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Abstract

CD4+ T cells are critical to the development of autoimmune disorders. Glucose, fatty acids, and glutamine metabolisms are the primary
metabolic pathways in immune cells, including CD4+ T cells. The distinct metabolic programs in CD4+ T cell subsets are recognized to
reflect the bioenergetic requirements, which are compatible with their functional demands. Gut microbiota affects T cell responses by
providing a series of antigens and metabolites. Accumulating data indicate that CD4+ T cell metabolic pathways underlie aberrant T
cell functions, thereby regulating the pathogenesis of autoimmune disorders, including inflammatory bowel diseases, systemic lupus
erythematosus, and rheumatoid arthritis. Here, we summarize the current progress of CD4+ T cell metabolic programs, gut micro-
biota regulation of T cell metabolism, and T cell metabolic adaptions to autoimmune disorders to shed light on potential metabolic
therapeutics for autoimmune diseases.
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Introduction
CD4+ T cells play an essential role in the pathogenesis of au-
toimmune disorders. The aberrant CD4+ T cell responses have
been demonstrated in patients with autoimmune disorders, in-
cluding inflammatory bowel diseases (IBD), 1 systemic lupus ery-
thematosus (SLE),2 and rheumatoid arthritis (RA).3 Many studies
have identified the importance of metabolic pathways in modu-
lating T cell phenotypes and functions. For example, naïve CD4+

T cells are maintained in a quiescent state, which requires a
low amount of glucose and fatty acids for oxidative phosphory-
lation (OXPHOS), while aerobic glycolysis and glutaminolysis be-
come the primary metabolic pathways in T cells once activated.4

Gut microbiota, which emerges as an important regulator in hu-
man health and diseases, has a critical role in regulating T cell
functions.5 Gut microbiota modulates CD4+ T cell metabolic pro-
files to regulate immune responses, especially through bacteria-
derived metabolites.6 T cell metabolic alteration has been linked
with the pathogenesis of autoimmune disorders, and manipula-
tion of metabolic pathways becomes the potential therapy for
treating these diseases. In this review, we describe the distinct
metabolic programs in different T cell subsets, provide evidence
of T cell metabolism regulated by gut microbiota, explore the T
cell metabolic abnormalities in autoimmune disorders, and dis-
cuss the rationale behind T cell metabolism-related approaches
to treat autoimmune disorders.

CD4+ T cell metabolism
Different nutrition, mainly glucose, lipids, and amino acids, pro-
vides energy for maintaining CD4+ T cell survival and functions

through distinct metabolic pathways (Fig. 1). Glycolysis is the pro-
cess that breaks glucose into pyruvate by a series of enzymes in
the cytoplasm. Subsequently, glucose-derived pyruvate can be ei-
ther metabolized to lactate, which is excreted from the cell or con-
verted to acetyl coenzyme A (acetyl-CoA), and enters the tricar-
boxylic acid (TCA) cycle to generate reducing equivalents (NADH
and FADH2) for OXPHOS by delivering electrons to the electron
transport chain in mitochondria. Therefore, glucose provides en-
ergy to cells through both glycolysis and OXPHOS. Besides glu-
cose, fatty acids and glutamine can also be metabolized to acetyl-
CoA and α-ketoglutarate via fatty acid oxidation (β-oxidation)
and glutaminolysis, respectively. These substrates are recruited
to the TCA cycle and generate ATP through OXPHOS. In addi-
tion, β-oxidation also generates reducing equivalents, which can
be oxidized by complex I of the electron transport chain. The in-
termediates of these metabolic pathways also serve as essential
components for the biosynthesis of nucleotides, amino acids, and
lipids, which support T cell proliferation and survival. However,
the metabolic profiles in different CD4+ T cell subsets are not
identical, which are regulated by different factors (Fig. 2).

Naïve T cell metabolism
After development and maturation in the thymus, naïve CD4+ T
cells enter the circulation as quiescent cells.7 Naïve T cells have
low metabolic demands and use nutrition, primary glucose and
fatty acids, to generate ATP through OXPHOS and β-oxidation.8

The survival and homeostasis of naïve CD4+ T cells are main-
tained by tonic T cell receptor (TCR) signaling,9 IL-7,10 and sphin-
gosine 1-phosphate (S1P).11 Tonic TCR signaling maintains T cell
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Figure 1. Key cellular metabolic pathways. Glucose, lipids, and amino acids provide major energy for maintaining CD4+ T cell survival and functions
through distinct metabolic pathways. β-oxidation, fatty acid oxidation.

Figure 2. Distinct metabolic programs in CD4+ T cell subsets. Different CD4+ T cell subsets display different cellular metabolism, which is regulated
by several key pathways. BCL6, B cell lymphoma 6; HIF1-α, Hypoxia-inducible factor 1 α; ICOS, inducible T cell costimulatory.

quiescence by controlling T cell metabolism,12 and IL-7 signaling
inhibits atrophy through upregulation of glucose metabolism.13,14

S1P maintains mitochondrial function to suppress apoptosis in
naïve T cells.11

The mechanistic target of rapamycin (mTOR), including mTOR
complex 1 (mTORC1) and mTORC2, is critical in regulating T cell
metabolism and responses.15 mTORC1 is the central regulator of T
cell quiescent homeostasis, which regulates glycolysis, lipid syn-
thesis, and OXPHOS in T cells.16 Loss of tuberous sclerosis com-

plex 1 (TSC1), which negatively activates mTORC1, hyperactivates
responses to the TCR pathway and decreases cell response to IL-7
signal, leading to abrogation of T cell quiescence.17 Besides, fork-
head box protein O1 (FOXO1), a transcription factor of naïve CD4+

T cells, is a downstream target of mTORC2 through activation
of AKT, which is involved in regulating glycolysis through induc-
tion of glucose transporter 1 (GLUT1).18 Therefore, suppressing the
mTOR pathway is required for quiescence homeostasis in naïve
CD4+ T cells.
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Effector T cell metabolism
To obtain sufficient nutrition for the generation of building blocks
required for the rapid proliferation and effector functions, CD4+ T
cells undergo rapid metabolic reprogramming when activated by
antigen-driven TCR stimulation and costimulatory signaling.19,20

One of the most crucial pathways engaged in this process is phos-
phoinositide 3-kinase (PI3K)-AKT-mTOR signaling, which shifts
the metabolic phenotype from OXPHOS and β-oxidation to anaer-
obic glycolysis and glutaminolysis for fueling the enhanced de-
mands for biosynthesis.21 Consistently, T cell activation increases
the expression of nutrition transporters, e.g. glucose transporter
GLUT1, glutamine transporters sodium-coupled neutral amino
acid transporter (SNAT)1 and SNAT2, and alanine-, serine-, and
cysteine-preferring transporter 2 (ASCT2), as well as the enzymes
involved in glucose and glutamine metabolism.22,23 In addition,
activated T cells show increased mitochondrial mass and activity,
facilitating the enhanced OXPHOS due to the elevated intermedi-
ates from glycolysis and glutaminolysis.24–26

CD4+ T cells differentiate into various effector T cells, mainly
including helper T (Th)1, Th2, Th17, and follicular helper T (Tfh)
cells.27 The glycolytic activity is higher in effector T cells than in
naïve T cells, promoting effector T cell expansion and functions.28

In addition, glycolysis mediates effector T cell polarization. The
rapid increase in GLUT1 induces effector T cell differentiation as
evidenced by deficiency of GLUT1 leading to the decreased gener-
ation of Th1, Th2, and Th17 cells.28 Although Tfh cells are less gly-
colytic than Th1 cells,29 inhibition of glycolysis suppresses Tfh ex-
pression of IL-21, and GLUT1 promotes Tfh differentiation.30 Defi-
ciency in mTOR impairs Th1, Th2, and Th17 cell differentiation.31

Specifically, mTOR1 regulates Th1 and Th17 differentiation, while
Th2 generation is mTOR2 dependent.32 Furthermore, the mTOR
pathway promotes Tfh differentiation.30 mTOR signaling serves
as an indispensable factor in supporting glycolysis, thereby affect-
ing effector T cell differentiation and functions.33 However, the
pathways for enhancing glycolysis are not identical among these
effector T cell subsets. Hypoxia-inducible factor 1 α (HIF1-α), the
downstream of mTOR, promotes glycolysis to induce and main-
tain Th17 cells,34 but it negatively regulates Th1 function,35 indi-
cating other factors affect glycolysis in Th1 cells, such as MYC19

and lactate dehydrogenase A.36 The small GTPase RHOA couples
glycolysis to Th2 differentiation.37 B cell lymphoma 6 (BCL6), a key
transcription factor for Tfh cells, has been found to suppress gly-
colysis.29,38 However, Tfh cells highly express the costimulatory
molecule, inducible T cell costimulatory (ICOS), which promotes
glycolysis to enhance Tfh cell functions.31

The consumption of glutamine, a nonessential amino acid, is
increased in activated CD4+ T cells, and MYC is indispensable
for activation-induced glutaminolysis.19 Glutamine regulates the
balance of Th1 and regulatory T (Treg) cell differentiation, as evi-
denced by the depletion of glutamine, restricts Th1 cell differen-
tiation, and promotes Treg development even under Th1 condi-
tions through decreasing intracellular α-ketoglutarate.39 Besides,
glutamine deprivation does not affect GATA3 expression but in-
creases T cell production of IL-4 under Th2 conditions.39 The defi-
ciency of glutamine also impairs Th17 development. Glutaminoly-
sis induces Th17 differentiation by lowering N-glycan branching,
which depends on the biosynthesis of UDP-GlcNAc via the hex-
osamine pathway.40 The hexosamine pathway competes with gly-
colysis and glutaminolysis to use glucose and glutamine. In ad-
dition, inhibition of glutaminolysis reduces Tfh cells.41 Interest-
ingly, deficiency of glutaminase, which converts glutamine to glu-
tamate, suppresses Th17 but promotes Th1 differentiation with

no affecting Treg polarization,42 indicating that modulation of glu-
taminolysis at different steps can result in different T cell pheno-
types.

Regulatory T cell metabolism
Treg cells are critical in maintaining homeostasis by inhibiting ex-
cessive immune responses. As Treg functions are different from
effector T cells, they have different metabolic features. Treg cells
are less glycolytic and exhibit higher lipid oxidation rates than ef-
fector T cells.43

Foxp3, the key transcription factor for Treg cells, suppresses
glycolysis through inhibition of PI3K-AKT-mTOR signaling44,45 or
suppression of MYC.46 Glycolysis is required for Treg cell growth
and proliferation, but it impairs Treg stability and suppressive
functions.47,48 However, the differentiation and suppressive func-
tions of human Treg cells require glycolysis for regulating Foxp3
splicing variants containing exon 2 via the glycolytic enzyme
enolase-1.49 Besides, glycolysis supports Treg migration into in-
flammatory sites.50 Therefore, glycolysis delicately controls Treg
growth, proliferation, and functions. However, this regulation is
not well understood. OXPHOS mediates Treg functions, whereas
both pharmacological and genetic inhibition of OXPHOS impair
Treg suppressive activity.51,52 Treg cells mainly utilize fatty acids
for generating energy through β-oxidation, TCA cycle, and OX-
PHOS, and β-oxidation inhibitor suppresses Treg functions.43 In
addition, acetyl-CoA converted from fatty acids via β-oxidation
has been reported to enhance Treg stability.53 mTOR regulates
Treg metabolism, and inhibition of the mTOR pathway augments
Treg population.54,55 However, deficiency of mTORC1 signaling in
Treg cells leads to a weaker suppressive activity through upregu-
lation of cholesterol and lipid metabolism, while mTORC2 is dis-
pensable for Treg suppressive function,56 indicating that the roles
of the mTOR pathway in Treg cells are complicated in different
aspects.

According to the generation, function, and sites of Treg cells,
Treg cells can be classified into different subsets, such as effector
Treg cells and central Treg cells, which possess distinct metabolic
features. Effector Treg cells take up more glucose and amino acids
than central Treg cells, which are more metabolically quiescent.57

Treg cells may have metabolic flexibility when they migrate to dif-
ferent tissue where the environmental nutrition is different. For
example, in the tumor microenvironment, where lactic acid is en-
riched, Treg cells metabolize lactic acid instead of glucose to sup-
port their proliferation and function.58

CD4+ memory T cell metabolism
Memory (both CD4+ and CD8+) T (Tm) cells, integral to effective
host immune responses, can rapidly transform from resting phe-
notypes to highly active effector T cells on antigen restimulation.
There are a group of Tm cell subsets, mainly central Tm cells, ef-
fector Tm cells, and tissue-resident Tm cells. Tm cell growth and
maintenance depend heavily on cellular metabolism. Various Tm
cell subsets exhibit varying metabolic profiles.59,60 Although CD8+

Tm cells mostly use fatty acids to generate energy via β-oxidation
and OXPHOS, CD8+ effector Tm cells are less metabolically depen-
dent on OXPHOS than CD8+ tissue-resident Tm cells and CD8+

central Tm cells.61 However, metabolic features in CD4+ Tm cells
are less investigated and need to be explored.

It has been reported that Notch signaling maintains CD4+ Tm
cells through regulation of glucose uptake.62 CD4+ effector mem-
ory T cells have higher OXPHOS than naïve T cells, which is



4 | Presis Clin Med, 2022, 5: pbac018

Table 1. Microbiota modulation of immunometabolism in CD4+ T cells.

Microbiota/microbiota-
derived
metabolites Changes in T cell metabolism Effect on T cell function

Bifidobacterium Mitochondrially mass ↑
Mitochondrial ROS ↑

Treg suppressive activity ↑

Pentanoate Glucose oxidation ↑ IL-10 production in Th17 cells ↑
IsoalloLCA OXPHOS ↑

Mitochondrial ROS ↑
Treg differentiation ↑

attributed to higher glycolytic capacity.63 Increased spare respi-
ratory capacity enables CD4+ effector memory T cells to main-
tain survival and function under hypoxia conditions.63 CD4+ and
CD8+ Tm cells, predominantly tissue-resident Tm cells, are en-
riched in white adipose tissue where free fatty acids are released
for substrates of β-oxidation.60 The dependence of extracellular
fatty acids is different in different tissues, indicating that the mi-
croenvironment affects the metabolic program in CD4+ Tm cells.

Gut microbiota modulation of CD4+ T cell
responses and metabolism
Gut microbiota regulation of CD4+ T cell
responses
The role of intestinal microbiota in regulating host immunity,
including CD4+ T cell responses, has been extensively investi-
gated.64 The complex and dynamic interaction between gut mi-
crobiota and CD4+ T cells shapes the immune responses during
homeostasis and inflammation. Microbial antigens activate CD4+

T cells, and diverse signals from the microbiome regulate CD4+

T cell polarization and function differently. It has been reported
that intestinal colonization of Klebsiella aeromobilis and Klebsiella
pneumoniae, the human oral bacteria, drives colonic Th1 cell in-
duction in mice.65 The first known microorganism for producing
Th17 cells in the mouse gut is segmented filamentous bacteria
(SFB).66 Later on, several microbes existing in the human gut have
been found to trigger Th17 polarization, including Bifidobacterium
adolescentis,67 Escherichia coli,68 and Staphylococcus aureus.69 Besides,
SFB has also been identified to promote Peyer’s patch Tfh cells
differentiation.70 There are several Treg inducers found in the mi-
crobiota, in which Clostridium clusters IV and XIVa are the first de-
scribed ones.71 The surrounding microenvironment can also de-
termine bacteria modulation of T cell fate. For example, mucosal-
associated Helicobacter species increase Treg cells’ frequency un-
der homeostatic conditions and trigger effector T cells under in-
testinal inflammation.72 In addition, commensal bacteria-specific
memory CD4+ T cells are present in both circulation and gut in
healthy humans, which might support intestinal homeostasis.73

Understanding individual microbiota regulation of T responses in
different disease conditions is still in the early stages, which needs
further investigation.

Besides providing Toll-like receptor ligands, microbiota af-
fects CD4+ T cells in many aspects via their metabolites6.
One of the most investigated gut microbiota-derived metabo-
lites, short chain fatty acids (SCFAs), mainly including ac-
etate, propionate, and butyrate, are generated from undigested
carbohydrates via gut microbiota, such as the phylum Bac-
teroidetes and Firmicutes. SCFAs induce Th1 cells74 but sup-
press Th2 differentiation,75 while SCFAs delicately regulate
Th17 polarization in a context-dependent manner.74,76 Besides,

SCFAs also induce effector T cell production of IL-10 and
IL-22,77,78 key mediators in immune responses. Although no
evidence demonstrates the direct roles of SCFAs in modulating
Tfh cells, dietary fiber, which is the resource of SCFAs in the gut,
has been reported to enhance Tfh cell responses.79 Additionally,
SCFAs promote peripheral and colonic Treg generation.80–82 In ad-
dition to SCFAs, other microbiota-derived metabolites also medi-
ate CD4+ T cell responses, including secondary bile acids, bacte-
rial tryptophan catabolites, and others.6 Secondary bile acid litho-
cholic acid (LCA) derivatives, isoalloLCA and 3-oxoLCA induce Treg
and suppress Th17 differentiation, respectively.83 Besides, gut bile
acid metabolites contribute to maintaining the colonic RORγ t+

Treg cells,84 which mediate intestinal homeostasis. Indoles and
indole derivatives, belonging to bacterial tryptophan catabolites,
have been reported to induce Treg cells.85,86 Readers can find a
more detailed description and discussion on microbiota-derived
metabolites regulation of T cell responses at different aspects in
our previous review papers.6,87,88

Gut microbiota modulation of CD4+ T cell
metabolism
With the realization of the importance of immunometabolism, it
is necessary to understand the role of microbiota in regulating
CD4+ T cell metabolism. A recent study demonstrated that colo-
nization of Bifidobacterium in the intestine altered gut microbiota
composition, which enhanced Treg suppressive function by pro-
moting mitochondrial activity in Treg cells,89 suggesting that gut
microbiota contributes to T cell metabolic reprogramming. How-
ever, it is still unknown whether microbiota directly affects the
CD4+ T cell metabolic program (Table 1).

Most research exploring microbiota regulation of im-
munometabolism focuses on the importance of microbiota-
derived metabolites.90 For example, SCFAs increase mitochon-
drial mass and GLUT1 expression in CD8+ T cells as SCFA serve
as a substrate for β-oxidation.91 In addition, SCFAs promote
OXPHOS via β-oxidation and glutaminolysis instead of glycolysis
in activated CD8+ T cells, which is associated with differentiation
into memory CD8+ T cells.92 However, the effect of dominant
SCFAs, including acetate, propionate, and butyrate, on CD4+ T
cell metabolism has not been well investigated. Other groups and
we have demonstrated that SCFAs induce CD4+ T cell activation
of mTOR to regulate T cell differentiation and cytokine produc-
tion.74,77,78 Besides, SCFAs promote CD4+ T cell production of
IL-22 through activation of HIF1-α.78 Both mTOR and HIF1-α are
key modulators in regulating T cell metabolic reprogramming,
as we described and discussed above, suggesting that SCFAs
affect CD4+ T cell metabolism. A recent study revealed the direct
effect of pentanoate, a subdominant type of SCFAs, on CD4+ T
cell metabolism.93 Pentanoate enhances glycolysis in Th17 cells,
and the suppression of glucose metabolism with 2-DG (2-deoxy-
D-glucose) inhibits IL-10 production in Th17 cells, suggesting



T cell metabolism, microbiota, and autoimmunity | 5

Table 2. Manipulation of metabolic pathways in autoimmune diseases.

Drugs
Changes in metabolic

pathways Diseases Human/mouse models Effect

Oligomycin OXPHOS ↓ IBD TNBS Colitis ↓
Rapamycin mTORC1 ↓ TNBS Colitis ↓

CD4+ T cell transfer model Colitis ↓
Refractory IBD patients Colitis ↓

AZD8055 mTORC1/2 ↓ DSS Colitis ↓
Metformin Mitochondrial metabolism ↓ SLE Lupus-prone

B6.Sle1.Sle2.Sle3 mice
Prevent disease

development
2-DG Glucose metabolism ↓ Lupus-prone

B6.Sle1.Sle2.Sle3 mice
Prevent disease

development
Metformin and 2-DG Mitochondrial metabolism ↓

Glucose metabolism ↓
Lupus-prone

B6.Sle1.Sle2.Sle3 mice
Reverse the disease

symptoms
Bz-423 ATP synthase ↓ MRL-lpr mice Disease ↓
BPTES Glutaminolysis ↓ MRL-lpr mice Disease ↓
Rapamycin mTORC1 ↓ MRL-lpr mice Disease ↓

Clinical trial Disease ↓
Menadione ROS ↑ RA Human synovium–NSG

mice
Synovitis ↓

Buthionine sulfoximine ROS ↑ Human synovium–NSG
mice

Synovitis ↓

3-Bromopyruvate Glycolysis ↓ K/BxN mice/SKG mice Arthritis ↓
Rapamycin mTORC1 ↓ Human synovium–NSG

mice
Disease ↓

that glucose metabolism is involved in pentanoate induction of
IL-10 production in Th17 cells.93 Besides, pentanoate increases
acetyl-CoA levels in Th17 cells. Treatment of dichloroacetate,
which shifts glucose metabolism from glycolysis to pyruvate
oxidation, leads to increased IL-10 production in Th17 cells,93 in-
dicating that glucose oxidation, instead of glycolysis, contributes
to pentanoate induction of IL-10 in Th17 cells. In addition, tri-
chostatin A (TSA), a pan-HDAC inhibitor, does not induce IL-10
production in Th17 cells,93 further confirming that pentanoate
regulates IL-10 expression through conversion into acetyl-CoA
as the energy fuel but not by acting as an HDAC inhibitor. As
the effects of different SCFAs on CD4+ T cell functions are not
identical, whether all the SCFAs regulate T cellular metabolism
and whether such altered metabolism mediates T cell responses
induced by SCFAs are still not completely understood.

Secondary bile acids also have been reported to regulate
metabolic profiles in CD4+ T cells. IsoalloLCA, a secondary bile
acid, enhances OXPHOS in CD4+ T cells, as evidenced by increased
oxygen consumption, total mitochondrial mass, and mitochon-
drial membrane potential.83 Furthermore, isoallaLCA promotes
mitochondrial reactive oxygen species (ROS) but not cytoplasmic
ROS.83 Enhanced mitochondrial ROS mediates isolallaLCA induc-
tion of Treg cells.83 However, other isomers of LCA have no impact
on mitochondrial ROS in CD4+ T cells,83 indicating that different
bile acids regulate immunometabolism in T cells differently.

Overall, further study is needed in CD4+ T cell im-
munometabolism regulated by gut microbiota. Additionally,
it is necessary to avoid generalizations and embrace the hetero-
geneity of microbiota in modulating T cell metabolism.

CD4+ T cell metabolism in autoimmune
diseases
Accumulating data have demonstrated that aberrant CD4+ T cell
responses contribute to the development of autoimmune dis-

eases.94 As described before, metabolic pathways are important
in CD4+ T cell functions. The microenvironment, including en-
ergy resources, is changed during inflammatory diseases, and,
meanwhile, CD4+ T cell metabolism is highly dynamic, and en-
ergy availability shapes the metabolic proflies.95 Manipulation of
metabolic pathways has been found to be beneficial or harmful
for autoimmune diseases, including but not limited to IBD, SLE,
and RA (Table 2).

Inflammatory bowel diseases
IBD is a chronic inflammatory intestinal disorder, which primar-
ily includes Crohn’s disease and ulcerative colitis. An imbalance
between effector CD4+ T cells and Treg cells contributes to the
pathogenesis and development of IBD.

The link between cellular metabolic changes and IBD has been
discovered in several studies. IBD patients display a higher level
of plasma mitochondrial DNA, which is associated with the dis-
ease severity,96 indicating that mitochondrial damage might me-
diate IBD development. Furthermore, genes related to OXPHOS
are changed in paneth cells from pediatric patients with Crohn’s
disease, which is associated with gut microbiota.97 However, the
metabolic alteration in IBD CD4+ T cells is not well-understood.
Intestinal CD3+ T cells from patients with ulcerative colitis ex-
hibit a decreased expression of branched N-glycan, which shapes
CD4+ T cell responses.98,99 N-glycan production depends on the
hexosamine pathway, which competes with glycolysis and glu-
taminolysis for using glucose and glutamine,40 so it is not hard to
suppose that cellular metabolism is altered in CD4+ T cells and
plays a role in regulating the pathogenesis of IBD.

Increasing evidence suggests that controlling metabolism
pathways that regulate CD4+ T cell responses has a high po-
tential for treating IBD patients. Deficiency of GLUT1, the ma-
jor transporter of glucose, in CD4+ T cells induces less severe
colitis in Rag1–/– mice,28 and GLUT1-overexpressed Treg cells fail
to sufficiently reduce colitis in T cell transfer colitis model.47
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High glucose diet has been reported to exacerbate colitis, in
which gut microbiota plays critical roles.100 Besides, mitochon-
drial ROS mediates high glucose induction of Th17 cells, which
promotes intestinal inflammation.101 Suppressing OXPHOS by
oligomycin reduces colitis and intestinal Th17 cells in the 2,4,6-
trinitrobenzenesulfonic acid (TNBS) model.102 Blocking the mTOR
pathway, the key regulator in cellular metabolism, has been re-
ported to limit colitis. Rapamycin, specifically inhibiting mTORC1,
decreases intestinal colitis in the TNBS model, which is related
to the balance between Th17 and Treg cells in the intestine.103

Rapamycin together with a synthetic peptide containing multiple
flagellin T cell epitopes suppresses CD4+ T cell-driven colitis.104

Furthermore, the combination of T cell activation and metabolic
checkpoint inhibition, targeting mTOR and AMPK by rapamycin
and metformin, eliminates the circulating microbiota antigen-
specific CD4+ Tm cells.105 It has been reported that rapamycin
is potentially effective in treating refractory patients with Crohn’s
disease.106,107 In addition, AZD8055, a dual mTORC1/2 inhibitor,
also has benefits for treating colitis in the dextran sulfate sodium
(DSS)-induced colitis model.108

Systemic lupus erythematosus
SLE, an autoimmune disorder, affects chronic inflammation in a
variety of organs, including but not limited to skin, joints, kidneys,
and blood vessels. The immune system in SLE patients mistakenly
attacks its tissues, in which aberrant CD4+ T cell responses are
involved.2

Abnormalities in cellular metabolism have been found in
both SLE patients109–112 and experimental lupus models.110,113,114

Splenocytes from NZB/W mice with lupus show enhanced glucose
oxidation but a similar level of glycolysis compared with healthy
control mice,113 suggesting mitochondrial oxidative metabolism
might mediate the immune responses in SLE. A more recent
study further revealed that both glycolysis and mitochondrial ox-
idative metabolism are increased in CD4+ T cells from lupus-
prone B6.Sle1.Sle2.Sle3 mice.110 CD4+ T cells from SLE patients ex-
hibit enhanced glucose metabolism, including glycolysis and OX-
PHOS, which is associated with T cell activation status.110 Besides,
variants of ATP6 or F0F1-ATPase gene, the mitochondrial-related
genes, are associated with human SLE.112 Although the levels of
β-oxidation and glutaminolysis in CD4+ T cells from SLE are unde-
termined, altered lipid synthesis, specifically glycosphingolipids,
has been found in CD4+ T cells from SLE patients.115 Overall, lu-
pus CD4+ T cells have unusually high oxidative stress, glycolysis,
and lipid synthesis.

A number of studies have demonstrated that targeting CD4+

T cell metabolism by several drugs is promising for SLE. The
combination of metformin, a mitochondrial metabolism in-
hibitor, and 2-DG, a glucose metabolism inhibitor, normalizes
T cell metabolism, and suppresses disease activity in lupus-
prone B6.Sle1.Sle2.Sle3 mice.110,114 While either metformin or
2-DG can prevent disease development, combining these two
drugs is necessary to reverse the disease symptoms in mice.114

In addition, treatment of dichloroacetate, which favors pyru-
vate oxidation, does not affect the development of lupus in
B6.Sle1Sle2.Sle3 mice.114 Bz-423, an ATP synthase inhibitor, ame-
liorates autoimmune symptoms, including glomerulonephritis
and arthritis in MRL-lpr mice, which is associated with CD4+

T cell responses.116 Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-
yl)ethyl sulfide (BPTES), a selective inhibitor of Glutaminase 1, is
involved in glutaminolysis. Treating T cells from SLE patients with
BPTES suppresses Th17 polarization. Furthermore, treatment of

BPTES decreases lupus-like disease in MRL-lpr mice.117 Like cy-
totoxic T lymphocyte attenuator 4 (CTLA4) and programmed
death 1 (PD1), B and T lymphocyte attenuator (BLTA) is an in-
hibitory receptor, which plays a critical role in dampening im-
mune responses. It has been reported that deficiency of BLTA in
MLP-lpr mice aggravates autoimmune disease,118 and BLTA shows
impaired capacity to inhibit the proliferation of CD4+ T cells
from SLE patients, which correlates with disease activity.119 N-
butyldeoxynojirimycin, which inhibits the synthesis of glycosph-
ingolipids, can normalize lipid metabolism and restore BLTA func-
tionality in CD4+ T cells from SLE patients.115,119 In addition, in-
hibiting mTOR signaling by rapamycin prevents the development
of lupus in MLP-lpr mice.120 Rapamycin normalizes mitochondrial
hyperpolarization induced T cell hyperactivation in SLE patients
and is useful for treating SLE patients, who are refractory to most
traditional treatment, in a small group study.121 In a recent clini-
cal trial of 12 months of rapamycin in SLE patients, rapamycin is
clinically efficacious in SLE patients.122 The improvement in dis-
ease activity correlates with the correction of proinflammatory T
cell subset specification.122

Rheumatoid arthritis
RA is an autoimmune disease that mostly affects the joints. The
development of RA has been linked to immune cells, including in-
nate and adaptive cells. Perpetual CD4+ T cell responses activate
macrophages and fibroblasts in the joint synovial tissues, which
play a critical role in the pathogenesis of RA.3

Given the relationship between T cell function and metabolic
program, it is no surprise that RA CD4+ T cells have a different
metabolic profile. A series of enzymes take participate in glucose
use and determine the fate of glucose metabolism. CD4+ T cells
from RA patients are impaired in metabolizing glycose due to
insufficient induction of 6-phosphofructo-2-kinase/fructose-2, 6-
bis-phosphatase-3 (PFKFB3), a glycolytic rate-limiting enzyme123;
meanwhile, glucose-6-phosphate dehydrogenase (G6PD), which
shunts glucose and ATP production into the pentose phosphate
pathway (PPP) pathway, is upregulated in RA CD4+ T cells.124 As
a result, CD4+ T cells from RA patients display a decreased gly-
colytic flux but produce more NADPH with the low cellular level
of ROS and ATP.123,124 RA CD4+ T cells have age-impropriate ero-
sion of telomeres, an indicator of cellular age, suggesting that RA
CD4+ T cells are prematurely old.125 Growing evidence suggests
that aging-related impaired T cell immunity may be attributed to
mitochondrial disfunction.126 CD4+ T cells from RA patients have
decreased expression of MRE11A, an exonuclease and endonucle-
ase involved in nuclear and mitochondrial DNA repair, leading to
leaked mitochondrial DNA into the cytoplasm and impaired mi-
tochondrial oxidation.127 Instead of using acetyl-CoA to generate
ATP, mitochondrial malfunction results in an oversupply of in-
tracellular acetyl-CoA, which promotes fatty acid synthesis.128,129

The elevated PPP pathway also facilitates lipid synthesis and cy-
toplasmic lipid droplets by providing NADPH for biosynthesis in
RA CD4+ T cells.129 Interestingly, not only fatty acid synthesis en-
zymes but also three of five genes related to β-oxidation are in-
creased in RA T cells, indicating aberrant lipid metabolism in T
cells from RA patients.129 The glutaminolysis levels in RA T cells
are not determined yet. In general, RA CD4+ T cells switch from
catabolic to the anabolic pattern, as demonstrated by decreased
mitochondrial activity and glycolysis and enhanced lipid synthe-
sis.

ROS regulates CD4+ T cell differentiation, and a lower level
of ROS in RA T cells leads to Th1 and Th17 polarization.124
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Menadione, which increases ROS levels via redox cycling, in-
hibits RA T cells from differentiating Th1 cells in vitro.124 In
addition, the treatment of menadione suppresses synovitis in
human synovium–NSG mice reconstituted with human RA T
cells.124 A similar effect has also been found when using buthio-
nine sulfoximine, which raises ROS through the inhibition of
glutathione.124 Mirin, an MRE11A inhibitor, increases T cell re-
cruitment in synovial tissue and upregulates proinflammatory
cytokines in human synovium–NSG mice received healthy pe-
ripheral blood mononuclear cells (PBMCs). Besides, MRE11A-
overexpressed RA PBMCs induce milder tissue inflammation in
NSG mice compared with control RA PBMCs.127 These indicate
that drugs targeting mitochondrial DNA repair are promising
for treating RA. Interestingly, although the glycolysis pathway
is inhibited in RA CD4+ T cells, several studies indicate that
blocking glycolysis can reduce disease activity in animal arthri-
tis models by impacting cells besides T cells. For example, in-
hibiting hexokinase-2 to reduce the first step in glycolysis by 3-
bromopyruvate affects fibroblast-like synoviocytes130 and T cell
differentiation131 and alleviates the development of arthritis in
the K/BxN mice130 and SKG mice.131 In addition, mTORC1 is per-
sistently activated in RA CD4+ T cells, leading to proinflamma-
tory Th1 and Th17 cells.105 Blocking mTORC1 via rapamycin de-
creases T cell production of IFN-γ and reduces disease in human-
synovium-NSG chimeras.105

Conclusion and future direction
The role of CD4+ T cells in autoimmune diseases was highlighted
a decade ago. Although the metabolism regulation of immune re-
sponses and diseases has been increasingly investigated recently,
research on immunometabolism is still at an early stage. Here
we described the key cellular metabolism in different CD4+ T cell
subsets and the key pathways involved in regulating T cell func-
tion (Figs. 1 and 2). Metabolic pathways are complicated and deli-
ciated networks that are regulated in a context-dependent man-
ner by a variety of factors, including cell status, locations, and
disease conditions. Therefore, even the same CD4+ T cell subsets
show the different metabolic profiles under different conditions,
for example, healthy control T cells versus RA T cells. Investigat-
ing the crucial factor(s) that control T cell metabolic fate is re-
quired.

Yet it is well-established that the mutual interaction between
host and gut microbiota shapes the immune system; the stud-
ies on how the microbiota regulates cellular metabolism are
scarce. This review summarized the progress related to micro-
biota and microbiota-derived metabolites regulation of CD4+ T
cell metabolism (Table 1). Of note, SCFAs and secondary bile acids
modulate T cell responses by altering cellular metabolism; there
remain several important questions. For example, whether all the
SCFAs have the same effects on T cell metabolism? If not, which
pathway(s) regulate the discrepancy? Why do other secondary
acids not affect T cell ROS production? Besides SCFAs and sec-
ondary bile acids, whether and which microbiota-derived metabo-
lites can affect the metabolism in CD4+ T cells? Among these
metabolites, which ones are the key regulators in regulating in-
dividual T cell subsets? Diet affects intestinal microbiota and hu-
man diseases,132 and we recently found that GPR120, a receptor
for long-chain fatty acids, promotes CD4+ T cell IL-10 production
partially through regulation of cellular metabolism.133 Therefore,
it is also essential to define the interplay among diet, microbiota,
and T cell immunometabolism.

Manipulation of metabolic pathways by some drugs has been
found to be beneficial in autoimmune diseases (Table 2). To bet-
ter understand how these drugs work, it is needed to investigate
the metabolic changes in immune cells from autoimmune dis-
ease patients, including but not limited to CD4+ T cells. Although
there are some same clinic features between SLE and RA, the
metabolic profiles in T cells from SLE and RA patients are dif-
ferent. Therefore, the drugs are also not identical for potentially
treating these diseases. Of note, inhibiting mTOR pathways is ben-
eficial for all these three diseases. However, mTOR is also essential
for cell functions. Therefore, it is important to investigate the op-
timized dose of mTOR inhibitors in treating different diseases at
different stages. In addition, it is also necessary to find out the dif-
ferent mechanisms involved in the mTOR regulation of individual
diseases, which helps discover new potential targets for diseases
with fewer off-targets. The importance of microbiota in various
autoimmune diseases has been well established; therefore, the
next step is to understand the microbiota–immunemetabolism
crosstalk in regulating autoimmune diseases.
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