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ABSTRACT
High-throughput techniques have uncovered hundreds and thousands of long non-coding RNAs
(lncRNAs). Among them, only a tiny fraction has experimentally validated functions (EVlncRNAs) by low-
throughput methods. What fraction of lncRNAs from high-throughput experiments (HTlncRNAs) is truly
functional is an active subject of debate. Here, we developed the first method to distinguish EVlncRNAs
from HTlncRNAs and mRNAs by using Support Vector Machines and found that EVlncRNAs can be well
separated from HTlncRNAs and mRNAs with 0.6 for Matthews correlation coefficient, 64% for sensitivity,
and 81% for precision for the independent human test set. The most useful features for classification are
related to sequence conservations at RNA (for separating from HTlncRNAs) and protein (for separating
from mRNA) levels. The method is found to be robust as the human-RNA-trained model is applicable to
independent mouse RNAs with similar accuracy and to a lesser extent to plant RNAs. The method can
recover newly discovered EVlncRNAs with high sensitivity. Its application to randomly selected 2000
human HTlncRNAs indicates that the majority of HTlncRNAs is probably non-functional but a large
portion (nearly 30%) are likely functional. In other words, there is an ample number of lncRNAs whose
specific biological roles are yet to be discovered. The method developed here is expected to speed up
and reduce the cost of the discovery by prioritizing potentially functional lncRNAs prior to experimental
validation. EVlncRNA-pred is available as a web server at http://biophy.dzu.edu.cn/lncrnapred/index.
html. All datasets used in this study can be obtained from the same website.
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Introduction

Advances in high-throughput sequencing and microarray tech-
nologies showed that most of the human genome transcribe
into RNAs despite they were not coded for proteins [1–3].
Among these non-coding RNAs (ncRNAs), long transcripts
(>200 nucleotides) with unknown functions were found pre-
valent with low expression, highly tissue-specific, and lack of
strong cross-species conservation [4–6]. Some long ncRNAs
(lncRNAs) have been confirmed as functional and disease-
relevant using traditional low throughput techniques such as
qRT-PCR, knockdown, Western blot, Northern blot, and luci-
ferase reporter assays [7–11]. So far, more than 1000 lncRNAs
in >70 species were experimentally validated and collected in
a number of databases (lncRNADisease, lncRInter, lncRNAdb,
PLNlncRBase) [12–15]. These databases were integrated into
the comprehensive EVlncRNAs database [16], which collected
all known EVlncRNAs up to May 2016 from 77 species.

The experimentally validated lncRNAs (EVlncRNAs),
however, are only a tiny fraction of all transcribed ones.
What percentage of transcribed lncRNAs is functional
remains a subject of active debate [17]. It is known that
some lncRNAs can be expressed due to a lack of fidelity in

transcription initiation by RNA polymerase II [18]. Hon et al
[19]. found that 69% of 27,919 FANTOM CAT lncRNAs
overlap with trait-associated single nucleotide polymorph-
isms. However, the overlap could be due to their genomic
positions, rather than intrinsic functions coded in sequences
[20]. Nevertheless, 31% of lncRNAs remain unaccounted for.
Liu et al [21], on the other hand, found that only 3% (499/16,
401) lncRNA loci are essential for robust cell growth, based on
a large-scale knockdown using a CRISPR interference techni-
que. More importantly, analysis of mutational loads suggests
that ‘the functional fraction within the human genome cannot
exceed 25% and is probably considerably lower’ [22]. Thus,
a significant portion of transcribed lncRNAs is possibly non-
functional.

Existence of non-functional but transcribed lncRNAs calls
for computational methods to prioritize potentially functional
lncRNAs prior to expensive and laborious experimental vali-
dations. Current computational tools on identifying lncRNAs
have been focused on distinguishing expressed lncRNAs from
coding RNAs [23], a challenging problem as some lncRNAs
were coded for short peptides while others such as H19, Xist,
Mirg, and Gtl2 have predicted coding regions of longer than
100 amino acids [24,25]. One approach for lncRNA
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identification is cross-species comparison. Examples are
CRITICA [26], PhyloCSF [27], CSTMiner [28] and
RNAcode [29]. Because the majority of lncRNAs are not
conserved across different species [30], many methods esti-
mated coding potentials of a sequence by using a wide variety
of features and machine-learning techniques. Examples are
CPAT by logistic regression model [31], lncRNA-ID [32],
lncRNApred [33], FEELnc [34] and COME [35] based on
random forest and PORTRAIT [36], CNCI [37], CPC [38],
PLEK [39] and lncRScan-SVM [40] based on support vector
machines. Using high-throughput experimental data has pro-
ven useful for further improving the accuracy of separating
lncRNAs from mRNAs [35,41–43].

In this study, we address the question of whether or not
lncRNAs experimentally validated (EVlncRNAs) by low
throughput techniques are distinguishable from those
lncRNAs obtained from high throughput experiments
(HTlncRNAs). By using support vector machines and
employing sequence-derived and HT experimental features
in combination or separately, we showed that experimentally
validated lncRNAs are identifiable from HTlncRNAs and
mRNAs with reasonable accuracy. Moreover, a method
trained and tested from human datasets is applicable to
mouse RNAs with similar accuracy and to plant RNAs with
somewhat lower accuracy. This indicates the robustness of the
method developed for locating functional lncRNAs. The
online server of EVlncRNA-pred and the datasets are freely
available at http://biophy.dzu.edu.cn/lncrnapred/index.html.

Results

Model performance for the full-feature model

Using positive samples collected in the EVlncRNAs dataset
[16] and negative samples from lncRNAs and mRNAs from
GENCODE [44] (see Methods), we built the training set from
human RNAs and independent test sets from human, mouse
and plant RNAs. Table 1 shows the results of the human 10-
fold cross-validation and independent test by the support
vector machines (SVM) model with 33 features (the full-
feature model). The corresponding receiver operating charac-
teristic (ROC) curves are shown in Figure 1. The results
indicate that the model performs better on the test set
(Matthews correlation coefficient, MCC, at 0.60 compared to
0.51, the area under the ROC curve, AUC, at 0.88 compared
to 0.84). This is likely due to a slightly larger training set (799
positive samples) than in the cross-validation (719 positive
samples as the remaining 80 of the 799 samples (10%) was

used as one-fold for 10-fold cross validation). When the
model is further applied to mouse RNAs, there is
a performance drop to the performance level similar to ten-
fold cross-validation. It should be noted that the lower preci-
sion for the mouse test set is due to higher sensitivity as the
threshold was set by the 10-fold cross-validation. If one
adjusts the threshold to the sensitivity of 0.64, one would
obtain a precision of 0.74. Nevertheless, the low standard
deviation in ten-fold cross-validation performance over 100
randomly selected ten folds and the consistently high, cross-
species performance (AUC > 0.84) in independent tests con-
firm the overall quality and robustness of the model
developed.

Model performance for the sequence-only model

The above model employed some high-throughput experi-
mental results including expression abundance and histone
modification. However, these experimental data are not
always available. Thus, we also built a model that requires
the input of a sequence only. Table 1 and Figure 1 also present
the results from the sequence-only model. The model perfor-
mance is much more similar among the ten-fold cross-
validation and two independent tests (human and mouse
test sets) with MCC = 0.47, 0.51, 0.48 and AUC = 0.84,
0.85, and 0.85, respectively. This overall performance is
slightly worse than the case when experimental data were
employed, confirming the usefulness of expression abundance
and histone modification in EVlncRNA prediction. On the
other hand, if these experimental results are not available, the
sequence-only model yields adequate accuracy in separating
EVlncRNAs from HTlncRNAs and mRNAs as shown in
Figure 1 and Table 1.

Model performance for the plant test set

The ability of the human-RNA trained model to predict
mouse lncRNA indicates inherently similar characteristics of
functional lncRNAs in human and mouse. It is of interest to
know if plant EVlncRNAs can also be detected in a similar
accuracy. In human and mouse, we used phastCons [45]
scores provided by the UCSC [46] to represent the DNA
sequence conservation. However, UCSC does not have
phastCons scores of Arabidopsis thaliana. Thus, we re-
trained all models without using DNA conservation scores.

Table 2 and Figure 2 compare the performance of the new
full-feature and sequence-only models without DNA

Table 1. Performance of full-feature and sequence-only SVM models trained on human datasets.

MCC AUC Accuracy Sensitivity Specificity Precision

Full-feature model
Human CVa 0.513 ± 0.006 0.841 ± 0.006 0.791 ± 0.003 0.599 ± 0.011 0.887 ± 0.005 0.728 ± 0.005

Testb 0.603 0.879 0.829 0.641 0.923 0.806
Mouse Testc 0.512 0.859 0.765 0.777 0.759 0.617
Sequence-only model
Human CVa 0.471 0.841 0.774 0.551 0.887 0.709

Testb 0.514 0.852 0.792 0.590 0.893 0.734
Mouse Testc 0.481 0.846 0.745 0.777 0.729 0.589

a10-fold cross-validation on the full training set. The mean and standard deviation are obtained from 100 random divisions of 10 folds in the training set. bTest results
on the independent test set of the human RNAs. cTest results on the independent test set of the mouse RNAs.
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conservation in 10-fold cross-validation and independent tests
on the human, mouse, and plant RNAs by models trained on
human RNAs. The results show that there is a large drop in
performance when the human-RNA-trained model is applied
to plant with MCC decreasing from 0.56 to 0.38 and AUC
decreasing from 0.87 to 0.80 for the full feature model without
DNA conservation. By comparison, the corresponding
changes from human to mouse are 0.56 to 0.52 for MCC
and 0.87 to 0.84 for AUC. This suggests that the difference
between human and plant lncRNAs is larger than the differ-
ence between human and mouse lncRNAs. Nevertheless, the
performance of applying the human-RNA trained model to
plant remains high with AUC = 0.80 for the full-feature model
and 0.73 for the sequence-only model (all without DNA con-
servations). This confirms the robustness of the model trained
by human RNAs and the existence of basic common charac-
teristics of EVlncRNAs from plant to human. This also sug-
gests that plant-specific training when sufficient data is
available may be necessary to maximize the classification
capability.

The importance of individual features

To examine the classification power of each feature for separ-
ating EVlncRNAs from HTlncRNAs and mRNAs, we
obtained the best performing single feature according to 10-
fold cross-validation and compare them in Figure 3. For
single-feature performance, the performance is measured by
the difference (ΔAUC) between the AUC by the model using
a single feature only and the AUC by random prediction (0.5)
or between the AUC by the full feature model and the AUC
by the model after removing a single feature. Figure 3 shows
that according to feature removal, protein conservation has
the highest ΔAUC value from the full feature model at 0.031,
followed by RNA conservation (ΔAUC = 0.020). The best
experimental feature is the H3K4me3 modification with the
ΔAUC value at 0.008. These changes in ΔAUC are small. We
can also measure the changes in precision at a fixed value of

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0

0.2

0.4

0.6

0.8

1
T

ru
e 

P
os

iti
ve

 R
at

e

Full Feature Model
10 fold CV (Human)
Ind. Test (Human)
Ind. Test (Mouse)

Sequence Only Model
10 fold CV (Human)
Ind. Test (Human)
Ind. Test (Mouse)

Figure 1. Receiver operating characteristic curves by full-feature and sequence-
only models trained on human RNAs.

Table 2. Performance of full-feature and sequence-only SVM models (except
DNA conservation scores) trained on human datasets.

MCC AUC Accuracy Sensitivity Specificity Precision

Full-feature model except DNA conservation
Human-CVa 0.482 0.845 0.781 0.514 0.915 0.753
Human-Testb 0.560 0.869 0.812 0.581 0.927 0.800
Mouse-Testc 0.518 0.844 0.779 0.723 0.807 0.652
Plant-Testd 0.383 0.801 0.744 0.417 0.908 0.694
Sequence-only model except DNA conservation
Human-CVa 0.448 0.833 0.763 0.562 0.864 0.675
Human-Testb 0.521 0.849 0.792 0.632 0.872 0.712
Mouse-Testc 0.414 0.818 0.719 0.711 0.723 0.562
Plant-Testd 0.221 0.725 0.689 0.283 0.892 0.567

a10-fold cross-validation on the full training set. bTest results on the indepen-
dent test set of the human RNAs. cTest results on the independent test set of
the mouse RNAs. dTest results on the independent test set of the plant RNAs.
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Figure 2. As in Figure 1 but for the model without DNA conservation features
and tested by the plant RNAs.
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ison to the results of using a single feature (open bar).
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sensitivity. The same trend is observed with two highest
reductions of 10.3% and 8% in precision for removing protein
and RNA conservation, respectively, and the largest reduction
of 3.7% for removing the H3K4me3 modification in experi-
mental features. This result is similar to the analysis of models
based on a single feature only (Figure 3). All features con-
tribute somewhat to lncRNA classifications except small
RNA-seq experimental data.

The importance of protein conservation found in the above
analysis is likely due to the presence of mRNAs in the nega-
tive samples. To further explore the features important for
separating EVlncRNAs from HTlncRNAs only, we employed
the training set (799 EVlncRNAs as the positive set and 799
HTlncRNAs without mRNAs as the negative set) and
obtained the result of ten-fold cross-validation with the full
feature model. Then, we removed the redundant single feature
that led to the largest increase of the AUC value in each round
until the AUC can no longer increase after feature removal.
The final model eliminated three features (protein conserva-
tion, predicted RNA ASA, and purine content) that are not
useful for distinguishing HTlncRNAs from EVlncRNAs. The
most important remaining features according to the magni-
tude in AUC reduction after removal are RNA conservation
(ΔAUC = 0.025), followed by DNA conservation
(ΔAUC = 0.007) and the experimental feature of H3K36me3
modification (ΔAUC = 0.006). The same trend is observed
based on reduction in precision with a fixed sensitivity

Distinguishing from mRNAs

Our method was designed to separate EVlncRNAs from both
HTlncRNAs and mRNAs as all of our negative sets in training
and test sets contain 1:1 ratio of mRNA: HTlncRNAs. To
further examine the capability of distinguishing from
mRNAs, we built an additional test set by using the
EVlncRNAs in our test set as the positive set and newly
randomly selected mRNAs as an additional negative set.
EVlncRNA-pred achieves a high AUC of 0.959, precision of
0.987, a specificity of 0.991, and the MCC value of 0.675. This
higher performance in distinguishing from mRNA is consis-
tent with our intuition that separating EVlncRNAs from
mRNAs is easier than separating them from HTlncRNAs
(see discussion).

Comparison with other methods

To the best of our knowledge, the method reported here is the
first technique for separating EVlncRNAs from HTlncRNAs
and mRNAs. Existing techniques for lncRNA prediction are
dedicated to separate HTlncRNAs from mRNAs. We do not
expect that these previous methods could be useful for identi-
fying EVlncRNAs from HTlncRNAs and mRNAs. To confirm
this, Figure 4 reported the applications of the logistic regression
model CPAT [31], the random forest model COME [35], and
support vector machines models CNCI [37] and PLEK [39] to
the human test set. Indeed, CNCI, CPAT, and PLEK methods
are close to random predictions at low false positive rates
whereas COME is unable to make any positive prediction
until false positive rates are greater than 0.2. Overall prediction

of COME, CNCI, CPAT, and PLEK is better than random with
AUCs ranging from 0.567, 0.672, 0.699, and 0.569, respectively.
This is because mRNA belongs to the negative set whereas
EVlncRNAs belongs to the positive set in training COME,
CNCI, CPAT, and PLEK. We would like to emphasize that
the comparison made in Figure 4 is not to illustrate the
improvement of our method over previous techniques but to
highlight the difference in the prediction goals.

Case studies

Tumour-specific EVlncRNAs
Tumour-specific EVlncRNAs is a large group in all known
EVlncRNAs. In the EVlncRNA database, there were 446 and
72 tumour-specific lncRNAs in our training and test sets,
respectively. The sensitivity of EVlncRNA-pred (the fraction
of predicted EVlncRNAs in known EVlncRNAs) is 54% for
these tumour-specific lncRNAs in the training set and 57% in
the test set, which are close to a sensitivity of 60% in ten-fold
cross-validation (Table 1), suggesting overall consistency of
the method performance for specific types of EVlncRNAs.

CRISPRi-identified functional lncRNAs
Recently Liu et al. [21] developed a CRISPR interference
technique for large-scale screening of lncRNA loci required
for robust cell growth. Strictly speaking, the resulting 499
lncRNA loci discovered would require further validation by
low-throughput experiments. However, it is of interest to
examine the performance of EVlncRNA-pred for these
newly discovered putatively functional lncRNAs. Among
these 499 lncRNA loci, we located 194 lncRNAs with the
gene structure information in the general transfer format, 59
lncRNAs of which are in the positive training set (known
EVlncRNAs). Applying EVlncRNA-pred to the remaining
135 lncRNAs yields a sensitivity of 42%. It should be noted
that the above putatively functional lncRNA loci were filtered
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Figure 4. Receiver operating characteristic curves on the human test set by
EVlncRNA-pred and several methods that were trained for separating expressed
lncRNAs from mRNAs only.
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with a statistical confidence score (called ‘screen score’) >7.
This screen score was based on the effect size and the p-values
of genes in each screening experiment, relative to the negative
control gene distribution. If we increase this threshold from 7,
15 to 25, the sensitivity of our method will improve from 42%,
49%, to 67%. Concurrent increase of our method sensitivity
and the experimental confidence score confirms the ability of
EVlncRNAs to locate truly functional lncRNAs.

Newly discovered EVlncRNAs
We conducted a literature search for newly discovered
EVlncRNAs because true positives from the EVlncRNA data-
base are based on the literature prior to May 2016. We found
that 24 new functional human lncRNAs are indeed classified
as EVlncRNAs by EVlncRNA-pred. As shown in
Supplementary Table S1, these new lncRNAs were experimen-
tally validated by low-throughput techniques such as qRT-
PCR, western blot, and knockdown. Their functions range
from microRNA and protein binding to expression regulation
although not all new lncRNAs have a clearly identified mole-
cular-level function. For example, Li et al. [47] found that
a lncRNA, SNHG20, has a significantly higher expression in
Colorectal Cancer (CRC) tissues than in corresponding nor-
mal tissues from 107 CRC patients. SNHG20 regulated cell
growth through modulation of a series of cell cycle-associated
genes. Similarly, Lu et al. [48] found that a higher expression
level of a lncRNA, SOX21-AS1, positively correlated with the
tumour size and the advanced stage of tumor-node-metastasis
(TNM), and the inhibition of SOX21-AS1 induced p57
expression. SNHG20 and SOX21-AS1 are classified as
EVlncRNAs by EVlncRNA-pred.

Discussion

We have developed a method termed EVlncRNA-pred for
selecting potentially functional lncRNAs from expressing
lncRNAs found in high-throughput sequencing. Two different
versions of the method were developed: one requires sequence
information only whereas the other needs high-throughput
experimental data in expression and histone modification.
The results show that both versions can provide reasonably
accurate separation of EVlncRNAs from HTlncRNAs and
mRNAs, whereas the experimental data can provide an addi-
tional improvement from 0.47 to 0.51 for the Matthews cor-
relation coefficient in ten-fold cross-validation. The method
trained by human RNAs is robust as it performs equally well
in mouse RNA classification and to a lesser extent in plant
RNA classification.

In this work, we have randomly chosen 799 HTlncRNA
and mRNA sequences to match in number to the largest
training set we currently have for EVlncRNAs. The equal
number was chosen to maximize learning [49]. To confirm
the randomness for the choice of 799 HTlncRNAs and
mRNAs, we have randomly selected 9 additional sets of 799
HTlncRNAs and mRNAs. The results of 10 fold-cross valida-
tions for the 10 sets are 0.475 ± 0.015 for MCC and
0.842 ± 0.01 for AUC. These small standard deviations indi-
cate unbiased choices of negative sets. Furthermore, to con-
firm the usefulness of setting the ratio to 1, we systematically

expanded the training set by increasing the ratio from 1 to 1.5,
2, 3, and 4. We found that there is a reduction of AUC values
from 0.879 to 0.866, 0.808, 0.790, and 0.799, respectively, for
the human independent test set as the ratio increases. We also
built another test set with a ratio of 1:4:4 for EVlncRNA:
HTlncRNA: mRNA. We observed a similar reduction of
AUC values for this larger test set (from 0.864 to 0.855,
0.799, 0.785, and 0.792, respectively). Thus, the model trained
by the data with the ratio of 1 has the best performance not
only for the test set with the ratio of 1 but also for the ratio
of 1:4:4.

One revealing fact is that the most useful features for
classification are related to conservations at protein levels
followed by RNA levels. It turns out that protein conservation
is the most important for separating from mRNAs whereas
RNA conservation is the most important for separating from
HTlncRNAs. This result provides additional confidence for
the method developed. Although sequence conservation signal
for lncRNA is in general weak [50], it remains one essential
feature for functional lncRNAs [51–54]. The weak conserva-
tion signal for lncRNA, compared to the stronger conserva-
tion signal for proteins, makes the separation of EVlncRNA
from HTlncRNA more challenging than the separation of
HTlncRNA from mRNA. The result reported here indicates
that the conservation signal can be picked up by a machine
learning technique to highlight the intrinsic difference
between those experimentally validated lncRNAs and those
somehow expressed in high-throughput sequencing.

Here, we assumed from the outset that all lncRNAs
reported in GENCODE are negative samples after excluding
experimentally validated ones. This assumption was made
despite the training set may contain a significant number of
false negatives, which are truly functional lncRNAs yet to be
validated by low throughput experiments. If the majority of
the presumed negatives were false negatives, one would not be
able to develop a method to separate positive from negatives
during training. The fact that a highly robust method can be
made indicates that false negatives are not dominant and
there is a population in HTlncRNAs separable from known
EVlncRNAs. The existence of such a population in
HTlncRNAs that is distinct from known EVlncRNAs itself is
interesting, as transcriptional noise could be a source for some
of the lncRNAs found by high-throughput experiments [18].

Using a negative set containing some false negatives is
a common practice in machine learning because negatives
are always more difficult to prove. For example, in studying
pathogenic genetic variations, genetic variants found in 1000
genome projects on healthy individuals [55] are considered as
neutral (non-disease causing) [56]. However, this assumption
may not be correct for some late-onset disorders, in particu-
lar. It was shown that removing potential false negatives (the
genetic variants with low minor allele frequency and poten-
tially pathogenetic [57]) reduces the performance of the
method trained. This suggests that having more data is more
important than reducing potential false negatives in the train-
ing set [56].

To further examine the effect of potential errors in nega-
tives, we randomly added 5% or 10% errors to nine-folds in
the training set by assigning HTlncRNAs to EVlncRNAs and
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EVlncRNAs to HTlncRNAs and testing the method for the
remaining fold. This was repeated 10 times (ten-fold cross-
validation). We also randomly selected 5% or 10% errors 10
separate times to obtain an average effect. Introducing 5% and
10% errors lead to the average MCC values changed only
slightly from 0.513 to 0.496 and 0.480, respectively. The
small changes due to assignment errors indicate that our
method is robust against potential assignment errors in the
training set. However, one has to be cautious that not all
positive predictions are functional lncRNAs as the fraction
of correct predictions in positive predictions is at 81% for the
human test set (i.e. 19% are incorrect). Moreover, the cover-
age of functional lncRNAs (sensitivity) is at 64% due to the
small training set. That is, predictions may miss many func-
tional RNAs, tissue-specific lncRNAs, in particular.
Nevertheless, the method should be already useful for prior-
itizing potentially functional lncRNAs for further experimen-
tal validation. In the meantime, we hope to further improve
sensitivity and precision in the near future when a much
larger dataset is available for deep learning.

To estimate the fraction of potentially functional
EVlncRNAs in HTlncRNAs, we randomly selected 2000
human lncRNAs in NONCODE database [58]. None is
found to overlap with known EVlncRNAs. Among them,
566 lncRNAs were classified as functional lncRNAs that can
be validated by low-throughput experiments. This would
place the fraction at 28.3% (566/2000) in expressed lncRNAs
potentially with biological roles. In other words, the majority
of expressing lncRNAs are likely non-functional. However,
the fraction of functional ones is nearly 30% and the majority
of their biological roles is yet to be investigated.

It is of interest to know the computational requirement of
EVlncRNA-pred. Because our method makes a prediction
according to 100-base blocks, the CPU time is linearly dependent
on the length of a lncRNA. It takes about 198 seconds for a 1000-
nucleotide RNA (ENST00000511331.1), 288 seconds for a 4000-
nucleotide RNA (ENST00000592187.1), and 2115 seconds for
a 15,145-nucleotide RNA (ENST00000608023.1) on an Intel
Xeon E5 2.3GHz machine. Thus, EVlncRNA-pred will be com-
putationally efficient for large-scale screening of functional
lncRNAs.

Conclusions

In summary, we have developed the first bioinformatics tool
to identify potentially functional lncRNAs from numerous
lncRNAs and mRNAs found in high-throughput experi-
ments. The classification performance of the method
EVlncRNA-pred is reasonably high with AUC >0.84 for
independent tests on human and mouse RNAs and >0.8 for
plant RNAs. This indicates that the model built here is
already useful for prioritizing functional lncRNAs for valida-
tion by low throughput experiments. The method along with
the training and test datasets is freely available for experi-
mental biologists at http://biophy.dzu.edu.cn/lncrnapred/
index.html.

Materials and methods

Training and test datasets for human lncRNAs

Most previous methods for separating lncRNAs from mRNAs
were trained by using lncRNAs from GENCODE [44] as the
positive dataset. These lncRNAs were obtained from the
ENCODE project [59] by using a variety of high-throughput
techniques and annotated by a combination of computational
analysis, sequence comparison, and manual annotation. Here
we treated them as the negative dataset after excluding all
known experimentally validated, functional lncRNAs from
a recently curated database EVlncRNAs [16] (the positive
dataset). Because EVlncRNAs is far from a complete dataset
for functional lncRNAs, our negative dataset likely contains
some false negatives. As we discussed in the discussion sec-
tion, this should not prevent us addressing the question if
current experimentally validated lncRNAs (denoted as
EVlncRNAs for convenience) are separable from lncRNAs
from high-throughput (HT) experiments (denoted as
HTlncRNAs for convenience).

We first created a positive human test set from EVlncRNAs
that were not contained in GENCODE V19 so that we can
create a set of newly discovered, experimentally validated
lncRNAs. This test set was obtained by using CD-HIT [60] to
remove redundant sequences with more than 80% sequence
similarity with HTlncRNAs in GENCODE V19 and among
themselves. We have chosen 80% sequence identity cutoff
because statistics suggest a significant reduction in secondary
structure similarity for RNA sequences with <80% sequence
identity [61]. Moreover, it is the lowest sequence identity cutoff
allowed by the program CD-HIT [60]. This cutoff was also
employed previously for establishing non-redundant RNA
sequences [62,63]. A total of 117 human EVlncRNAs were
obtained as an independent positive test set. The remaining
human lncRNAs from EVlncRNAs were used to generate the
positive training set after removing redundant sequences by
CD-HIT from the independent test set and among themselves.
This leads to a training set of 799 human EVlncRNAs. The
negative sets for HTlncRNAs (799 training and 117 indepen-
dent test HTlncRNAs) were randomly selected from
GENCODE V19 while ensuring <80% sequence identity
among themselves and from the positive sets.

In addition to the HTlncRNA set as the negative set, we
also included mRNAs from GENCODE V19 as the negative
set. These mRNAs were randomly selected with <80%
sequence similarity between each other and from selected
HTlncRNAs and EVlncRNAs. The number of mRNAs is set
to the same as the size of the two positive sets. Thus, the final
human training dataset contains 799 EVlncRNAs (positive),
799 HTlncRNAs (negative) and 799 mRNAs (negative). The
final human independent test set contains 177 EVlncRNAs
(positives), 177 HTlncRNAs (negatives) and 177 mRNAs
(negatives). Using both HTlncRNAs and mRNAs in the nega-
tive sets is to ensure that our method can separate
EVlncRNAs from either HTlncRNAs or mRNAs.

Here, we have set the ratio of EVlncRNA:HTlncRNA:
mRNA to 1:1:1 in training and test sets. The purpose is to
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maximize learning by undersampling the negative samples [49].
To examine the effect of the ratio, we also built the training set
for EVlncRNA:HTlncRNA:mRNA at 799:1200:1200 (1:1.5:1.5),
799:1600:1600 (1:2:2), 799:2400:2400 (1:3:3), and 799:3200:3200
(1:4:4), respectively. These additional mRNAs and HTlncRNAs
were randomly selected with <80% sequence similarity between
each other and from previously selected mRNAs, HTlncRNAs
and EVlncRNAs. Similarly, we built an additional independent
test set EVlncRNA:HTlncRNA:mRNA at the ratio of
117:468:468 (1:4:4) with the same positive samples in the inde-
pendent test set but expanded the sample sizes of HTlncRNAs
and mRNAs. A ratio of 1:4 between EVlncRNA and
HTlncRNA is close to the real-world situation as we shall see.

Independent test sets from mouse and plant lncRNAs

To further test the robustness of the methods developed, we
established independent test sets by using the mouse and
plant lncRNAs. Similar to human datasets, the positive sets
for plant and mouse were obtained from the EVLncRNAs
database [16]. There were 166 mouse EVlncRNAs after
removing redundant sequences with more than 80% sequence
similarity to the human set (both positive and negative sets)
and among themselves. We randomly selected 166 mouse
HTlncRNAs from GENCODE V19 as the negative set after
removing the redundant sequences from the mouse positive
set, the human set and among themselves. In addition, we
have randomly selected 166 mouse mRNA set from
GENCODE V19 with the same sequence similarity cutoff to
remove redundancy. The final mouse test set contains 166
EVlncRNAs (positives), 166 HTlncRNAs (negatives) and 166
mRNAs (negatives).

We used the EVlncRNAs of Arabidopsis thaliana in the
EVLncRNAs database [16] to construct the positive set for
plant. After removing redundant sequences with more than
80% sequence similarity with the human set and among
themselves, 120 Arabidopsis thaliana EVlncRNAs were
obtained as the plant positive set. The HTlncRNAs and
mRNAs of Arabidopsis thaliana were from the Ensembl
Plants database [64]. Similar to the mouse negative set, an
equal number of HTlncRNAs and mRNAs of Arabidopsis
thaliana were randomly selected after removing the redun-
dant sequences from the plant positive set, the human set, and
among themselves. The final plant test set contains 120
EVlncRNAs (positives), 120 HTlncRNAs (negatives) and 120
mRNAs (negatives).

Input features

All features were block-averaged similar to previous studies
[35,37,39,65]. Each block has 100 nucleotides, centered at 50,
100, 150, and etc. until the entire sequence is covered by
blocks. For a given feature, the value or average value of
each block was calculated to represent the block. The final
feature values are average, maximum and variance of values of
the blocks that covered the entire sequence. Following fea-
tures are calculated.

Features based on sequences
Features based on sequences are employed to develop the
sequence-only model.

GC content. The percentage of G and C in a sequence block
was calculated.

Purine (PUR) content. The percentage of purines (G and A)
in a sequence block was calculated.

DNA conservation score. The phastCons [45] scores provided
by the UCSC [46] represented the DNA sequence conserva-
tion of human and mouse. The phastCons scores for human
DNAs are from phastCons100way, and the scores for mouse
DNAs are from phastCons60way. However, no similar scores
are available for plant DNAs. We have simply set these values
to zero when applying to the plant set (also see below).

Protein conservation score. The protein conservation score was
calculated by BLASTx that searches a given nucleotide sequence
against the protein sequence in the UniProt database [66].

RNA conservation score. Infernal (‘INFERence of RNA
Alignment’) [67] was employed for searching Rfam databases
[68] for RNA structure and sequence similarities. It is an
implementation of a special case of profile stochastic context-
free grammars called covariance models (CMs). A CM is like
a sequence profile, but it scores a combination of sequence
conservation and RNA secondary-structure conservation.

Predicted solvent accessible surface area (ASA) of RNA. RNA
ASA values were predicted by RNAsnap [62].

Features based on high-throughput experimental results
The above sequence-based features together with the features
based on high-throughput experimental results (see below)
are utilised to develop the full-feature model.

Expression abundance. The reads per kilobase per million
(RPKM) for each sequence were calculated from polyA+,
polyA- and small RNA-seq data. The maximum scores for five
cell lines (GM12878, K562, H1-hESC, HeLa-S3, and HepG2)
were assigned to human sequences. For the mouse and
Arabidopsis thaliana, the RNA-seq data of various tissues were
used. These feature values were obtained from COME [35].

Histone modification. The ChIP-seq data from H3K36me3
and H3K4me3 modification were used to calculate the signal
over a sequence. The averaged input-normalized signals of
five cell lines (GM12878, K562, H1-hESC, HeLa-S3, and
HepG2) were used for human sequences. The ChIP-seq data
of various tissues were used for sequences of mouse and
Arabidopsis thaliana. These values were obtained from
COME [35].

Ribosome profiling is another possible experimental fea-
ture. However, a previous study suggested its minor contribu-
tion to separation of HTlncRNA from mRNA [35]. We expect
that it is less useful for separating EVlncRNA from
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HTlncRNA as both are not translated into peptides or pro-
teins. As a result, this feature was not employed in this study.

Support vector machines

We used SVM with the RBF kernel implemented in LIBSVM
version 3.22 [69] to build our model. We optimized the
parameters C and gamma using the grid search algorithm
implemented in LIBSVM.

Cross-validation and independent test

We performed 10-fold cross-validation on the training set. In
this cross-validation, the training set was randomly divided into
ten folds, and each fold was tested in turn by using the remaining
nine folds for training. To examine whether the results are
consistent for different divisions of the dataset, we conducted 10-
fold cross validations 100 times by randomly dividing the train-
ing set 100 times.We also used the whole training set to train the
model and tested the model on independent test sets.

Performance evaluation criteria

The performance of our method was evaluated by Matthews
correlation coefficient (MCC), receiver operating characteristic
(ROC) curve, area under the ROC curve (AUC), accuracy,
sensitivity, specificity, and precision. The equations are as below.

MCC ¼ TP� TN� FP� FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ� TPþ FNð Þ� TNþ FPð Þ� TNþ FNð Þp

(1)

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(2)

Sensitivity ¼ TP
TPþ FN

(3)

Specificity ¼ TN
FPþ TN

(4)

Precision ¼ TP
TPþ FP

(5)

where TP and TN represent the positive and negative samples
that have been correctly predicted, respectively, FP and FN
represent the positive and negative samples that have been
falsely predicted, respectively. MCC is essentially a correlation
coefficient between predicted and actual binary classifications
with values between −1 to 1 with zero for random prediction.
It is a balanced measure for unequal-sized positive and nega-
tive samples. Sensitivity is the fraction of predicted true
EVlncRNAs in all true EVlncRNAs. Specificity is the fraction
of predicted true negatives in all true negatives. Precision is
the fraction of true EVlncRNAs in all predicted EVlncRNAs.

Data and software availability

EVlncRNA-pred is available as a web server at http://biophy.
dzu.edu.cn/lncrnapred/index.html. All datasets used in this
study can be obtained from the same website.
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