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ABSTRACT Changes in protein subcellular localization and abundance are central to biological regulation in
eukaryotic cells. Quantitative measures of protein dynamics in vivo are therefore highly useful for elucidating
specific regulatory pathways. Using a combinatorial approach of yeast synthetic genetic array technology, high-
content screening, and machine learning classifiers, we developed an automated platform to characterize protein
localization and abundance patterns from images of log phase cells from the open-reading frame2green fluores-
cent protein collection in the budding yeast, Saccharomyces cerevisiae. For each protein, we produced quantitative
profiles of localization scores for 16 subcellular compartments at single-cell resolution to trace proteome-wide
relocalization in conditions over time. We generated a collection of ~300,000 micrographs, comprising more than
20 million cells and ~9 billion quantitative measurements. The images depict the localization and abundance
dynamics of more than 4000 proteins under two chemical treatments and in a selected mutant background. Here,
we describe CYCLoPs (Collection of Yeast Cells Localization Patterns), a web database resource that provides
a central platform for housing and analyzing our yeast proteome dynamics datasets at the single cell level. CYCLoPs
version 1.0 is available at http://cyclops.ccbr.utoronto.ca. CYCLoPs will provide a valuable resource for the yeast
and eukaryotic cell biology communities and will be updated as new experiments become available.
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During the past decade, proteome-wide screens in a variety of exper-
imental systems have begun to elucidate how protein networks are
organized in eukaryotic cells (e.g., Ghaemmaghami et al. 2003; Huh et al.

2003; Newman et al. 2006; Nagaraj et al. 2012; Kulak et al. 2014). We
have developed a method for integrating systematic genetics, high-
throughput microscopy, image analysis and pattern classification into
an automated data acquisition and analysis platform for cell bio-
logical screens in budding yeast (Chong et al. 2015). Our screening
pipeline makes use of the yeast GFP (green fluorescent protein)
collection, which consists of a series of haploid yeast strains in
which each open-reading frame (ORF) is individually tagged, gen-
erating a full-length protein with a COOH-terminus GFP fusion,
whose expression is driven by the endogenous ORF promoter
(Huh et al. 2003). We worked with the set of 4144 strains from
the original collection previously annotated as having a visible GFP
signal and representing ~71% of the yeast proteome. We used this
collection to measure the subcellular localization and abundance of
yeast proteins at the single-cell level in several conditions in time
courses of up to 11 hr (Chong et al. 2015).

A number of existing databases present images of yeast cells from
large-scale studies. Some of these studies assess phenotypes associated
with analysis of a small number of morphologic characteristics or
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markers in a collection of mutants. Databases that house this type of
data include SCMD (Saito et al. 2004) and PhenoM (Jin et al. 2012).
Other databases present images of a collection of GFP (or otherwise)-
tagged proteins in one or a few genetic backgrounds or conditions.
Examples of this type include the Yeast GFP Fusion Localization
Database, YGFP (Huh et al. 2003), the Yeast Protein Localization
Database, YPL (Kals et al. 2005), Organelle DB (Wiwatwattana
et al. 2007), the Yeast Resource Center, YRC (Riffle and Davis
2010), the Localization and Quantitation Atlas of the Yeast Proteome,
LOQATE (Breker et al. 2013), and Cellbase (Dénervaud et al. 2013).
Several of these databases present visually annotated protein localiza-
tions together with the images (YGFP, YPL, LOQATE), two quantify
protein abundance (LOQATE, Cellbase), and one assesses the proba-
bility of each cell displaying any mixture of six main spatial patterns
(Cellbase); however, none of them computationally defines a localiza-
tion for each GFP protein.

To enable easy access of our image compendium of subcellular
localization and abundance profiles to the research community, we
developed a web-accessible database called CYCLoPs (Collection of
Yeast Cells and Localization Patterns) that allows retrieval and visual-
ization of yeast cell images and permits queries of the subcellular local-
ization and abundance profiles of the yeast proteome for each genetic or
chemical perturbation in our survey. CYCLoPs currently contains a total
of 330,248 images from three wild-type screens, three screens with
a strain deleted for the gene encoding the conserved lysine deacetylase
Rpd3, and time courses of two chemical treatments (hydroxyurea and
rapamycin; Table 1). CYCLoPs differs from existing databases in a num-
ber of ways: (1) whereas other databases provide searchable localization
assignments for proteins that had been assessed visually, CYCLoPs
contains computationally derived quantitative localization and abun-
dance profiles; (2) CYCLoPs provides a searchable web graphical in-
terface for proteins with localization and/or abundance changes of
interest, which reflects the proteome flux in response to varying envi-
ronmental cues and genetic backgrounds; (3) the subcellular localization
data hosted on CYCLoPs were determined directly from the morpho-
logic features of the cells and accommodate the reality that many
proteins localize to multiple locations; and (4) CYCLoPs provides
localization and abundance profiles for individual cells screened,
thus enabling analysis at the single-cell level.

RESULTS AND DISCUSSION

Microscopy data acquisition and analysis
Details of the experimental approach are described in Chong et al.
(2015). In summary, the yeast synthetic genetic array protocol (Tong
et al. 2001) was coupled with a high-content microscopy platform to
image an arrayed collection of 4144 arrayed strains carrying a C-terminal
fusion of GFP to each ORF (Huh et al. 2003) and expressing a tdTomato
fluorescent protein from the constitutive RPL39 promoter. The
tdTomato protein is localized to the cytoplasm and allows identification
of cell boundaries during automated imaging. Micrographs were ac-
quired using a high-throughput spinning-disc confocal microscope
(Opera; PerkinElmer). Eight images were acquired from each strain, four
in the red channel and four in the green channel, and analyzed via the
CellProfiler, version 5811 (Carpenter et al. 2006). On average, 84 cells
were captured from each micrograph; between 900,000 and 2.4 million
cells were segmented from each experiment, translating to more than 13
billion numerical cell-level image measurements, which were stored in

n Table 1 Summary statistics for 18 cell biological screens whose results are housed in CYCLoPs

Screen Condition Time Course Control No. of Micrographs No. of Cells

WT1 wild-type 2 2 17,908 1,107,029
WT2 wild-type 2 2 18,429 1,187,761
WT3 wild-type 2 2 17,908 1,102,945
HU80 hydroxyurea 80 min WT3 18,428 1,158,646
HU120 hydroxyurea 120 min WT3 18,432 1,540,635
HU180 hydroxyurea 180 min WT3 18,432 1,679,998
RAP60 rapamycin 60 min WT3 18,432 1,150,818
RAP140 rapamycin 140 min WT3 18,428 1,607,301
RAP220 rapamycin 220 min WT3 18,432 1,782,059
RAP300 rapamycin 300 min WT3 18,428 2,205,984
RAP380 rapamycin 380 min WT3 18,001 2,360,608
RAP460 rapamycin 460 min WT3 18,426 1,798,178
RAP540 rapamycin 540 min WT3 18,432 2,148,814
RAP620 rapamycin 620 min WT3 18,432 1,844,265
RAP700 rapamycin 700 min WT3 18,428 2,143,449
rpd3D_1 rpd3 knockout 2 WT3 18,424 1,140,087
rpd3D_2 rpd3 knockout 2 WT3 18,424 987,083
rpd3D_3 rpd3 knockout 2 WT3 18,424 933,041
Total 330,248 27,878,701

Figure 1 Overview of the ensLOC framework for quantifying sub-
cellular localization of yeast proteins.

1224 | J. L. Y. Koh et al.

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005274
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003725


the database. For each protein, the four GFP and four red fluorescent
protein (RFP) micrographs, along with the corresponding overlay GFP-
RFP images, are available for visualization and download through CY-
CLoPs as lower resolution JPEG files.

Quantitative scoring of protein abundance
Protein abundance was extrapolated from the mean GFP intensity.
For each cell, we calculated the ratio of integrated GFP intensity
measured within the area defined by the segmented cell boundary,
divided by the segmented area of the cell. The mean GFP intensity (Ig)
of the protein was taken as the arithmetic mean of these ratios. The Ig
measurements from our wild-type screen were highly correlated with
protein abundance measurements from other techniques, namely flow
cytometry, western blot analysis, and mass spectrometry (Chong et al.
2015). For each strain, protein abundance changes (@PL) were calcu-
lated as the fold-change, i.e., Ig in the presence of treatment/mutant
over Ig in wild type. The Ig and @PL values for every protein in all
conditions are readily searchable in CYCLoPs.

Constructing the ensemble classifiers for quantification
of subcellular localizations at single-cell level
Previous studies have shown that combining decisions from multiple
computational classifier instances—a so-called “ensemble” strategy—

can improve the predictive accuracy of the classification (Gashler et al.
2008; Rokach 2010). The ensemble approach is particularly useful in
boosting the performance of weak learners and has been used in re-
cent genomic studies (Chen et al. 2011; Reboiro-Jato et al. 2013). We
constructed an ensemble of classifiers—ensLOC—to accurately assign
each yeast cell to one or more of 16 pre-defined subcellular localiza-
tion classes based on its morphological features. Our approach allows
proteins to localize to more than one compartment or to remain
unclassified, based on our 16 predefined morphologic classes. For
every segmented cell in the compendium, ensLOC generated a 16-element
vector, where each element is an independent assessment of the cell’s
membership in a localization class.

The ensLOC framework comprises several steps (Figure 1). We first
segmented the cells from micrographs obtained from our wild-type
screen. A total of 430 image features, including area, shape, intensity,
texture, and Zernike moments (projections of image functions based
on a set of orthogonal Zernike polynomials; Teague 1979) were
extracted from the segmented cells. For each classifier, we used the
x2 test of independence (Liu and Setiono 1995) to select features that
best discriminated the positive from the negative training instances.
The filtered features were then used as input to construct the linear
Support Vector Machine classifier (Platt 1998). Seventy thousand
instances of cell images representative of the morphological signatures

Figure 2 Diagram illustrating the ensemble of 60 binary classifiers for protein localization and quantification (modified from Chong et al. 2015).
Only cell images that were not filtered by the quality-control classifiers for dead cells and “ghost” objects were further classified. All cells were first
classified into different cell-cycle stages using the unbudded and budded classifiers. The rest of the ensemble is organized into 20 subgroups. For
some classifier groups, e.g., Cortical Patches and Cell Periphery, budded and unbudded cells were separately tested. The results from each
subgroup of binary classifiers e.g., CoP, CoP-Mito, and CoP-Cyto, were consolidated with Bagging. The circles denote the percentage of
1,057,871 cells in the wild-type WT1 experiment that were assigned to each localization class, with darker green indicating a greater percentage.

Volume 5 June 2015 | CYCLoPs Yeast Cell Biology Database | 1225



n Table 2 The 60 binary classifiers used in the ensLOC framework

Classifier ID Name of Binary Classifier

No. of Positive
Training
Objects

No. of Negative
Training
Objects-

Validation Using 10-fold
Cross-Validation

Visual
Inspection
RecallRecall Precision

Quality control
1.1.1 DEAD 960 1541 0.986 0.995
1.1.2 GHOST 1840 2398 0.995 1

Budded or
Unbudded
2.1.1 UNBUDDED 1095 1582 0.997 0.984
2.1.2 SMALLBUDDED 434 733 0.952 0.948
2.1.3 LARGEMEDIUMBUDDED 727 1508 0.985 0.986

3.1 Cytoplasm
3.1.1 CYTOPLASM 3493 4285 0.979 0.966 ~95%
3.1.2 CYTOPLASMNOTNUCLEAR 2075 1419 0.915 0.842 .95%

3.2 Endosome
3.2.1 ENDOSOME 2245 4730 0.826 0.912 ,70%
3.2.2 ENDOSOME_CYTOPLASM 2245 3493 0.977 0.995
3.2.3 ENDOSOME_NUCLEI 2245 5612 0.995 0.999
3.2.4 ENDOSOME_SPINDLEPOLE 2245 3397 0.963 0.986
3.2.5 ENDOSOME_MITOCHONDRIA 2245 6315 0.899 0.967

3.3 ER
3.3.1 ER 5274 4259 0.977 0.919 ,80%
3.3.2 ER_CYTOPLASM 5274 3493 0.97 0.965
3.3.3 ER_VACUOLEVACUOLARMEMBRANE 5274 3893 0.976 0.958
3.3.4 ER_CELLPERIPHERY 5274 4059 0.996 0.996

3.4 Golgi
3.4.1 GOLGI 1994 1838 0.964 0.908 .80%
3.4.2 GOLGI_MITOCHONDRIA 1994 6315 0.809 0.968
3.4.3 GOLGI_ENDOSOME 1994 2245 0.919 0.934
3.4.4 GOLGI_CYTOPLASM 1994 3493 0.996 0.999

3.5 Mitochondria
3.5.1 MITOCHONDRIA 6315 7894 0.894 0.884 .85%

3.6 Nuclear
Periphery
3.6.1 NUCLEARPERIPHERY 2668 4367 0.94 0.96 ~70%

3.7 Nucleus
3.7.1 NUCLEI 5612 6881 0.977 0.956 .80%
3.7.2 NUCLEINOTCYTOPLASM 1398 989 0.99 0.93 .80%

3.8 Nucleolus
3.8.1 NUCLEOLUS 3882 5332 0.926 0.948 .85%

3.9 Peroxisome
3.9.1 PEROXISOME 1256 2099 0.849 0.922 ,70%
3.9.2 PEROXISOME_GOLGI 1256 1993 0.928 0.971
3.9.3 PEROXISOME_SPINDLEPOLE 1256 3397 0.965 0.995
3.9.4 PEROXISOME_MITOCHONDRIA 1256 6315 0.814 0.981

3.10 Vacuole/
Vacuolar
Membrane
3.10.1 VACUOLEVACUOLARMEMBRANE-

COMBINED
3893 3352 0.926 0.898 .80%

3.10.2 VACUOLE_VACUOLARMEMBRANE 2224 1846 0.92 0.845 .80% VAC,
65% VAC
membrane

3.11 Cortical
Patches
3.11.1 CORTICALPATCHESUNBUDDED 1813 1279 0.964 0.877 ~70%
3.11.2 CORTICALPATCHESUNBUDDED_

CYTOPLASM
1813 1661 0.994 0.996

3.11.3 CORTICALPATCHESUNBUDDED_
MITOCHONDRIA

1813 4440 0.95 0.984

(continued)
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of 16 subcellular localizations were handpicked. The distribution of
these training instances is shown in Figure 2 and Table 2.

Predictions for each subcellular localization class were obtained
through combining the predicted results of a set of binary classifiers
(Figure 2). A binary classifier classifies elements of a given test set into
only two groups. For example, a cell is assigned to the endoplasm
reticulum (ER) class if it is assigned to ER in the ER-all, ER-Cytoplasm
and ER-Vacuole/Vacuolar Membrane, and ER-Cell Periphery binary

classifiers (Table 2). Our objective with this approach was to reduce
misclassifications among subcellular localization classes with overlap-
ping morphological patterns. In addition, an improvement of predic-
tive accuracy was achieved through bootstrap aggregation (bagging)
(Breiman 1996), specifically by plurality voting. We generated 25 bag
classifiers, each from 1000 random training instances (500 positive
and 500 negative samples) with replacements. Decisions for the local-
ization assignments of a binary classification step were reconciled from

n Table 2, continued

Classifier ID Name of Binary Classifier

No. of Positive
Training
Objects

No. of Negative
Training
Objects-

Validation Using 10-fold
Cross-Validation

Visual
Inspection
RecallRecall Precision

3.11.4 CORTICALPATCHESBUDDED 1345 2171 0.928 0.936 75%
3.11.5 CORTICALPATCHESBUDDED_

CELLPERIPHERY
1345 1059 0.994 0.988

3.11.6 CORTICALPATCHESBUDDED_
MITOCHONDRIA

1345 1875 0.981 0.986

3.11.7 CORTICALPATCHESBUDDED_
CYTOPLASM

1345 1022 0.987 0.988

3.12 Bud
3.12.1 BUD 1619 1691 0.937 0.905 .70%

3.13 Budneck
3.13.1 BUDNECK 2170 3095 0.947 0.942 .70%
3.13.2 BUDNECK_BUD 2170 1619 0.962 0.946
3.13.3 BUDNECK_CELLPERIPHERY 2170 1059 1 0.994
3.13.4 BUDNECK_MITOCHONDRIA 2170 1875 0.99 0.98
3.13.5 BUDNECK_CYTOPLASM 2170 1022 0.987 0.98
3.13.6 BUDNECK_NUCLEI 2170 1313 1 0.996

3.14 Budsite
3.14.1 BUDSITE 453 637 0.982 0.961 .80%
3.14.2 BUDSITE_CYTOPLASM 453 4955 0.943 0.992
3.14.3 BUDSITE_CELLPERIPHERY 453 359 0.996 0.992

3.15 Cell
Periphery
3.15.1 CELLPERIPHERYUNBUDDED 2269 858 0.989 0.98 .95%
3.15.2 CELLPERIPHERYBUDDED 1059 1688 0.981 0.991 .85%

3.16 Spindle
Pole
3.16.1 SPINDLEPOLETWODOTFARBUDDED 416 966 0.938 0.965 .70%
3.16.2 SPINDLEPOLETWODOTFARBUDDED_

BUDNECK
416 2170 0.913 0.997

3.16.3 SPINDLEPOLETWODOTFARBUDDED_
NUCLEARPERIPHERY

416 492 1 0.996

3.16.4 SPINDLEPOLETWODOTFARBUDDED_
NUCLEOLUS

416 1109 0.99 0.995

3.16.5 SPINDLEPOLETWODOTCLOSEBUDDED 306 1016 0.905 0.97 ~80%
3.16.6 SPINDLEPOLETWODOTCLOSEBUDDED_

BUDNECK
306 2170 0.899 0.995

3.16.7 SPINDLEPOLETWODOTCLOSEBUDDED_
MITOCHONDRIA

306 1875 0.974 0.996

3.16.8 SPINDLEPOLETWODOTCLOSEBUDDED_
NUCLEARPERIPHERY

306 492 0.993 0.996

3.16.9 SPINDLEPOLETWODOTCLOSEBUDDED_
NUCLEOLUS

306 1109 0.98 0.988

3.16.10 SPINDLEPOLEONEDOT 2675 3676 0.974 0.983 70%

In total, approximately 70K handpicked cell images (objects) were used to train the classifiers. “No. of positive training objects” refers to cells which belong to the
targeted class and “No. of negative training objects” refer to cells not belonging to the targeted class. For example, to construct the “DEAD” cells classifier, 960
images of dead cells were used as positive training objects and 1541 images of non-dead cells from across all 16 localization classes were used as negative training
objects. The first number of the classifier ID reflects the level and therefore the sequence at which the classifier was applied. For instance, all cell images were first
tested using the “DEAD” cells classifier to eliminate dead cells from further classification to the 16 localization classes, and only cells that were tested positive in the
level 2 “SMALLBUDDED” and “LARGEMEDIUMBUDDED” classifiers would be further classified by the “BUDNECK” classifier. The accuracy of the classifiers was
validated computationally using 10-fold cross-validation and manually using visual inspection of 500 random positive cells. Recall = True positives/(True positives +
False negatives); Precision = True positives/(True positives + False positives). ER, endoplasm reticulum.

Volume 5 June 2015 | CYCLoPs Yeast Cell Biology Database | 1227



these 25 bag classifiers. Thus, in total the localization assignment for
a segmented cell was determined through plurality voting of more than
1000 classifiers (25 bags · 60 binary classifiers). Because the computation
was time intensive, we modified the algorithm to enable parallelized
execution on a computer cluster. Both 10-fold cross-validation and visual
inspection of random samples were independently conducted for each
localization class to validate the accuracy of the classifier (Table 2).

We benchmarked our computationally derived localization assign-
ments for one of our wild-type screens, WT1 (Chong et al. 2015), to
visually assigned localization annotations from YGFP (Huh et al. 2003)
and found 94% agreement among the set of 1097 proteins assigned to
a single location by both methods (Chong et al. 2015). We also com-
pared our computationally derived localization assignments with assign-
ments made using other computational methods with images from
YGFP (Chen et al. 2007; Huh et al. 2009). The ensLOC framework
achieved greater mean accuracy (overlap proteins divided by number of
proteins identified in YGFP) for proteins identified as having a single
localization in both data sets. The ensLOC framework attained a mean
classifier accuracy of 81%, an improvement of up to 20% across 12
subcellular localization classes defined in both methods (Figure 3). It
is also worth noting that, unlike other methods, the ensLOC framework
for quantifying subcellular localization does not restrict a protein to
a single localization class.

Quantitative scoring of subcellular localization using the
ensLOC framework
In our automated imaging pipeline (Chong et al. 2015), an experiment
generally produced more than a million segmented cells, among which
approximately 5% were of inadequate quality. These poor quality cell
images were removed using a quality control step with classifiers
designed to identify dead and “ghost” cells. “Ghost” objects are artifacts
that get recognized in the background of an image, as a consequence of
noise being recognized as signal and result in segmentation of a region
containing no cells. The ensLOC framework was then applied inde-
pendently to each filtered cell; that is, protein localization in each cell
was predicted for up to 60 binary classifiers, where each classifier de-
termined if a cell should be assigned positively or negatively to the class
based on its morphological features. For example, the ER-Cytoplasm
binary classifier determined whether a cell harbored the phenotypic
signatures of ER localization class (positive) or Cytoplasm localization
class (negative). To determine the subcellular localization assignment
profile of a GFP-tagged protein at the single-cell level, we calculated the

proportion of labeled cells that were assigned to each of the 16 sub-
cellular localization classes. The localization profile of a protein is thus
represented as a 16-element vector, where each element (“LOC-score”)
reflects the proportion of “classifiable” cells (that is, assigned to at least
one localization class) that are assigned to a specific localization class.

To identify changes in subcellular localization for each protein
following genetic or environmental perturbation, we assessed the
statistical significance of the difference between the proportion of cells
with a given localization in a condition (genetic/chemical perturbation)
and the proportion of cells in wild type by using a metric we designated
a z-LOC score. Cutoffs for significant localization changes were
determined by fitting a “background” normal Gaussian model and
a uniform “outlier” density model to the z-LOC score distribution.
Cutoffs were chosen such that the number of true “outliers” was op-
timized (Chong et al. 2015). The LOC-scores and z-LOC scores are
readily searchable in CYCLoPs.

Database system construction
The relational database schema of CYCLoPs was developed to
provide central storage and querying of different types of data
generated from our systematic yeast imaging experiments. Our
goal was to optimize the efficient and scalable querying of the
micrographs, the LOC-score and z-LOC score profiles, and the
abundance Ig and dPL score profiles of all proteins and conditions
surveyed (database schema available through the CYCLoPs online
documentation). The backend of CYCLoPs features a mySQL re-
lational database management system, which comprises more
than 100 experiment-specific tables, and the front-end web inter-
face is hosted on an Apache 2.0 web server. The web interface
was developed using a combination of HTML, CGI Perl, Perl
DataBase Interface, Cascading Style Sheets, Javascript and R plotting
libraries.

Database utility

System interfaces and visualization: CYCLoPs is primarily accessible
via a Web interface, with a focus on providing easy and efficient access
to a genome-wide database of quantitative descriptors of protein
dynamics, and to assist biologists in experiment planning and
hypothesis generation. A number of query and visualization tools are
included in CYCLoPs version 1.0, including two custom-made
micrograph viewers.

Figure 3 Classifier accuracy of the ensLOC framework.
The accuracy of the ensLOC framework (red) in assign-
ing protein localization to 12 different subcellular
compartments (X-axis) is compared with two other
automated classification methods (Chen et al. 2007,
green; Huh et al. 2009, blue).

1228 | J. L. Y. Koh et al.



Figure 4 Screen shot of sample search and result page generated by CYCLoPs is shown. A query of the Hxt2 protein produces images of yeast
cells from three wild-type screens (WT1, WT2, WT3). The tables list numerical measurements of protein abundance (Ig), protein abundance
changes (dPL), subcellular localization (LOC-scores), and subcellular localization changes (zLOC-scores) with localizations from the WT screens
shown in red. The scores are highlighted using a color scale from white to yellow to red to allow the viewer to identify variances in a range of
values with a quick glance and do not represent significance values.
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Various search options are available. Search options for proteins
include protein name, common name, alias, and ORF. A protein-centric
search returns a general description, abundance scores, and localization
scores for the best matching protein across all screens. For example,
a quick search of “Hxt2” returns a report displaying: (1) the micrographs
from three wild-type screens; (2) a subcellular localization table depicting
the LOC-scores of Hxt2 for each of 16 localization classes (rows) across all
screens (columns); (3) a protein abundance table showing the abundance
Ig and changes dPL across the screens and; (4) a subcellular localization
change table showing the localization changes, z-LOCs, for each localiza-
tion class across all screens (Figure 4). Search results and images may be
downloaded and direct visualization of each individual cell in the com-
pendium is available through the companion Image Viewer and Cell Viewer.

Image and cell viewer: The Image Viewer facilitates visual inspection
of pairs of micrographs. Users can toggle between 18 screens, four
images per screen, and three image channels (RFP/GFP/GFP-RFP
overlay). This tool is particularly useful for visual inspection
of morphologic changes. For example, Figure 5 shows internalization
of Hxt2, a glucose transporter, in response to rapamycin treatment.
Cells in the left micrograph (from a WT screen) display morphologic
patterns that define a cell-periphery localization of Hxt2, whereas most
cells in the right micrograph (after 300 min of rapamycin treatment)
exhibit an obvious localization to vacuole/vacuolar membrane. The
Cell Viewer provides a detailed view of a specified micrograph by
cropping it into individual cells (Figure 6). The position coordinates
of each cell image were obtained from the cell segmentation routine in
our image analysis program. The localization labels of the cell were
determined using our ensemble classifiers.

Single cell abundance measurements and localization assignments:
Both localization and abundance of a protein may vary in individual cells
in a population (Chong et al. 2015), and analysis of single cells can give
important information about cell-cycle events and stochasticity. Because
all of our data were acquired at the level of the individual cell, we are able
to provide a function that allows the user to download abundance
and localization data for single cells. This function may be found at

http://cyclops.ccbr.utoronto.ca/DOWNLOAD/Download.html. For a
selected image in our compendium, this function generates a text file
with the following columns:

Object ID, X-coordinate, Y-coordinate, GFP Intensity (Ig), Localization.

Querying top protein abundance and localization changes: Users
also may retrieve top-ranked proteins that are transported toward or
away from any of the 16 subcellular compartments included in the
database or that exhibit increase/decrease in protein abundance in the
presence of drug treatment or gene deletion. Search results and images
may be downloaded and direct visualization of each object/cell in the
compendium is available through the companion Image Viewer and
Cell Viewer.

We have generated a compendium of RFP/GFP micrographs and
quantitative measurements of subcellular localization and abundance
changes covering ~71% of the yeast proteome in response to genetic
and chemical perturbations. To make this novel compendium avail-
able and useful to the research community, we have developed a web-
based query system for accessing, visualizing and analyzing the data.

CYCLoPs is intended to be an active resource for quantitative
genome-wide localization and abundance measurements of S. cerevisiae
made in multiple genetic backgrounds and following different chemical
treatments. Future enhancements of CYCLoPs will involve automation
processes for experimental updates. In revised versions of CYCLoPs, we
hope to integrate data from other external sources for on-the-fly cross-
dimensional comparisons and visualization. CYCLoPs is tightly integrated
with our experimental and scoring platform, and will house data from
future experiments designed to test the response of the yeast proteome to
a variety of chemical and environmental perturbations.
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