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Abstract

In this review, we discuss estrogen actions on mitochondrial function and the possible implications
on cell growth. Mitochondria are important targets of estrogen action. Therefore, an in-depth
analysis of interaction between estrogen and mitochondria; and mitochondrial signaling to nucleus
are pertinent to the development of new therapy strategies for the treatment of estrogen-
dependent diseases related to mitochondrial disorders, including cancer.

Introduction

Estrogen is considered to elicit different growth responses
in various tissues through binding to the estrogen receptor
(ER) a. and ERP [1-3]. The modulation of estrogen respon-
sive gene transcription by the ER is termed a "genomic"
action of estrogen. In contrast, "non-genomic" effects of
estrogen are characterized by a rapid onset of action
within seconds to minutes after hormone exposure
through post-translation modification of signaling pro-
teins. ER-mediated signaling pathways are considered to
support the growth of normal, preneoplastic and neoplas-
tic cells [1-3]. In contrast to the classical genomic path-
ways of estrogen action that occur over the course of
several hours or days, recent studies have shown evidence
of a rapid signaling pathway mediated by cell surface ERs
and non-genomic estrogen-induced signal transduction
pathways which contribute to cell proliferation [4].
Recently, we have identified that estrogen stimulated the
growth of HEK 293 cells in an ER-independent manner
given that this cell line does not contain ER (unpublished
Singh KP, Venkat S, Roy D). These findings suggest that in
addition to ER mediated actions, other factor(s) must be
involved in the stimulation of cell growth by estrogen.
More recently, mitochondria have been implicated in the
control of cell proliferation [5]. For instance, the mito-

chondrial peripheral benzodiazepine receptor (PBR) has
been implicated in the regulation of human breast cancer
cell proliferation [6]. Similarly, we have demonstrated
that mitochondria can modulate the expression of nuclear
cell cycle genes and human breast tumor growth [7,8]. For
instance, the growth of estrogen-dependent and estrogen-
independent cells, is inhibited by controlling mitochon-
drial biogenesis [8]. In this paper, we critically review the
role of mitochondria in the growth of estrogen-dependent
cancer and non-cancer cells. Mitochondria are important
targets of estrogen action. The cross-talk between the cell
nucleus and the mitochondria appears to control estro-
gen-induced signaling involved in the apoptosis, prolifer-
ation, and differentiation of both normal and malignant
cells. Mitochondria through its interaction with the
cytoskeleton, export of cleaved signaling peptides, or gen-
eration of ROS appears to transduce signals to the nucleus
for the activation of transcription factors involved in the
cell cycle progression of estrogen-dependent cells. The
understanding of the regulation of mitochondrial biogen-
esis by estrogenic compounds would open a new way to
better understand steroidal and non-steroidal estrogen
action at the cellular level.
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Estrogen actions at the mitochondria

Besides apoptosis, respiration, and oxidative phosphor-
ylation; mitochondria also control ion homeostasis and
the synthesis of heme, lipids, amino acids, and nucle-
otides. Steroidogenesis is also controlled by mitochon-
dria. Estrogen biosynthesis-related enzymes, 3 f-
hydroxysteroid dehydrogenase and aromatase, have been
demonstrated in the mitochondria of ovarian tumor epi-
thelial cells [9].

Estrogen transport to mitochondria

Although estrogen synthesis occurs in the mitochondria,
exogenously added estrogen is also transported to this
organelle. For instance, in vivo exposure of ovariectomized
rats to tritiated 17-B-estradiol (E2) showed with increas-
ing time, the translocation of this hormone from the plas-
malemma mainly to the mitochondria (75%) rather than
the nuclei in liver, adrenal gland, and spleen tissues [10].
The lipophilic property of E2 allows this molecule to eas-
ily diffuse into lipid bilayers. Since mitochondria are
enriched with lipids, the organelle has the ability to act as
an estrogen-sink within the cell. Although passive diffu-
sion of estrogen into the mitochondria exists, a rapid
delivery of E2 via receptor-mediated endocytosis from the
plasma membrane to the mitochondria has been reported
as a potential new pathway in HepG2 cells [11]. The
uptake of E2-BSA from the medium by HepG2 cells
occurred as early as 30 min. post-exposure and the ligand
could be viewed in organelles that resembled vesiculated
mitochondria found in steroid producing cells of the
adrenal cortex and testes [11-13].

Estrogen effects on mitochondria morphology

The impact of estrogen on mitochondrial morphology has
previously been reported in the human breast cancer cell
line MCF7. Transmission electron microscopy (TEM)
revealed that an 8 day treatment of MCF?7 cells with E2 (10
nM) resulted in large, clear mitochondria [14]. These
alterations in mitochondria structure were observed as
early as 2 days after treatment with a physiologically rele-
vant dose of estrogen. The delamellated cristae of E2
treated mitochondria resemble an early anaerobic state of
mitochondria development seen in embryonic rats and
primates in which the cell depends on glycolysis [15].
However, it is not known whether the reported estrogen
induced morphological changes had an affect on mito-
chondrial function.

Estrogen receptor localization in mitochondria

The function of estrogen at the mitochondria is not clear,
however, recent studies have identified ERa and ERP
within the mitochondria implicating its role in the regula-
tion of mitochondrial genome transcription. Subcellular
fractionation of rabbit ovarian and uterine tissue revealed
isoforms of ERa and ERP in the mitochondrial enriched
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fraction as detected by western Blot analysis using ER spe-
cific antibodies [16]. More recently, ER was shown to be
localized in the mitochondria of human lens epithelial
cells (HLE-B3), human heart, rat primary neuron and pri-
mary cardiomyocyte, and in a murine hippocampal cell
line HT-22 [17,18]. Western blot analysis using polyclo-
nal antibodies against human ERa and - showed both
ERs present in purified mitochondria isolated from the
human breast cancer cell line MCF7 [19]. Using immuno-
histochemistry with confocal microscopy and immuno-
gold electron microscopy, ERa and ERP were identified in
the MCF7 mitochondrial matrix. Mitochondrial ERa. and
ERp were reported to account for 10% and 18%, respec-
tively, of total cellular ER-a and -B when MCF7 cells were
treated with E2. Treatment of MCF7 with E2 (108 M and
10-2 M) significantly increased the mitochondrial level of
ERa and ERB by 2.5-fold.

Estrogen influence on mitochondrial gene expression

An increasing body of evidence has shown that mitochon-
drial transcription is enhanced by estrogen treatment. For
instance, a 16-fold increase in cytochrome oxidase II (CO
IT) mRNA is reported in the GH4C1 rat pituitary tumor
cell line when treated for 6 days with E2 (0.5 nM) [20].
The mitochondrial gene for subunit III of cytochrome oxi-
dase (CO III) is induced as early as 3 h following a single
dose of E2 in the hippocampus of ovariectomized female
rats [21]. Other mitochondrial transcripts have also been
reported to increase in the human hepatoma cell line,
HepG2, and rat hepatocytes when exposed to ethinyl
estradiol (EE). A 40 h exposure to an EE concentration
ranging from 0.5 to 10 uM resulted in a 2- to 3-fold induc-
tion of CO I, CO II, and NADPH dehydrogenase subunit
1 (NADPH-DH1) mRNA [22]. E2 (20 uM), although less
potent than EE, showed a similar effect of induction from
1.5- to 1.8-fold in mitochondrial transcripts CO I, CO I,
and NADPH-DH1 when treated for 12 h. The E2 catechol
metabolite 4-OH-E2 caused a greater response in CO I
and CO II transcript levels as compared to E2 after 24 h of
treatement with a dose of 10 pM. The mitochondrial gene
for ATP synthase subunit 6 (ATPase 6) was also elevated
in female rat liver tissue exposed to EE (5 ng/day) for 42
days. An increase in the transcript level of COX7RP (cyto-
chrome c oxidase subunit IV-related protein) was reported
after a 6 h E2 (100 nM) treatment in MCF7 cells [23]. It is
not known whether the COX7RP transcript is translated to
a functional protein in the mitochondria, but the study
proposed that COX7RP may represent a regulatory subu-
nit of cytochrome c oxidase that modulates a high state of
energy production in estrogen sensitive target tissues.
More recently, a 12 h E2 (0.3 uM) treatment of MCF7 cells
was demonstrated to enhance the mitochondrial tran-
script levels of CO I approximately fourfold and CO
[I~2.5-fold [19].
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The mechanism of estrogen-induced mitochondrial gene
transcription is not clearly understood. The involvement
of estrogen responsive elements (EREs) and/or the ER
may be a possible mechanism in the increase of these
mitochondrial transcripts. Sequences with partial similar-
ity to the ERE consensus sequence, (AGGTCANNNT-
GACCT), have been reported in the mouse mitochondrial
genome [24]. These partial EREs were detected in genes
CO I and CO II which may account for the observed
increases in these two transcripts in rat GH4C1 pituitary
cells and rat hepatocytes [20,22]. Other genes in which
the various EREs were detected include 12S rRNA, 16S
rRNA, tRNA-gln, cytochrome oxidase b, unidentified
reading frame (URF) 4, URF5, and the D-loop region [24].
In the human mitochondrial genome, we identified par-
tial or ERE 1/2 sites in the D-loop region, CO II, tRNA-
met, 12S 1RNA, 7S rRNA, URF1, and URF5 (unpublished
Felty Q and Roy D). The presence of these partial EREs in
the mitochondrial genome may lend support to a novel
ER signal transduction pathway. A mechanism of ER
translocation into the mitochondria and ER binding to
mitochondrial EREs remains unclear. Using electrophore-
sis mobility shift assay (EMSA) and plasmon resonance
analysis, the recombinant human ERa- and ERB-contain-
ing mitochondrial proteins were demonstrated to specifi-
cally bind putative EREs in the mtDNA D-Loop, and this
ER binding was enhanced by E2 treatment and inhibited
by ICI 182780 [19]. Based on this evidence, it is biologi-
cally plausible that ER mediates mitochondrial transcrip-
tion in the same manner as the glucocorticoid receptor
(GR) which is translocated into the mitochondria and
binds glucocorticoid response elements (GRE) after treat-
ment with glucocorticoid [25,26]. Whether estrogen-
induced mitochondrial transcription participates in the
development and growth of estrogen dependent breast
cancer is not known. Long-term stilbene estrogen
(diethylstilbestrol = DES) treatment of Syrian hamsters
produced tumors in the kidney with a 5- to 10-fold higher
transcript level of CO III than age-matched control kid-
neys [27].

Estrogen and the electron transport chain

Besides transcription of mitochondrial genes, estrogen
has also been demonstrated to effect mitochondria at the
protein level. Estrogen has been demonstrated in several
studies to inhibit mitochondrial respiratory complex I, II,
III, IV, and mitochondrial ATP synthase (F,F,-ATPase)
[28-31]. Several studies have reported estrogen specific
inhibition of mitochondrial respiratory proteins, but it is
not clear whether estrogen can modify mitochondrial pro-
teins at the post-translational level. However, there is a
report that E2 increased the phosphorylation of a 76 kDa
protein in the mitochondrial fraction of the rat corpus
luteum [32]. The presence of protein kinases within the
mitochondria together with evidence for estrogen-
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induced phosphorylation of mitochondrial proteins sug-
gest that estrogen may regulate mitochondrial respiratory
physiology at the post-translational level [33]. Besides a
direct interaction with mitochondrial proteins, estrogen
may indirectly effect the electron transport chain (ETC)
through an increase of membrane fluidity. Given that thy-
roid hormone increases mitochondrial membrane fluid-
ity [34] and that physiologic concentrations of estrogen
can alter the fluidity of human red blood cell membranes
[35], it is likely that a low dose of estrogen may facilitate
electron transfer by increasing respiratory protein interac-
tions through more membrane fluidity. Thus, the rate of
electron transfer may increase as a consequence of more
frequent collisions/interactions between respiratory chain
complexes and electron carriers. The three proton pumps
of the ETC depend on electron flow to generate the mito-
chondrial membrane potential (AY¥,,). In human neurob-
lastoma cells, the following ER ligands: tamoxifen (30.2
puM), clomiphene (10.6 uM), and nafoxidine (2.8 uM);
were reported to modulate A¥, while E2 did not change
AW, at concentrations up to 100 uM [36]. Assuming that
estrogen can effect the fluidity of the inner mitochondrial
membrane, a rise in AY,, could result from an increased
rate of electron transfer. The formation of ROS in mito-
chondria is reported to occur at high A¥_, [37,38] and
therefore suggests that estrogen modulation of A¥Y,_, may
be a possible mechanism for the generation of ROS.
Whether physiologic concentrations of estrogen can
increase AY , in target tissues is not clear, but these lines
of evidence suggest that estrogen may modulate A¥ , in a
dose- and tissue-specific manner. This effect is significant
because estrogen-induced mitochondrial reactive oxygen
species (ROS) may participate in cell signaling. In the fol-
lowing section, we provide a detailed review of the effects
of E2 on mitochondrial respiratory complexes.

NADH dehydrogenase (complex )

The effect of natural estrogens and synthetic estrogens on
the mitochondrial ETC has been demonstrated in several
studies. Human NADH dehydrogenase (complex I) is the
largest respiratory chain complex consisting of 7 mito-
chondrial genome encoded subunits and more than 41
subunits encoded from the nuclear genome. This integral
membrane protein is located within the mitochondrial
inner membrane and the matrix. Two electrons enter the
ETC from the oxidation of NADH by ubiquinone (CoQ)
at complex I which is coupled with proton movement
across the inner membrane from the matrix to the inter-
membrane space. Natural estrogens, 17-a-estradiol, E2,
and estrone, at concentrations of approximately 10 uM
were demonstrated to inhibit mitochondrial electron
transport in homogenates of rat uterus, liver, and skeletal
muscle [39]. The synthetic estrogen DES was also reported
to inhibit electron transfer from complex I to CoQ at a
half-maximal inhibitory concentration range of 0.2-2.6
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uM [28]. Although DES at a dose of 20-30 uM could
inhibit electron transfer by 90% it was much less effective
than rotenone and piericidin A which could inhibit elec-
tron tranfer by 90-95% at a dose of 30-50 nM due to a
tighter binding affinity to complex I. The researchers pos-
tulated that at relatively low doses, DES reversibly inhibits
electron transfer at complex I. Additionally, DES dis-
played specific binding to a site in which rotenone and
piercidin A bind to complex I. Since photoreactive ana-
logues of rotenone have been reported to label complex I
[40], these results implicate estrogen specific binding to
respiratory complex I. Another class of compounds, phy-
toestrogens, which are found in our diet can also inhibit
the activity of complex I. Phytoestrogens, genistein (found
in soy beans) and resveratrol (found in red wine), can
inhibit the activity of complex I, but are considered less
active than rotenoid compounds [41].

There are very few reports that have investigated co-treat-
ment of estrogen with mitochondrial inhibitors of oxida-
tive phosphorylation (OXPHOS). Complex I inhibitors
rotenone, piericidin A, and amytal have been used in co-
treatment with DES and/or estrogens to elucidate the site
of estrogen action on electron transfer [28,39]. In MCF7
cells, it was demonstrated that co-treatment with roten-
one (10 nM) and E2 (10 nM) strongly inhibited ornithine
decarboxylase activity by 86% [42]. More recently, a study
reported that treatment with 10 uM of 2-methoxyestradiol
(2-Me) induced apoptosis in Ewing sarcoma cells through
hydrogen peroxide (H,0,) production [43]. Since a 2 h
prior treatment of rotenone (6 pM) inhibited 2-Me
induced apoptosis and H,O, production, it was suggested
that the H,0O, source was the mitochondria. Although the
biological significance of estrogen interaction with com-
plex I is unknown, evidence of estrogen inhibition of elec-
tron transfer support a novel role of estrogen in the
formation of mitochondrial ROS.

Succinate dehydrogenase (complex Il)

Human succinate dehydrogenase (complex II) is a mem-
brane bound protein located on the matrix side of the
inner mitochondrial membrane. Complex II consists of 4
subunits all encoded from the nuclear genome. Two elec-
trons enter the mitochondrial ETC from the oxidation of
FADH, by CoQ at complex II. Although previous studies
have reported complex I and cytochrome bc; reductase
(complex III) as the major sites of ROS generation, ubig-
uinone radicals have been reported to contribute to basal
levels of ROS at complex II [44]. Physiologically relevant
ROS generation supported by the complex II substrate
succinate occurs at complex I through reversed electron
transfer [45]. Research studies of the protective effect of
estrogen on the brain use the complex II inhibitor, 3-
nitroproprionic acid (3-NPA) to model the condition of
ischemia. Although the mechanism of estrogen neuropro-
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tection is not clearly understood, estrogen has been pro-
posed to modulate cerebral energy/glucose metabolism.
Both 17-B-E2 and 17-a-E2 have been demonstrated in
vivo to reduce ischemic brain damage induced by middle
cerebral artery occlusion in ovariectomized rats [46,47].
To model an in vitro state of interrupted energy metabo-
lism as seen in cerebral ischemia and chronic neurodegen-
erative disease, the human neuroblastoma cell line SK-N-
SH was treated with 3-NPA (10 mM) [48]. This study
demonstrated that pretreatment of SK-N-SH with E2 (2
pM) restored ATP levels to 80% at 12 h as compared to the
control cells treated with 3-NPA alone. Whether mito-
chondrial function can be preserved with a physiological
concentration of estrogen is not clear as this study used a
high dose (2 pM) which can be cytotoxic in certain tissues.
The maintenance of A¥, and ATP levels by estrogen when
faced with 3-NPA toxicity was proposed to be due to the
antioxidant effect and/or ATP increasing effects. At the 2
UM E2 dose an antioxidant effect is likely because estrogen
is reported to be an effective neuroprotective antioxidant
in the micromolar dose range [49]. However, another pos-
sibility may be due to an estrogen-induced increase in
complex II activity which would overcome inhibition by
3-NPA as succinate dehydrogenase activity has been
reported to increase in the brain of E2 treated rats [29].
Estrogen has been shown to cause multiple effects at the
level of complex II that include the inhibition of electron
transfer, maintenance of A¥Y,, and ATP levels, and the
enhancement of succinate dehydrogenase activity.

Cytochrome bc, reductase (complex Ill)

The human cytochrome bc, reductase (complex III) is an
integral membrane protein located in the inner mito-
chondrial membrane consisting of 10 subunits encoded
from the nuclear genome and 1 subunit encoded from the
mitochondria. Complex III transfers electrons from ubig-
uinol (CoQH,) to cytochrome c which is coupled to pro-
ton movement across the inner membrane. The synthetic
stilbene estrogen, DES (10 uM-50 uM), is reported to
inhibit complex III at the site of electron flow from ubig-
uinone to cytochrome ¢, [50]. The ER ligand tamoxifen is
also reported to inhibit electron transfer at the site of com-
plex III in isolated rat liver mitochondria [30]. The phy-
toestrogen resveratrol has been reported to bind both ER
0/, increase expression of estrogen responsive genes, and
stimulate cell proliferation of MCF7 and T47D breast can-
cer cells [51,52]. Interestingly, resveratrol has been shown
to inhibit complex III activity (20%) by competition with
ubiquinol (CoQH,) and preserve mitochondrial function
by its action on complex III in isolated rat brain mito-
chondria [53,54]. Besides the inhibition of electron trans-
fer at complex III, the phytoestrogen genistein (50 uM)
induced mitochondrial permeability transition (MPT) in
isolated rat liver mitochondria. Since estrogen can inhibit
electron transfer at complex III, the potential of estrogen
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to modulate the formation of mitochondrial ROS exists at
multiple respiratory complexes.

Cytochrome c oxidase (complex 1V)

In humans, the mitochondrial cytochrome ¢ oxidase
(Complex IV) is located in the inner membrane and cata-
lyzes the transfer of electrons to oxygen with water being
the final product of the reduction reaction coupled with
proton movement across the inner membrane. The mito-
chondria genome encodes 3 subunits of complex IV while
the other 10 subunits are encoded from the nuclear
genome. The effect of estrogen and ER ligands on complex
IV has been reported to increase and decrease enzymatic
activity. During the oestrus cycle in rats, E2 decreased
complex IV activity in brown adipose tissue, which sug-
gests a role for E2 in the modulation of oxidative capacity
[55]. The ER ligand tamoxifen was reported to restore
complex IV activity to normal levels in disrupted rat liver
mitochondria [56]. In rat liver mitochondria, tamoxifen
was demonstrated to have a biphasic effect on complex IV
in which a low concentration of 10-15 uM increased
enzyme activity while a higher concentration of 50 uM
inhibited activity by 50% [30]. Although the biological
effect of estrogen actions on complex IV remains to be elu-
cidated, it has been suggested that estrogen modulation of
complex IV activity may increase energy production in
estrogen sensitive tissues [23]. Furthermore, it has been
proposed that A, and ROS formation may be controlled
by a hormone mediated reversible phosphorylation of
complex IV [57]. Thus, the possibility for estrogen control
of ROS formation by modulating complex IV activity may
provide a mechanism of estrogen-induced redox signaling
by the mitochondria.

Mitochondrial ATP synthase (F,F -ATPase/Complex V)

Mitochondrial ATP synthase (F,F,-ATPase/Complex V) is
composed of two distinct parts: 1) the F,-ATPase portion
which protrudes into the matrix and synthesizes ATP
when protons pass through it down their electrochemical
gradient. 2) the F,-ATPase which forms a transmembrane
proton channel through the inner membrane. FyF;-
ATPase is encoded by 2 mitochondrial genome encoded
subunits and 14 nuclear encoded subunits. FjF;-ATPase
like respiratory chain complexes I-IV represents another
enzyme in the mitochondrial inner membrane that is sen-
sitive to estrogen. Inhibition of rat liver F,F,-ATPase by
DES (10 uM) has been demonstrated and the F, portion
was reported to contain a distinct binding site for DES
[58]. This specific binding site for the F, portion has made
DES a unique probe for the rapid isolation of functional
F, from rat liver mitochondria [59]. Using E2-BSA conju-
gates, a 23 kDa estrogen binding protein was identified in
rat brain mitochondria [60]. The 23 kDa protein was iden-
tified as the oligomycin-sensitivity conferring protein
(OSCP) which forms the stalk region between F, and F,
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subunits of F,F,-ATPase in mitochondria. The OSCP was
proposed to be the specific site on FjF,-ATPase where
estrogen modulates ATPase activity. Differential effects of
estrogen on F,F,-ATPase activity in isolated rat heart, liver,
and brain mitochondria were observed when treated with
E2, DES, and resveratrol [31]. E2 (13 nM) stimulated F,F;-
ATPase activity in the heart by 10%, but not in the liver
and brain. The phytoestrogen resveratrol (13-15 uM)
inhibited F F,-ATPase activity in the heart and liver while
lower doses (133 pM-1.3 nM) stimulated F,F,-ATPase
activity in the liver by 10%. Both phytoestrogens resvera-
trol (19 uM) and genistein (55 pM) can inhibit FjF;-
ATPase activity in rat brain mitochondria [61]. In rat
heart, liver, and brain the mitochondrial F,F,-ATPase
activity was inhibited by DES (6.7 uM) 61%-67% [31]. In
rat brain mitochondria, 17a-estradiol and E2 partly inhib-
ited FyF,-ATPase activity at low concentrations of 15 nM
and 3.4 nM, respectively, while 17a-E2 preserved mito-
chondrial function altered by the stress of anoxia-reoxy-
genation [62]. Although these studies of estrogen effects
on F,F;-ATPase have been shown in isolated mitochon-
drial preparations, FjF;-ATPase inhibition by E2 was dem-
onstrated to occur with intact human osteolclastic FLG
29.1 cells [63]. These studies of FyF,-ATPase activity dem-
onstrate that estrogens and estrogen-like compounds pos-
sess cell-type and dose-specific effects on mitochondrial
function.

Modulation of mitochondrial ROS by estrogens

Within the cell, mitochondria are considered to be a
major source of ROS, which include superoxide anion
(0,%), H,0,, and the hydroxyl free radical (*OH) [64-66].
Since mitochondria consume 85% of the oxygen used by
the cell, the mitochondrial ETC generates a substantial
amount of intracellular ROS [67]. As electrons pass
through the mitochondrial ETC, some electrons leak out
to molecular oxygen (O,) to form O,* which is dismu-
tated by manganese superoxide dismutase (MnSOD) to
form H,0, [64,68]. During mitochondrial respiration,
2% of the electron flow is reported to result in the forma-
tion of H,0O, [66]. However, lower values of free radical
leak were reported in the range of 0.4%-0.8% for heart
mitochondria respiring on physiological concentrations
of succinate (<0.5 mM) [37]. In support of these findings,
intact rat skeletal muscle, heart, and liver mitochondria
were reported not to produce measurable amounts of ROS
when respiring on complex I and complex II substrates
[69]. In addition, this study reported a lower estimate of
electron flow (0.15%) that contributed to H,O, produc-
tion under resting conditions. These results suggest that
mitochondria produce low levels of ROS that can be effec-
tively scavenged by the cell's antioxidant defenses at rest-
ing conditions. It is this point, the low basal level of ROS
produced by the mitochondria at rest, which makes mito-
chondrial ROS ideal signaling molecules since its
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contribution to the intracellular level of ROS is not at so
high a level to induce oxidative stress; instead, a low oxi-
dant level provides a physiologically safe window for
redox signaling which allows the cell to regulate mild to
moderate oxidative changes and critically respond to
them by activating cellular processes such as proliferation
and differentiation rather than triggering cell death.

Characteristics of mitochondrial ROS

Mitochondria are a predominant source of ROS in most
cell types with unique characteristics that may allow it to
participate in growth signal transduction. First, mitochon-
dria are unique because they are a regulatable source of
ROS in response to external stimuli. For example, cortical
neurons exposed to N-methyl-D-aspartate (NMDA) were
reported to couple a rise in intracellular calcium with
mitochondrial O,* production [70]. Tumor necrosis fac-
tor alpha (TNF-a) is another example of stimulated mito-
chondrial generation of O,* in L929 cells and this ROS
generation is coupled to the cytokine by the TNF-a. recep-
tor [71,72]. Few other examples exist of mitochondria
producing ROS in response to external stimuli, but more
recently integrins (cell surface receptors that interact with
the extracellular matrix) were reported to modulate mito-
chondrial ROS production for signal transduction [73].
Although signal pathways involved in triggering mito-
chondrial ROS remain largely unknown, it has been pro-
posed that mitochondria participate in integrin signaling
in a nonapoptotic manner, which leads to gene expression
and cell differentiation.

Mitochondrial ROS can enter the cytosol as either H,O, or
O,* where it can participate in redox signaling. Within the
mitochondria, MnSOD can dismutate O,* to H,O, which
is a highly diffusible signaling molecule that can exit the
mitochondria. In addition to H,0,, O,* was demon-
strated to be released by mitochondria to the cytosol via
the voltage-dependent anion channels (VDACs) [74]. In
regard to turning the mitochondria ROS signal off, cellu-
lar antioxidant defenses such as SOD, catalase, and glu-
tathione peroxidase easily degrade ROS, which terminates
the signal. Therefore, mitochondrial ROS fulfill the pre-
requisites of a 2nd messenger since they are short-lived
(rapidly generated and degraded), produced in response
to a stimulus, highly diffusible, and ubiquitously present
in most cell types.

Mitochondria are highly dynamic structures capable of
changing their shape (by elongation, branching, swelling)
and their location inside a living cell [75]. It is becoming
clear that the morphological, functional, and genetic dif-
ferences (heteroplasmy) that exist within the mitochon-
dria population may reflect a division of labor within the
cell. Mitochondria have been reported to be morphologi-
cally heterogeneous and unconnected within individual
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cells [76]. Pancreatic acinar cells were reported to contain
distinct groups of mitochondria classified by their cellular
location that included perinuclear, subplasmalemmal,
and perigranular mitochondria [77]. In light of this find-
ing, the highly diffusible H,0, generated by mitochondria
may become a specific signaling molecule as a function of
location. For example, perinuclear mitochondria may
generate H,O, that only transduces signals to the nucleus
or the subplasamlemmal mitochondria may only activate
signal cascades of plasma membrane origin. Additionally,
perinuclear, subplasmalemmal, and perigranular mito-
chondria were independently activated by intracellular
calcium signals in their immediate environment, which
supports distinct calcium functions for each type of
mitochondria.

It is significant that mitochondria can create subcompart-
ments or 'microzones' within the cytoplasm because sig-
nal transduction depends on the close proximity of
substrates and effector molecules to be an efficient proc-
ess. In addition, given the presence of other endogenous
ROS sources besides the mitochondria such as NADPH
oxidase, peroxisomes, cytochrome p450, xanthine oxi-
dase, cyclooxygenase, lipooxygenase, and y-glutamyl
transpeptidase [78]; and because ROS is involved in a
variety of signal cascades, understanding how mitochon-
drial ROS is activated at the right place and at the right
time is vital in understanding the organelle's role in signal
transduction. Compartmentalization has already been
reported to play a key role in redox signaling and we con-
sider this attribute when describing the mitochondria as a
signal transducer [79]. In adult cells, mitochondrial clus-
tering functions to create steep gradients of low molecular
weight species such as O,, ATP, and pH resulting in spe-
cialized microzones that may facilitate signal specificity
[80]. In the cytosol, the volume occupied by mitochon-
dria in cells is highly variable and ranges from 15% to
50%. Based on volume, mitochondria compose a signifi-
cant compartment within the cytosol that harbors signal-
ing molecules. H,O, produced within the mitochondria is
highly diffusible in contrast to O,*, which cannot diffuse
through membranes making it easily compartmentalized.
Thus, mitochondrial generated O,* may be kept separated
from the cytosol until an appropriate stimulus releases it
through VDACs. Another route for O,* release may be
through the mitochondrial permeability transition pore
(MPTP) as low molecular weight compounds up to
molecular weight 1500, can be exchanged between the
mitochondrial matrix and the cytosol via this pore [81].
Since the MPTP is reported to reversibly open/close natu-
rally in intact cells without resulting in apoptosis, mito-
chondrial signaling molecules could be exchanged with
the cytosol by the transient 'flickering' (open/closing) of
the MPTP in response to certain stimuli [82].
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In addition to location and compartmentalization, pro-
tein scaffolds mediate the selective activation of the
mitogen activated protein kinase (MAPK) signaling path-
way which raises the question of whether mitochondria
may also act as a protein scaffold for signaling complexes
[83]. A-kinase anchoring protein (AKAP) is reported to
tether protein kinase A (PKA) to the mouse mitochondrial
outer membrane [84,85]. What makes AKAPs unique is
their ability to simultaneously bind multiple signaling
enzymes such as other kinases and phosphatases [86].
This multivalent scaffold has been described as a 'transdu-
ceosome' capable of integrating signals from multiple
pathways [87]. Whether these multivalent scaffolds exist
on mitochondria is not clear at this time, but these signal-
ing complexes could be a mediator of signals between the
mitochondria and the nucleus during cell division. For
example, AKAP84/121 has been demonstrated to concen-
trate on mitochondria in interphase and on mitotic spin-
dles during metaphase transition alluding to its role in the
cell cycle [88]. In addition to AKAP, a mitochondrial sign-
aling complex has been reported to activate MAPKs. The
PKCe can form signaling complexes with ERKs, JNKs, and
P38 MAPKs in the murine heart [89]. Activated PKCe was
shown to increase phosphorylation of mitochondrial ERK
and p38 MAPKs. Whether the anchoring of PKC to mito-
chondria depends on AKAP is not known at this time.

Mechanisms of estrogen-induced mitochondrial ROS

Studies of the mitochondrial ETC have reported only two
ROS forming sites, the FMN group of complex I and the
ubiquinone site in complex III [45,90]. The topology of
ROS production, on which side of the mitochondrial
inner membrane O,* is produced, was reported to occur
on the cytosolic side by complex III and on the martix side
of the inner membrane by complex I [69]. Estrogen is
known to act as either an antioxidant or pro-oxidant
depending on the concentration [91]. Whether physiolog-
ical concentrations of estrogen can stimulate mitochon-
drial ROS at complex I and complex III is not clear since
most studies have been performed with cytotoxic doses.
In the following section, we provide evidence for poten-
tial mechanisms of estrogen induced mitochondrial ROS.

Electrons feed into the mitochondrial ETC at complex 1
and complex II. At complex I and complex II, ubiquinone
or co-enzyme Q,, (CoQ) oxidizes NADH and FADH,,
respectively. CoQ functions as a mobile electron carrier
within the mitochondrial inner membrane and transfers 2
electrons from both NADH and FADH, to complex III
[92]. CoQ is known to offer protection from heart disease
by increased ATP production and antioxidant actions
[93]. It is a highly lipophillic compound due to its struc-
ture which includes an isoprenoid tail of usually 10 iso-
prene units in length, hence the designation Q,,. Other
than its role as an electron carrier and antioxidant, CoQ is
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also reported to act as a pro-oxidant. Although the pro-
oxidative action of CoQ within the mitochondria is a mat-
ter of debate, O,* formation occurs from a single electron
transfer from ubisemiquinone to molecular oxygen. Exog-
enously added CoQ has been demonstrated to enhance
O, generation in isolated respiratory complex I and III
[94]. Further evidence in support of CoQ redox-cycling
come from a study that demonstrated H,O, derived from
decomposing O,* was inhibited after the removal of CoQ
[90]. Upon the re-addition of CoQ, H,0, was detected
again which indirectly demonstrated that the O,* may
originate from CoQ. Although some reports make a case
for O,* formation by CoQ redox cycling in mitochondria,
arguments against its role as a source of O,* come from a
study which demonstrated that O,* formation did not
occur in a water-free nonpolar reaction system that mim-
ics the lipophilic nature of the inner mitochondrial mem-
brane [95]. However, pretreatment of the membrane with
toluene which increased its permeability to protons pro-
vided conditions in favor of O,* formation by CoQ. Thus,
it was proposed that under certain pathological condi-
tions in which the inner mitochondrial membrane is pro-
tonated, CoQ becomes a significant source of O,*[96]. In
line with this result, a study demonstrated that CoQ (100
pM) enhanced the release of H,O, from mitochondria in
the presence of antimycin A (2 uM) and to a lesser extent
with Ca2+ (10 uM) [97]. The antimycin A and Ca2+ pre-
treatment was thought to induce a leaky inner mitochon-
drial membrane thereby allowing protons to interact with
CoQ and enhance ROS production by redox cycling.

Interestingly, CoQ shares similar characteristics to cate-
chol metabolites of estrogen. The catechol metabolites 2-
and 4-OH-E2 contain hydroxyl groups that can be oxi-
dized to semiquinones, which in the presence of molecu-
lar oxygen can be further oxidized to quinones with the
formation of O,* [98]. Since CoQ undergoes reduction/
oxidation (redox) reactions which result in the radical
semiquinone intermediate (semiubiquinone) and qui-
none, it is biologically possible for catechol estrogens to
participate in shuttling electrons and to act as a pro-oxi-
dant like CoQ. Given that MCF7 cells treated with the o-
quinone form of estrogen and NADPH produce signifi-
cant amounts of H,O, in the mitochondrial subfraction
[99]; and that mitochondrial enzymes catalyze redox reac-
tons of stilbene estrogen in the mitochondria [100], the
capacity of catechol estrogens to redox cycle within mito-
chondria suggests that these metabolites could facilitate
mitochondrial ROS formation. Assuming that estrogen is
a weak electron carrier compared to CoQ, it may have a
tendency to leak electrons to molecular oxygen instead of
transferring its electrons to complex III. The phytoestro-
gen and dietary flavinoid quercetin is reported to act as a
pro-oxidant. Foods of plant origin contain flavinoids
known to act as antioxidants or pro-oxidants depending
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on the concentration and metal chelates which catalyze
the oxidative process [101]. Estrogen is similar to some
flavinoids with respect to inhibition of the mitochondrial
respiratory chain at complex I and complex II [102,103].
Based on these reports, the formation of O,* by estrogen
at the level of electron transport could be one mechanism
of increased mitochondrial ROS.

Mitochondrial Ca?+, [Ca?+],,, accumulation is reported to
promote the generation of ROS [104]. For example, an
increase in [Ca2+], was reported to stimulate H,O, pro-
duction by rat brain mitochondria in the presence of
rotenone [105]. Using confocal microscopy, we have
shown a time-dependent increase in [Ca2*],, with E2 (100
pg/ml) treatment of MCF7 cells [106]. Another study
reported an increase in [Ca2+], with E2 (10 ng/ml) treat-
ment of hippocampal neurons [107]. The mechanism for
these increases in [CaZ*],, is not clear, however, the inhi-
bition of Na-dependent Ca2+ efflux from mitochondria
was reported to increase calcium retention in E2 (1 nM)
treated synaptosomal mitochondria [108]. There is some
evidence which suggests allosteric inhibition of a respira-
tory complex may be a mechanism for hormone induced
ROS formation. Allosteric inhibition of the respiratory
complex IV (COIV) or cytochrome c oxidase is reported to
occur by cAMP-dependent phosphorylation; and this
inhibition is turned-off by Ca2+-activated dephosphoryla-
tion [109]. A study proposed that a hormone stimulated
increase of cellular Ca2* may activate a mitochondrial pro-
tein phosphatase which dephosphorylates cytochrome ¢
oxidase. In turn, cytochrome c oxidase is activated which
results in a rise of A¥,, and ROS [57]. Interestingly, the ER
ligand tamoxifen (15 uM) showed a slight stimulatory
effect on cytochrome c oxidase [30]. Since estrogen is
capable of increasing [Ca2+],,,, it is possible for estrogen to
signal the formation of mitochondrial ROS through a
similar mechanism.

The inhibition of respiratory complex I is known to favor
ROS generation. Rat brain mitochondria that respired on
complex I substrates produced a substantial level of ROS
when inhibited with rotenone concentrations as low as 20
nM [110]. Since estrogen is known to inhibit respiratory
complex I, we speculate that complex I interactions with
the hormone could favor ROS production in a manner
similar to rotenone. The phytoestrogen genistein is
another flavinoid besides quercetin that acts like a pro-
oxidant at the level of mitochondria. Genistein (50 uM)
treatment of rat liver mitochondria was shown to increase
ROS formation through interaction with respiratory com-
plex III which resulted in the opening of the membrane
transition pore [111]. Besides hormone interactions with
respiratory enzymes, post-translational modifications
such as phosphorylation-/-dephosphorylation that affect
the activity of mitochondrial proteins should also be con-
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sidered in ROS generation. The cAMP-dependent protein
kinase is reported to phosphorylate 6-, 18-, 29-, 42-kDa
mitochondrial proteins in bovine heart and phosphor-
ylate the human 18-kDa subunit which promotes the
activity of complex I [112-115]. Since estrogen is reported
to stimulate cAMP-dependent protein kinase activity in
hippocampal neurons, it raises the possibility for estrogen
to induce cAMP accumulation in mitochondria
[116,117]. If estrogen increased cAMP levels within mito-
chondria, then cAMP-dependent phosphorylation of
mitochondrial respiratory complexes may modulate A¥
and/or [Ca?*],, in favor of ROS generation.

Several isoforms of the enzyme nitric oxide synthase
(NOS) are reported to exist which include inducible-(i),
endothelial-(e), neuronal-(n), and mitochondrial-(mt)
NOS. Estrogen has been reported to induce various iso-
forms of NOS. The activity of eNOS is modulated by estro-
gen in human aortic endothelial cells, uterine artery,
heart, and skeletal muscle [118,119]. Estrogen has also
been shown to stimulate protein expression of nNOS in
human neutrophils and the transcription of iNOS in rat
macrophages [120,121]. These effects are not limited to
E2 because the estrogen-like chemical bisphenol A and
the phytoestrogen resveratrol are also reported to stimu-
late NO synthesis [122,123]. These lines of evidence dem-
onstrate a significant role of estrogen compounds in the
modulation of NOS and NO. In regards to redox signal-
ing, a NO-dependent inhibition of cytochrome c oxidase
has been proposed to generate O,* which is dismutated
into the membrane permeable second messenger H,O,
[124]. Since estrogen is capable of inducing NOS activity
and expression, we postulate that an estrogen induced rise
in NO could participate in a similar manner whereby gen-
erating mitochondrial H,O,. Interestingly, NO induced
mitochondrial biogenesis has been demonstrated in sev-
eral cell lines, which include brown adipocytes, 3T3-L1,
U937, and HelLa cells [125]. We have shown that estrogen
can influence mitochondrial biogenesis (data unpub-
lished) and postulate that estrogen-induced NO could be
one possible mechanism. More specifically, since mtNOS
activity is dependent on Ca2+, we propose that an estro-
gen-induced rise in [CaZ*],,, could stimulate mtNOS activ-
ity ultimately leading to the generation of ROS via NO-
dependent inhibition of cytochrome c oxidase [126].

Estrogen-induced growth of cells in relation to
mitochondria

The rapid stimulation of intracellular ROS by platelet-
derived growth factor (PDGF), epidermal growth factor
(EGF), and nerve growth factor (NGF) suggests that this
underlying mechanism of cell growth may be shared with
other growth factors including estrogen [127]. Exogenous
addition of low concentrations of H,0O, and/or O,* has
been demonstrated to stimulate cell growth in a variety of
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cell types including muscle cells, fibroblasts, amnion cells,
prostate cancer cells, and aortic endothelial cells [78]. The
molecular signaling mechanism that initiates ROS pro-
duction by mitochondria is not clear, however, other cell
processes besides apoptosis may be coupled to this signal-
ing event. Tumor necrosis factor alpha (TNF-a) induces
gene expression via mitochondrial respiratory chain
dependent activation of NF-xB, AP-1, JNK, and MAPKK
[73]. The proliferative response of endothelial cells to
hypoxia was demonstrated to be initiated upstream by
mitochondrial ROS which activated the MEK/ERK path-
way [128]. Although other endogenous ROS sources
besides mitochondria such as NAD(P)H oxidase exist,
mitochondria will be the focus of this paper for the fol-
lowing reasons: (i) mitochondria are the principal source
of intracellular ROS in epithelial cells. (ii) the growth of
adenocarcinomas occur in tissue of epithelial cell origin.

A characteristic of rapidly dividing cancer cells is their
capacity to produce significant amounts of intracellular
ROS, which has been implicated in the promotion of
accelerated cell cycle activity in neoplastic cells. Mito-
chondria have long been suspected to play a role in the
development and progression of cancers. The ROS mole-
cules H,0, and NO have been demonstrated to stimulate
mitochondrial biogenesis, a process that depends on the
flow of molecules into and out of the organelle [125,129].
Since mitochondrial proteins are encoded in two separate
genomes (mitochondria and nuclear genome), biogenesis
is a coordinated effort in which mitochondria transmit
signals to the nucleus and vice versa. The question of how
mitochondria transmit these signals in the process of cell
proliferation has risen from reports of its involvement in
cell growth. Cerebral granular cells isolated from newborn
rats with high mtNOS activity were reported to exhibit
maximal proliferation rates which depended on NO and
H,0, levels. In addition, MnSOD displayed an increased
pattern of activity similar to mtNOS [130]. NO has been
proposed to inhibit cytochrome c oxidase in favor of O,*
production and therefore MnSOD may dismutate O,*
generated by NO-dependent inhibition into the signaling
molecule H,O,. Ethinyl estradiol, E2, and estrogen cate-
chol metabolites at a dose of 0.25 to 5 uM are reported to
increase mitochondrial O,* in cultured rat hepatocytes
and HepG2 cells [131]. Although the biological signifi-
cance of the estrogen-induced mitochondrial O,* is not
known at this time, ROS has been demonstrated to mod-
ulate ER protein expression in various cell lines. Treat-
ment of human breast cancer cells MCF7 and T-47D with
H,0, (2.5 uM) increased the protein level of ERB [132]. In
addition, PMA (100 ng/ml) treatment increased the
expression of ERB in the macrophage cell line J774A.1.

Evidence for the involvement of redox signaling with
estrogen-induced cell proliferation has been demon-
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strated in several studies. Liposomes containing SOD or
catalase inhibited in vitro estrogen-induced proliferation
of Syrian hamster renal proximal tubular cells [133]. The
cytokines IL-1p and TNF-a are known to cause the release
of O,* from human fibroblast cells. Co-treatment with an
inhibitor of IL-1f and TNF-a synthesis, pentoxifylline,
inhibited stilbene estrogen-induced increase in myeloper-
oxidase activities, 8-hydroxydeoxyguanosine (8-OHdG)
formation, mutations in the testicular genome, and pre-
vented estrogen-induced testicular preneoplastic lesions
[3]- Recently, we have shown that estrogen-induced stim-
ulation of macrophage cells and MCF?7 cells in part occurs
through ROS [134,135]. We have also observed inhibi-
tion of estrogen-induced MCF7 cell growth by ROS scav-
engers such as N-acetylcysteine, ebselen, and catalase
(unpublished Singh M, Felty Q and Roy D). ROS can
modulate effector molecules such as PKC, p53, extracellu-
lar regulated kinase (ERK), nuclear factor-«B (NF-«B), and
the c-fos/c-jun heterodimer (AP-1); and these effector
molecules are known to participate in growth signal trans-
duction [136]. Therefore, estrogen-induced production of
mitochondrial ROS may activate cell growth in estrogen-
sensitive tissues.

Oxidative stress has been shown to affect mitochondrial
proteins of chronically estrogenized Syrian hamster kid-
ney. A decrease in thiol/sulthydryl groups was reported in
the mitochondrial fraction at a preneoplastic stage of car-
cinogenesis [137]. Estrogen-induced oxidative stress may
be responsible for these post-translational modifications
in mitochondrial proteins. This finding is significant in
the context of cell signaling because redox reactions
involving cysteine thiol groups transduce signals by break-
ing or forming protein dithiol/disulfide bridges [138].
Since estrogen can induce mitochondrial ROS, we infer
that the oxidation of thiols in response to estrogen con-
verts the oxidative stress to a change in protein function
involved in cell growth. Oxidative stress modifies mito-
chondrial matrix protein thiols [139]. Similarly, thiols on
protein subunits 51-kDa and 75-kDa of NADH dehydro-
genase (complex I) have been reported to form mixed
disulfides with glutathione (glutathionylation) in
response to mitochondrial oxidative stress. This post-
translational modification was reversible and correlated
with an increase in mitochondrial O,*- production [140].
Evidence in support of a ROS signal transduction pathway
originating from complex I comes from a study which
reported that the mitochondrial complex I inhibitor,
rotenone, blocked ROS mediated signaling. Interestingly,
this study demonstrated that a co-treatment of rotenone
(10 nM) and E2 (10 nM) inhibited ornithine decarboxy-
lase activity by 86% in MCF7 cells [42]. Since ornithine
decarboxylase activity is a marker for cell growth, it
appears that a signal transduction pathway for estrogen-
induced cell growth may originate from the mitochondria
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assuming that rotenone inhibition is specific to complex
I. The antitumor arotinoid, mofarotene (Ro 40-8757), has
been demonstrated to down-regulate mitochondrial
encoded NADH dehydrogenase subunit 1 (MtND1)
expression in breast cancer cell lines MDA-MB-231, ZR-
75-1, and MCF7 [141]. Since MtND1 has been reported to
form part of the rotenone-binding site in complex I [40],
the absence of MtND1 may remove an important site of
estrogen action in mofarotene treated cells and may
account for the anti-proliferative effects of this com-
pound. Whether these protein interactions and/or modi-
fications can occur as a result of estrogen exposure
remains to be investigated. From these investigations, we
infer that estrogen mediated cell growth via mitochon-
drial generated ROS signaling molecules may exist and
merits future exploration to address this novel pathway.

The mitochondrial thioredoxin system has been demon-
strated to play a role in cell cycle progression. In general,
the two antioxidant oxidoreductase enzymes thioredoxin
(Trx) and thioredoxin reductase (TrxR) that compose the
system modulate signal transduction properties of ROS by
the reduction of intracellular disulfides. Trx acts as a pro-
tein disulfide reductant for ribonucleotide reductase and
several transcription factors including p53, NF-«xB, and
AP-1 [142]. Once oxidized the active disulfide site is
reduced by TrxR re-generating the reductant form of Trx.
Enzyme isoforms Trx-2 and TrxR2 are reported to exist in
the mitochondria. A biological role for TrxR2 in cell
growth was demonstrated in HeLa cells using a dominant
negative form of TrxR2 (TrxR2DN) [143]. An increase of
G, to S phase transition, cell growth, and transcription of
cell cycle genes was induced by TrxR2N expression.
TrxR2DN expression was suggested to increase intracellu-
lar H,0,, which in turn signaled cell proliferation.
Although it is not clear whether estrogen can modulate
the H,0, levels of mitochondria, estrogen (10 nM-100
nM) treatment of primary human endometrial stromal
cells in vitro show an increase in Trx protein and mRNA
which implicate Trx involvement in cell growth and differ-
entiation of estrogen responsive tissue [144]. Alterations
in cellular redox status by increased expression of TrxR2
have been suggested to play a role in the growth of hepa-
tocellular carcinomas [145]. Whether estrogen can signal
cell growth through Trx2 and/or TrxR2 is not known, but
these findings suggest that estrogen may modulate signal
transduction of mitochondrial derived ROS via the thiore-
doxin system.

Transduction of estrogn-induced mitochondrial signals to
nucleus

Mitochondrial ROS fulfill the characteristics of a 2nd mes-
senger since they are short-lived (rapidly generated and
degraded), produced in response to a stimulus, highly dif-
fusible (H,0,), and ubiquitously present in most cell
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types. It is not known whether mitochondrial ROS like
H,0, are involved in signaling pathways that control
estrogen-induced cell proliferation. In this section, we
provide evidence in support of redox signaling pathways
of mitochondrial origin, which may be involved in cell
cycle progression of estrogen-dependent cells.

Redox sensor proteins and transcription

Protein kinases are known to participate in phosphoryla-
tion signal cascades, however, zinc finger domains con-
tained in some proteins may allow them to participate in
redox signaling networks. Zinc finger structures within a
protein consist of at least two zinc-coordinated thiolates.
Upon oxidation zinc is released from the protein, which
converts cysteine thiol groups to disulfide. A conforma-
tional change in the protein may result in either its activa-
tion or inhibition. There are several protein kinases such
as a-raf and PKC that contain zinc finger domains. In
addition, zinc finger domains are also found in hormone
receptors such as the GR and ER [146]. Both PKC and c-raf
have been demonstrated to be redox activated at the zinc
finger domain [147,148]. For instance, ROS can trigger
the release of zinc ions from PKC which results in its acti-
vation. Another protein kinase, c-raf, known to participate
in the MAPK signal cascade was also demonstrated to be
redox activated at the zinc finger domain. The mitochon-
drial localization of protein kinases src, Akt, a-raf, and
PKC is evidence that this subcellular compartment har-
bors oxidant sensitive proteins that may facilitate cross-
communication between redox and phosphorylation net-
works [33,89]. Although the role of the protein kinase a-
raf in the mitochondria is not clear, a-raf mRNA is highly
expressed in normal murine tissues such as the epidi-
dymis, ovary, kidney, and urinary bladder [149]. In Hela
cells, epidermal growth factor rapidly (2 min.) and tran-
siently activated a-raf, which in turn phosphorylated the
MAP kinase activator MEK1 [150]. Therefore, mitochon-
drial ROS may activate MAPK signaling via a-raf. It is inter-
esting to note that E2 can stimulate the phosphorylation
of a-raf and cell cycle progression in MCF7 cells [151].
Whether the estrogen induced phosphorylation of a-raf
depends on ROS is not known. Mitochondrial PKC8 and
PKCe could also activate the raf/MEK/ERK pathway or
directly activate MAPKs, respectively [152,153]. Rapid
effects of estrogen have been demonstrated to mediate the
DNA binding activity and phosphorylation of transcrip-
tion factors. E2 treatment of rat adipocytes doubled AP-1
DNA binding and phosphorylated CREB protein within
15 min [154]. The redox sensitive protein Akt is known to
phosphorylate an upstream kinase, IKKa, which stimu-
lates the degradation of Ik-B [155]. Estrogen-induced
mitochondrial ROS may stimulate Akt leading to the deg-
radation of Ix-B and activation of the transcription factor
NF-xB. Whether estrogen treatment can activate Akt via
mitochondrial derived ROS is not clear, however,
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Hypothetical scheme outlining three E2-induced signaling pathways from mitochondria. (i) E2 binding to a plasma membrane
receptor and/or mitochondrial respiratory complexes generates ROS which leads to kinase activation. (i) E2-induced rise in
mitochondrial calcium leads to the activation of calcium-dependent proteases which process signal peptides, in turn responsible
for kinase activation. (jiij) E2-induced cytoskeleton modifications by mitochondria leads to kinase activation. Increased kinase

activity results in the activation of transcription factors responsible for cell cycle progression.

phosphorylation and translocation of Akt to the mito-
chondria was demonstrated when cells are treated with
estrogen [156]. Given that E2 can stimulate mitochon-
drial ROS generation; ER, src, a-raf, Akt, and PKC are tar-
gets of oxidative stimuli localized at the mitochondria;
and the transcription factors AP-1, NF-xB, and CREB are
stimulated by oxidants [127,131,157]; it is possible that
estrogen specific effects at the level of mitochondria can
activate these transcription factors. Based on these studies
we postulate that estrogen-induced mitochondrial ROS
stimulates oxidant sensors a-raf, Akt, or PKC, which in
turn activate transcription factors such as NF-xB, CREB, or
AP-1 via the MEK/ERK pathway resulting in the transcrip-

tion of cell cycle genes containing DNA responsive ele-
ments for NF-kB, CREB, or AP-1 and ultimately estrogen-
induced cell proliferation (Fig. 1).

Estrogen and mitochondrial-cytoskeleton interactions

Mechanical signals associated with cytoskeletal tension
generation and cytoskeleton restructuring are a require-
ment for anchorage dependent cells to pass through the
late G, restriction point [158]. Since these cytoskeleton
dependent effects on the G, checkpoint are independent
from the MAPK signaling pathway, a new question rises of
whether mitochondria can modulate cell growth by inter-
acting with the cytoskeleton. Mitochondria are reported to
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be associated with three major cytoskeletal structures,
which include microtubules, microfilaments of actin, and
intermediate filaments [159]. Mitochondrial tubulin and
microtubule associated proteins (MAPS) are reported to
bind to porin or VDAC a component of the permeability
transition pore [160]. The association of the cytoskeleton
with VDAC could be biologically significant because the
actin filament severing and capping protein gelsolin has
been reported to modulate A¥, by its interactions with
VDAC [161].

Epithelial cell spreading results from the binding of
integrins to the extracellular matrix which depends on the
actin cytoskeleton [162,163]. The survival of epithelial
cells depends on this interaction with the extracellular
matrix, which if disrupted leads to a specific form of apop-
tosis called anoikis [164]. Actin filaments are necessary to
cluster integrin receptors and proteins linked to their cyto-
plasmic domain into focal adhesion complexes [165].
These focal adhesion complexes provide a direct link
between the extracellular matrix and the actin cytoskele-
ton. Anchorage-independent growth is a property of can-
cer cells, which may depend on the mitochondria based
on evidence from the following studies. Long-term expo-
sure of cells to ethidium bromide, an intercalation agent
which inhibits mtDNA replication, results in the deple-
tion of mitochondria. Mitochondria-depleted (p°) brain
and breast tumor cells have been shown to lose their abil-
ity for anchorage-independent growth [166]. In addition,
human p° cell lines derived from ovarian carcinoma, cer-
vical carcinoma, and osteogenic sarcoma were demon-
strated to be non-tumorigenic or poorly tumorigenic
when administered subcutaneously to nude mice [167].
Taken from these reports is the interesting possibility that
cancer cells maintain tension on the cytoskeleton via the
contraction and expansion of mitochondria instead of
binding to the extracellular matrix. Actin assembly and
disassembly is regulated by the protein gelsolin. Since gel-
solin is reported to prevent apoptotic mitochondrial
changes by binding and closing VDAC, perhaps other
diverse functions are modulated by interactions between
the mitochondria and cytoskeleton. More recently, it was
demonstrated that mitochondrial ROS production is
stimulated by integrin induced changes [73]. Although
integrin receptors are linked to the actin cytoskeleton, it is
not clear whether the signal that is transduced to the mito-
chondria occurs via the cytoskeleton. Furthermore micro-
tubules have also been implicated in the biogenesis of
mitochondria based on the inhibition of mitochondrial
mass increase and mtDNA replication caused by the
microtubule-destabilizing drug colchicine and the estro-
gen metabolite 2-methoxyestradiol in mammalian cells
[168].
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Mitochondria biogenesis is reported to occur in the G;
phase of the cell cycle but also starts in the late S phase
[169]. Although mitochondria were not reported to be an
upstream signaling event for generating cytoskeleton ten-
sion, physical effects of mitochondria such as shape
changes and stretching or contraction could generate ten-
sion based on its association with the cytoskeleton.
Changes in cytoskeleton tension may be mediated by
mitochondria in response to estrogen. For instance, trans-
mission electron microscopy (TEM) showed an increase
in mitochondria size of MCF7 cells treated with E2 [14].
This change in mitochondrial size may generate mechan-
ical forces that, in turn, may transduce a signal to the
nucleus. Another possibility is that estrogen stimulated
mitochondrial ROS may affect the elasticity of the actin
network. Actin filaments are a prevalent feature of the
cytoskeleton, which partially determine the overall
mechanical strength of a cell. Thiol oxidation forms
disulfide-bonded actin dimers resulting in interfilament
cross-links [170]. Estrogen-induced oxidative stress has
been recently reported to oxidatively modify cysteine res-
idues of proteins [137]. Thus, estrogen-induced mito-
chondrial ROS could stimulate the formation of actin
dimers that modulate cytoskeleton tension which in turn
transduces a signal to the nucleus (Fig. 1).

Mitochondrial proteolysis and peptides as signals

The mitochondrial protein cytochrome c is known to be
released to the cytosol where it initiates a signal for apop-
tosis. Given the role of cytochrome c the existence of other
mitochondrial protein signaling molecules is a likely pos-
sibility that could mediate a diverse number of cellular
processes including cell growth. It has been shown that
mitochondria have the capability to export mitochon-
drial-matrix proteins to other cellular compartments such
as the nucleus, peroxisome, endoplasmic reticulum, and
secretory vesicles [171]. For example, mitochondrially
transmitted factors (MTFs) are peptides derived from
mitochondrial encoded proteins that are presented on the
cell surface as minor histocompatability antigens. MTFs
are derived from the mitochondrial encoded NADH dehy-
drogenase subunit 1 gene in murine and humans while rat
MTFs are derived from the mitochondrial encoded ATPase
6 gene [172,173]. Although the synthesis and cell surface
expression of MTFs was inhibited by the mitochondria
specific protein synthesis inhibitor chloramphenicol, it is
not clear whether post-translational modifications of
mitochondria proteins are also responsible for MTFs;
given that chloramphenicol is also an inhibitor of prote-
olysis in rat liver mitochondria [174]. Thus, mitochondria
may serve as a subcellular compartment of proteolysis
that generates signaling peptides that are exported to the
cytosol. It is possible that proteolysis plays a significant
role in mitochondrial protein processing because the
chemical rhodamine 6G (R6G) inhibits matrix catalyzed
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processing of rat-liver mitochondrial precursors which
include iron-sulfur protein, cytochrome ¢,, and core pro-
tein I of the cytochrome bc, complex; the o and  subunits
of F1 ATPase and subunit IV of cytorochrome oxidase
[175]. The molecular mechanism of R6G inhibition of
protein processing was not identified, but it was proposed
to be due to an interaction between R6G and a matrix pro-
tease. The import of proteins into mitochondria has been
investigated in great detail while the process of export is
minimally explored. A novel ATP-binding cassette (ABC)
transporter, Mdl1, located in the inner mitochondrial
membrane of yeast is required for the export of mitochon-
drial peptides with a molecular mass of 2100 to 600 dal-
tons generated by proteolysis [176]. It was suggested that
the export of peptides from the mitochondria may allow
the mitochondria to communicate with its environment.
This novel mode of communication may exist based on
studies that demonstrate mitochondrial specific cleavage
and export of cytokines. The cytokine IL-1f is localized in
the mitochondria of LPS stimulated human peripheral
blood monocytes and the 31 kDa form of IL-1B is
reported to be cleaved into the 17 kDa mature active form
within the mitochondria upon exposure to the HIV coat
glycoprotein 120 [177,178]. Since macrophages secrete
IL-1B by the ABC transporter, it is possible that proteins
up to 17 kDa may be exported from the mitochondria
[179]. In addition to IL-1B, mitochondrial Trx protein
may also participate in a similar protein export mecha-
nism. A truncated form of Trx, Trx80, is reported to be a
potent mitogenic cytokine, however, it is not known
whether Trx80 is derived from mitochondrial Trx [180].
Based on these reports it appears that cleaved proteins
may be released as growth factors in response to an estro-
gen-induced rise in mitochondrial calcium that activates
proteolysis. Thus, cleaved signaling peptides from the
mitochondria may stimulate cell growth in an autocrine
manner (Fig. 1).

Several proteases are known to exist in the mitochondrial
matrix such as ATP-dependent human Lon protease, ATP-
dependent human Clp proteinase chain P (hClpP), and
CaZ* dependent neutral protease [181-183]. Since endog-
enous proteolysis is a mechanism that regulates cell cycle
progression, we postulate that E2-induced rise of mito-
chondrial calcium can activate calcium dependent pro-
teases such as calpeptin and possibly hClpP. Once
activated mitochondrial matrix proteins could be cleaved
into bioactive forms that are exported to the cytosol. The
heterogeneous association between ERo cleavage prod-
ucts and regulatory proteins has been suggested to play a
role in physiological or pathological processes [184]. Low
molecular weight ERa isoforms (~35-28 kDa) have been
identified in mitochondria [16]. The 44-kDa protein
related to the nuclear RXRa receptor is reported to be
enzymatically cleaved and imported into the mitochon-

http://www.carcinogenesis.com/content/4/1/1

drial matrix [185]. It may interact with mitochondrial pro-
teins or bind the organelle genome. Once in the cytosol
mitochondrial clevage products may also regulate the
function of various enzymes. For example, a truncated
ERa 46-kDa protein in human endothelial cells mediated
an acute activation of eNOS in response to a 15 min E2
(30 nM) treatment [186]. A significant finding from this
report is that the truncated ERa 46-kDa mediates acute
responses of estrogen rather than transcriptional
responses in endothelial cells. Recently, it was reported
that physiologic concentrations of E2 (<10 nM) induced
NOS1 and activates the cGMP signal transduction path-
way leading to sustained expression of Trx and MnSOD in
human SH-SY5Y cells [187]. Thus, the acute activation of
mtNOS by ERa cleavage products is yet another interest-
ing possibility for redox signaling.

Conclusion

In summary, mitochondria are a major target of estrogen.
It appears that mitochondria through its interaction with
the cytoskeleton, export of cleaved signaling peptides,
and/or generation of ROS may transduce signals to the
nucleus for the activation of transcription factors, such as,
AP-1, NF-«B, and CREB involved in the cell cycle progres-
sion of estrogen-dependent cells. These interactions
between estrogen and mitochondria merit furture investi-
gations, which may shed new light on the role of mito-
chonderia in cell growth.
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