
dependent variable and nest as a fixed effect.

Effect of worker population size on fungus comb health
Experimental setup
To investigate whether fungi found in the forage mate-
rial are also present in the fungus comb, and to assess 
the role of workers on maintaining a clean fungus comb, 
six colonies of Macrotermes bellicosus were collected 
(IC0007, IC0027, IC0029, IC0031, IC0032 & IC0033), 
using the methods described in part b. Three pieces of 
fungus combs per colony, 10 g each, were put in separate 
plastic boxes (20 × 15 × 15 cm), with a layer of sterilized 
soil on the bottom. Each box was provided with a piece 
of filter paper, to which water was applied every day to 
ensure adequate humidity and received 0, 50 or 200 
minor workers. On day 2, 4 and 6, a small piece of fun-
gus comb was harvested from each box into a screw-cap 
cryotube containing RNAlater, and stored at − 30 °C until 
DNA extraction. DNA extraction and amplicon sequenc-
ing were done as described in part b.

Statistical analyses
Phyloseq v.1.28.0 [56] was used to handle data and cal-
culate the Inverse Simpson index as well as the observed 
genus richness. The effect of day and the number of ter-
mites, as well as their interaction, Inverse Simpson index 
were analysed using a GLM with the inverse square of the 
index as the dependent variable, and day and number of 
termites as fixed effects. The effect of day and number of 
termites on observed richness was analysed using a simi-
lar model, but in this case the dependent variable did not 
need to be transformed to conform to model assump-
tions. Model assumptions were checked visually, and the 
distribution of residuals were tested using a Shapiro–
Wilk normality test.

http://www.eurofinsgenomics.eu
http://www.eurofinsgenomics.eu
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from guts. Each row contains a sequenced sample, its sequence, its closest 
match in GenBank and its metadata.

Additional file 4: Figure S1. ASV rarefaction curves for both amplicon 
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