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/e time series is a kind of complex structure data, which contains some special characteristics such as high dimension, dynamic,
and high noise. Moreover, multivariate time series (MTS) has become a crucial study in data mining. /e MTS utilizes the
historical data to forecast its variation trend and has turned into one of the hotspots. In the era of rapid information development
and big data, accurate prediction of MTS has attracted much attention. In this paper, a novel deep learning architecture based on
the encoder-decoder framework is proposed for MTS forecasting. In this architecture, firstly, the gated recurrent unit (GRU) is
taken as the main unit structure of both the procedures in encoding and decoding to extract the useful successive feature
information. /en, different from the existing models, the attention mechanism (AM) is introduced to exploit the importance of
different historical data for reconstruction at the decoding stage. Meanwhile, feature reuse is realized by skip connections based on
the residual network for alleviating the influence of previous features on data reconstruction. Finally, in order to enhance the
performance and the discriminative ability of the new MTS, the convolutional structure and fully connected module are
established. Furthermore, to better validate the effectiveness of MTS forecasting, extensive experiments are executed on two
different types of MTS such as stock data and shared bicycle data, respectively. /e experimental results adequately demonstrate
the effectiveness and the feasibility of the proposed method.

1. Introduction

Time series is the sequence of arranged numbers according
to the occurrence time, which is also called dynamic series.
/e time span can be years, quarters, months, hours, or other
factors [1]. In recent years, time series are widely applied in
various fields, such as economics, medicine, transportation,
and environmental science, which has been attracted much
attention [2]. According to the number of observed vari-
ables, time series data can be divided into univariate time
series data and multivariate time series data [2]. /erefore,
how to mine useful information from these time series data
becomes a very important task in data mining, machine
learning, artificial intelligence, and other fields [3]. As a key
and crucial branch of time series data analysis, time series
prediction aims to accurately predict or estimate the future

events by exploring the past and current data of the single
variable or several correlated variables [4]. /e former is
called univariate time series forecasting; the latter is called
multivariate time series forecasting. For example, econo-
mists utilized the historical data of stock prices to forecast
stock prices or trends [5], medical scientists made use of the
biological time data to predict diseases [6], transportation
departments explored the historical data of traffic flow to
predict congestion [7], and environmentalists employed
atmospheric timing data to estimate environmental climate
changes [8], etc. Nevertheless, time series data not only
contains abundant information but also appears to some
complex characteristics such as high dimension, nonlinear,
fluctuation, and spatiotemporal dependence, which make
accurate time series data prediction become a challenging
study hotspot [9].
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In the past few decades, time series data prediction has
been widely concerned and many methods have been
proposed [10]. For instance, traditional statistics-based
methods focused on relevant domain knowledge, while
learning-based methods are introduced to learn temporal
dynamics in a pure data-driven strategy. As a popular
learning-based method, deep learning can learn the deep
latent features from the input data comprehensively and has
become a cutting-edge approach [11].

/e traditional statistics-based methods include autor-
egressive (AR) [12], autoregressive moving average (ARMA)
[13], autoregressive integrated moving average, and expo-
nential smoothing models (ARIMA) [14]. Although the
above methods can utilize statistical inference to describe
and evaluate the relationship between variables, they as-
sumed that the input data has a linear relationship between
model structure and the constant variance [15]. /erefore,
there are some limitations to dealing with complex time
series data containing nonlinear and nonstationary struc-
tures, so they cannot effectively obtain accurate predictions.

In order to solve the shortcomings mentioned above,
many learning-based methods including support vector
machine (SVM) [16], genetic algorithm (GA) [17], AdaBoost
[18], and artificial neural network (ANN) [19], which can
simulate the complex structures of time series data, have been
widely applied to time series prediction task. For example,
Dong et al. [16] discussed utilizing SVM for predicting
building energy consumption in tropical regions, and they
considered that it was superior to other neural networks from
the views of performance and parameter selection. Yadav et al.
[17] proposed a neuron model based on polynomial structure
and used the Internet traffic and financial time series data to
conduct forecast experiments, which showed that the neural
network (NN) model not only achieved better performance
but also greatly reduced the computational complexity and
running time comparing with the existing multilayer neural
networks. However, building an effective learning-based
model needs a large amount of professional data, and the
training process requires a high level of computer hardware
equipment. /erefore, the application of traditional machine
learning models is largely limited.

In recent years, with the improvement of data acquisition
and computing power, a novel learning-based method called
deep learning has attracted much attention. Deep learning [20]
can obtain a higher-level representation of the original input via
designing simple and nonlinear modules, which was conducive
to learning the feature representation. Convolutional neural
network (CNN) [21], recurrent neural network (RNN) [22],
and variantmodels have been successfully applied to time series
prediction. Zhang et al. [23] proposed a deep spatiotemporal
residual network model to predict the flow of people
throughout the city. Jagannatha and Yu [24] developed a bi-
directional recurrent neural network (BRNN) for medical
events detection in electronic medical records. Nevertheless,
RNN and BRNN are easy to suffer from the gradient vanishing
and gradient exploding problems. To overcome the drawbacks,
the long short-term memory network (LSTM) [25] and the
gated recurrent unit (GRU) [26] were developed. Since both
LSTM and GRU can keep the historical information for a

longer time step, they are widely used in time series data
analysis, prediction, and classification tasks. Compared with
LSTM, the GRU has a simpler structure and fewer parameters,
which can reduce the overfitting risk. For example, Shu et al.
[27] presented a new neural networkmodel based on improved
GRU to predict short-term traffic flow.

As an unsupervised method, Autoencoder (AE) is also
widely applied to feature representation learning [28]. In order
to extract better features, the RNN is frequently combined with
AE. Xu andYoneda [29] first used a stacked autoencoder (SAE)
to encode the key evolution patterns of urban weather systems
and then adopted the LSTMnetwork to predict the PM2.5 time
series of multiple locations in the city. Zhang et al. [30] pro-
posed an encoder-decoder model for real-time air pollutant
prediction, in which LSTM was the main network. /e ex-
perimental results indicated that the model can fully extract the
data correlations and obtain higher prediction accuracy. In
addition, the attention mechanism (AM) [31] has attracted
extensive attention in time series data analysis and prediction.
Han et al. [32] combined LSTMwith AM to predict time series,
in which the AM can capture time correlation by calculating
weights between nodes and neighboring nodes so that it
achieved better performance and provided enlightenment for
multivariate time series prediction simultaneously.

Although abundant methods have been developed, their
performances are limited since the high nonlinearity and
nonstationarity of multivariate time series (MTS) data. To
improve the prediction performance, a novel encoder-en-
coder prediction model is presented, and the contributions
are as follows:

(1) /e proposed model can sufficiently extract signif-
icant temporal features of MTS data.

(2) As a unit structure, the GRU is adopted to describe
sequential characteristics which can reduce model
parameters in the procedures of encoding and
decoding.

(3) /e AM is introduced into the decoding process for
preferably acquiring the reconstructed MTS data.

(4) To strengthen the prediction performance, 1D-
convolution operation and AM are further per-
formed based on the reconstructed new MTS data,
which possess discriminant and significant
characteristics.

/e outline of this paper is as follows. Section 2 reviews
the related works, and time series data preprocessing is
introduced in Section 3. Section 4 describes the proposed
network structure in detail. Section 5 illustrates extensive
experiments to verify the effectiveness and feasibility of the
proposed model. Section 6 provides some conclusions and
future works.

2. Related Works

Recently, researchers have proposed extensive time series
(TS) andmultivariate time series (MTS) predictionmethods,
which are classified into two categories including machine
learning and deep learning methods [9].
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2.1.Machine LearningMethods. /e basic assumption of the
statistical methods is that the TS and MTS with simple
structures are linearity and stationarity. However, in real
applications, the TS and MTS data are collected with
complex structures, which have high nonlinearity and
nonstationarity and they make the TS and MTS forecasting
very difficult. Meanwhile, the machine learning algorithms
are usually helpful to improve the prediction accuracy [33],
which can analyze the behavior of data over time and are
independent of the statistical distribution assumption to
extract complex nonlinear patterns.

Specifically, Li et al. [34] firstly proposed a chaotic cloud
simulated annealing genetic algorithm (CcatCSAGA), which
was used to optimize the robust support vector regression
(RSVR) parameters for improving the performance of ship
traffic flow prediction. Sahoo et al. [35] designed a novel
online multiple kernels regression (OMKR), which suc-
cessively learned kernel-based regression in an extensible
manner. Moreover, its effectiveness was demonstrated on
real data regression and time series prediction tasks. Ahmed
et al. [33], respectively, adopted multilayer perceptron
(MLP), Bayesian neural networks (BNN), radial basis
function (RBF), general regression neural network (GRNN),
k-Nearest neighbors regression (KNNR), classification and
regression tree (CART), support vector regression (SVR),
and Gaussian process regression (GPR) to perform exper-
iments. /is study revealed significant differences between
various methods in TS and MTS prediction, and the MLP
and GPR methods were the best. Besides, in order to im-
prove the performance, Domingos et al. [36], respectively,
combined the ARIMA with MLP and SVR to predict time
series. It showed that the hybrid model was better than the
single model. Rojas et al. [37] presented a hybrid method
integrating an artificial neural network and ARMA model,
which achieved outstanding results.

2.2. Deep Learning Methods. /e deep neural network can
surpassingly learn complex data representation [38], which
is widely utilized in many tasks, such as image classification,
image segmentation, and natural language processing.

A convolutional neural network (CNN) was originally
designed to process static image analysis, which can obtain
invariant local relations across spatial dimensions [39].
Recently, CNN and its variant methods were also developed
for time series data prediction [40], classification [41],
anomaly detection [42], clustering [43], and so on. For
example, Ding et al. [44] applied the CNN model to stock
market prediction.Wang et al. [45] introduced deep learning
to develop a probabilistic wind power generation prediction
model. In this model, a wavelet transform was used to
decompose the raw wind power data into different fre-
quencies. /en, a CNN model was used to learn nonlinear
features in each frequency for improving prediction accu-
racy. Finally, the probability distribution of wind power
generation was predicted. Different from the abovemethods,
Oord et al. [46] proposed a new network model called
WaveNet, which expanded convolution to improve the long-
term dependence requirement of time series. Moreover, the

size of the receptive field increased exponentially with the
depth of layers. Afterward, Borovykh et al. [47] adopted the
WaveNet for multivariate financial time series forecasting.

A recurrent neural network (RNN) is also widely
exploited for time series prediction [22]. Since there is a long-
term dependence on RNN during the training, it will lead to
related gradient explosion and gradient disappearance.
/erefore, introducing the gating mechanism into RNN has
drawn much attention to overcome these limitations and
preserves long-term information of time series data, such as
long short-term memory (LSTM) [25] and gated recurrent
unit (GRU) [26]. /e gated variants of RNN essentially
preserve the internal state memory through their recurrent
feedback mechanism, which makes them very suitable for
modeling the time series data. Moreover, their ability to
capture complex nonlinear dependence can be extended from
short-term to long-term and cross different variables in
multivariate systems. /erefore, the performance of these
models is excellent in the time series prediction task. Li et al.
[48] built a model combining ARIMA and LSTM to improve
the prediction accuracy of high-frequency financial time
series. Pan et al. [49] applied the model based on the LSTM
network to predict urban traffic flow and greatly improved the
prediction effect via the spatial correlation. Filonov et al. [50]
proposed a model based on the LSTM network to monitor
and detect faults in industrial multivariate time series data.
Zhao et al. [51] established a two-layer LSTM model to learn
gait patterns presenting in neurodegenerative diseases for
diagnostic prediction. Jia et al. [52] developed a spatiotem-
poral learning framework with a dualmemory structure based
on LSTM to predict land cover. Huang et al. [53] proposed a
sequence-to-sequence framework based on GRU to predict
different types of abnormal events. Fu et al. [54] used LSTM
and GRU to predict short-term traffic flow, which indicated
that the RNN-based methods (such as LSTM and GRU)
performed better than ARIMA. Zhang et al. [55] utilized four
different neural networks, such as MLP, WNN, LSTM, and
GRU, to monitor the small watercourses overflow. Further-
more, the models combining CNN with LSTM or GRU have
been frequently applied to time series prediction. Wu et al.
[56] explored the GRU network to encode the time mode of
each sequence with low-dimensional representation and then
combined it with a convolutional network for modeling
behavioral time series. Shi et al. [57] presented a ConvLSTM
network to predict nearby precipitation which can acquire
spatiotemporal correlations well.

Autoencoder (AE) has also been successfully applied in
time series prediction and is generally combined with other
deep learning methods [58]. Considering the inherent
temporal and spatial correlation of traffic flow, Lv et al. [59]
used AE as one of the modules to construct a deep learning
model. Yang et al. [60] proposed a new host load prediction
method, which utilized AE as the precyclic feature layer of
the echo state network. Gensler et al. [61] combined AE with
LSTM for renewable energy power prediction which was
superior to the artificial neural network and physical pre-
diction model. Recently, Prenkaj et al. [62] combined AE
and GRU to propose a new strategy for predicting the
student dropout e-courses.
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3. Time Series Data Preprocessing

Generally, time series data are collected manually or auto-
matically; it is difficult to avoid data redundancy, data
missing, data error, and other unknown problems in the
process of collection and transmission. /erefore, data
preprocessing becomes a crucial and necessary procedure
for time series data analysis. It mainly includes four stages,
such as data clean, data normalization, data sliding window,
and data split [63]. /e details are illustrated in Figure 1.

(1) Data Cleaning. /e purpose of data clean is to deal
with missing values, outlier values, and redundant
attributes in time series data./ere are many ways to
handle missing and outlier values. One way is to
delete the data with missing and outlier values di-
rectly. However, when many attributes of data have
missing and outlier values, it is very hard to remain
adequate useful attributes and results in incomplete
time series data, which will affect the learning and
generalization ability of models. /e other way
considers outlier values as missing values and then
the data filling technique is applied to solve the above
problems. Data filling includes statistics-based and
learning-based methods. /e former generally
adopts mean filling, while the latter adopts simple
linear regression or a complex learning model (such
as deep learning). In our work, the mean filling is
utilized to process missing values and outlier values.
Moreover, feature selection or feature extraction
methods are generally adopted to solve redundant
attributes. In particular, the proposed model in our
work is based on a deep learning framework, which
has a strong feature representation ability. /erefore,
it is robust to deal with data containing redundant
attributes.

(2) Data Normalization. Since the different attributes of
data often have different measurement scales, the
values collected may vary widely. For the sake of
eliminating the influence of measurement scale and
value range among different attributes, it is necessary
to perform normalized processing which can scale
data in a certain proportion, such as mapping data
values to [−1, 1] or [0, 1]. /e popular data nor-
malization methods contain minimum-maximum
normalization and zero-mean normalization.
Minimum-maximum normalization is named de-
viation standardization, whichmaps the values of the
original data to [0, 1] via a linear transformation./e
formula is as follows:

x
∗

�
x − min

max − min
, (1)

where max and min represent the maximum and
minimum values of data, respectively. /e method can
preserve the relationships that exist in original data.
Zero-mean normalization is known as standard
deviation standardization. After processing, the

mean value and the standard deviation of normal-
ization data are 0 and 1, respectively. /e formula is
defined as

x
∗

�
x − x

σ
, (2)

where x and σ are the mean and standard deviation
of original data, respectively.

(3) Data Sliding Window. /is operation mainly creates
time series data by the predefined sliding window
size and step for the original time series data. In other
words, this operation is used to generate the pre-
dicted data for the next moment using historical data
with a given interval. /e specific operation of the
data sliding window is shown in Figure 2 [64]. Given
any time series data with length N, such as {1, 2, 3, 4,
5, . . ., N− 1, N}, when the sliding window size is set
to L and the sliding step is 1, the N-L data sets with
length L+ 1 are formed. Particularly, the first L data
of each set is regarded as training data and the value
of the number L+ 1 is the target value.

(4) Data Split. /is stage divides the time series dataset
into training data and test data. For example, the first
60% are used for training and the remaining 40% are
used to test in the experiments.

4. The Proposed Method

In this work, a novel time series prediction model based on
the encoding-decoding framework is designed, which in-
tegrates the recurrent neural module, convolutional module,
attention mechanism, and fully connection module into a
unified framework. As shown in Figure 3, the proposed
model consists of three parts such as encoding, decoding,
and prediction modules. In the encoding module, the gated
recurrent unit (GRU) is taken as the main unit structure for
extracting more effective time series features. In the
decoding module, the attention mechanism (AM) is in-
troduced to explore the importance of historical data col-
lected at different times, so that it can obtain better new time
series data. In addition, taking the influence of previous
features on data reconstruction into account, feature reuse is
realized by the skip connections based on the residual
network. In the prediction module, the convolution layer is
adopted to extract effective features from the reconstruction
time series. /en, the AM is further performed on the
convolution feature mapping owing to the influence of
important information on prediction performance. Finally, a
multilayer fully connected network is established for
prediction.

4.1. Deep Autoencoder (DAE). Autoencoder (AE) is an
unsupervised deep learning method which is frequently used
in feature representation, data compression, image
denoising, and other tasks [28]. /e structure of AE includes
an encoder and a decoder, which only contain a fully
connected hidden layer. To better extract features and re-
construct original data, Deep Autoencoder (DAE) [65] is
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designed that contains multiple hidden layers shown in
Figure 4.

4.2. LSTM and GRU. In general, DAE is a multilayer
feedforward neural network, while it does not consider the
importance of historical information of time series data to
the prediction or classification of unknown data. As a
specific network structure, a recurrent neural network
(RNN) [22] can adeptly utilize the historical information of
time series data, which adopts a backpropagation through
time (BPTT) algorithm to train and learn parameters.
However, RNN produced gradient vanishing or gradient
exploding problems when it handled time series with long
time intervals [25]. In particular, the longer the time interval,
the more likely it is to appear severe gradient vanishing or
gradient exploding, which will make it difficult to train
effective RNN models for long interval sequences.

To solve the above problems, other RNN variants (such
as LSTM [25] and GRU [26]) are easier to capture the long-
term dependence of time series data. LSTM uses the gate
mechanism to control the information accumulation speed
and can selectively update information and forget infor-
mation accumulated. LSTM includes an input gate, forget
gate, and output gate, which are displayed in Figure 5. /e
forget gate ft controls which information needs to be for-
gotten derived from the internal state of the previous mo-
ment. /e input gate it controls which information from the
current candidate state needs to be retained. And the output
gate ot controls which information of the current internal
state needs to be output.

Different from LSTM, GRU is a simplified version of
LSTM. It merges the forget gate and input gate into the
update gate and retains the original reset gate, as shown in
Figure 6. It can be observed that no additional memory units
are needed in GRU. It is due to the fact that an update gate
can control how much information needs to retain from the
historical state and needs to receive from the candidate state
for the current state. /e calculation formula of GRU is

zt � σ Wzxt + Uzht−1 + bz( 􏼁,

rt � σ Wrxt + Urht−1 + br( 􏼁,

􏽥ht � tanh Whxt + rt ⊙Uhht−1 + bh( 􏼁,

ht � zt ⊙ ht−1 + 1 − zt( 􏼁t⊙ 􏽥ht,

(3)

where zt and rt represent update gate and reset gate, re-
spectively. ht is the state of the current moment t and 􏽥h

indicates the candidate state. σ is the sigmoid activation
function that can convert results to [0, 1]. tanh stands for
hyperbolic tangent activation function. /e symbol ⊙ is the
dot product operation of corresponding elements. xt rep-
resents the input of the neural network at time t. Wz , Wr,
Wh and Uz, Ur, Uh represent the parameter matrix and
recurrent weight of the model. bz, br, and bh are the offset
vector. Compared with LSTM, GRU has a simple structure
and fewer parameters because there are fewer gate structures
of GRU. /erefore, GRU not only can reduce the model
training time and avoid overfitting problems but also can

achieve the same results as LSTM and even better than
LSTM. In addition, BiGRU is a variant version of GRU.
Although BiGRU has better performance than GRU in some
cases, the parameter size of BiGRU is bigger than GRU. In
order to overcome the overfitting problem, the GRU is
adopted as the main unit structure of the autoencoder.

4.3. Attention Mechanism. Attention mechanism (AM) has
been widely applied to natural language, computer vision,
and other fields [66]. It is a resource allocation scheme that
uses limited computing resources to process more important
information for the information overload problem. Like
artificial neural networks, AM originated from human vision
and borrowed from human visual attention mechanisms.
/e core idea of AM is to select the more critical information
and ignore the unimportant or irrelevant information to the
current task from a large amount of information [66]. At
present, plenty of attention mechanisms have been built to
solve related tasks, such as spatial attention, channel at-
tention, and mixed attention mechanisms [67].

In image understanding tasks including image seg-
mentation and target detection, the channel attention (CA)
[68] module is mainly adopted to explore relationships
between feature maps of different channels, and its structure
is shown in Figure 7. In the module, the feature map of each
channel is taken as a feature detector that can determine
which part of the features should be noticed more. It is well
known that the time attribute is very important and also
affects the prediction results. /erefore, we view each time
attribute as a channel and the channel attention (CA)
mechanism is integrated to mine the significance of time
attributes in the proposed method.

4.4. Prediction Module. In the prediction module, a 1D-
convolution is firstly explored to extract features from the
time series data reconstructed by DAE. /en, in order to
explore the different contributions of historical data for
forecasting, the CA mechanism is performed on feature
mapping by the previous layer. Finally, a multilayer dense
network structure is constructed for prediction. /e details
are displayed in Figure 8.

5. Experiments and Results Analysis

To verify the effectiveness of the proposed method, two
series of experiments are conducted on public stock and
shared bicycle datasets, respectively, and compared with
some related methods. Many experimental results validate
the effectiveness of our model.

5.1. Evaluation Metrics and Experimental Environment.
In order to quantitatively analyze the accuracy and supe-
riority, mean square error (MSE), mean square error
(RMSE), mean absolute error (MAE), and mean average
percentage error (MAPE) are adopted to evaluate the per-
formance of the proposed model [69]. /e calculation
formulas are as follows:
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MSE �
1
n

􏽘

n

t�1
Xt − Xt
′( 􏼁
2
,

RMSE �

�������������

1
n

􏽘

n

t�1
Xt − Xt
′( 􏼁
2

􏽶
􏽴

,

MAE �
1
n

􏽘

n

t�1
Xt − Xt
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

MAPE �
100
n

􏽘

n

t�1

Xt − Xt
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Xt
′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

,

(4)

where Xt and Xt
′ represent the actual and predicted values of

the data and n is the number of samples. /e smaller the
above values, the more accurate the prediction result.

/e source codes of the proposed method and the
compared methods are completed using Tensorflow with
Python. /e corresponding versions of the development
software and the configurations of the hardware platform are
listed in Table 1. Moreover, the settings of the key parameters
during the training processing are shown in Table 2.

5.2. Stock Data Prediction

5.2.1. Stock Data Description. /e stock data used in the
experiment are Shanghai Composite Index 50 (SCI-50), CSI-
300, and Shenzhen Component Index (SZCI). Each stock
data records multiple attributes, such as the closing price, the
highest price, the lowest price, the opening price, the pre-
vious day’s closing price, change, and ups and downs. /e
closing price, the highest price, the lowest price, and the
opening price represent the final price, the highest price, the
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Figure 4: /e structure of DAE.
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Table 1: /e description of experimental environment.

Development software Version
Python 3.6.0
Tensorflow 2.7.0
System Window 10 64 bit
Hardware platform Configurations
PC machine Inter core i9 9900k
RAM 32GB
GPU GeForce RTX 2080 Ti GPU
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lowest price, and the first trading price of one stock, re-
spectively. /e previous day’s closing price is the final price
at which a stock is traded on the previous day. Change is the
difference between the closing price and the previous day’s
closing price of the stocks traded (i.e., closing price - pre-
vious day’s closing price). /e value of ups and downs is the
change divided by the closing price of the stocks traded (i.e.,
change/closing price). /e details of three stock datasets are
listed in Table 3. Meanwhile, Tables 4 to 6 give some in-
stances of data and corresponding statistical information for
each stock, including the number of records, minimum,
maximum, mean, variance, 1/4 value, 1/2 value, and 3/4
value for each attribute. From Tables 3 to 5, we can see that
there are great differences and fluctuations in the stock data.

5.2.2. Parameters Analysis. Time interval (time step) is the
significant factor affecting the prediction of time series data.
/erefore, we test the performance of the proposed method
with different steps. In the experiment, the time step is set to
{5, 10, 15, 20, 25, 30}, and the experimental results are
displayed in Tables 7–9. Obviously, in most cases, when the
step increases, the value of each evaluation indicator de-
creases. It indicates that the performance of the proposed
model improves with the increasing step. /is is because
long interval data provides more useful information for
prediction. However, as the step continues to increase, the
values of each evaluation indicator will increase. It indicates
that the performance of the proposed model decreases with
the increase of time step. /e possible reason is that time
series data with too long intervals contains redundant in-
formation and high volatility, which makes it difficult to
capture more effective information for future data
prediction.

5.2.3. Convergence Analysis. In order to verify the conver-
gence of our proposed method, we plot the curves of loss
values (MSE) on the training set and validation set for each
dataset. From Figure 9, we can see that our model reaches
convergent very quickly on the training set. For the vali-
dation set, the loss values (MSE) of the proposed model
fluctuate but basically maintains stability when the number
of iteration (Epochs) is greater than 400.

5.2.4. Performance Analysis. In order to further test the
performance of the proposed method, we compare it with
GRU, BiGRU, GRU-AE, BiGRU-AE, GRU-AE-AM, and
BiGRU-AE-AM. Tables 10–12 show the results of different
methods on three stock datasets. /e following conclusions
can be drawn from the experimental results:

(1) /e performances of traditional GRU and BiGRU
models are lower than those of other comparison
methods. Furthermore, BiGRU not only makes use
of the useful information of historical data in the
forward direction but also mines the dependence of
current data on historical data in the reverse di-
rection. /erefore, BiGRU has better performance
than GRU.

(2) /e performances of recurrent neural networks
(GRU-AE and BiGRU-AE) are superior to the tra-
ditional recurrent neural network (GRU and
BiGRU). It indicates that introducing encoding-
decoding into the recurrent neural network is
beneficial to improving the prediction performance
of the proposed model.

(3) /e performances of the recurrent neural network-
AE model based on attention mechanisms (GRU-
AE-AM and BiGRU-AE-AM) exceed the recurrent
neural network-AE model (GRU-AE and BiGRU-
AE). It demonstrates that introducing the attention
mechanism into the recurrent neural network can
mine significant information in time series data.

(4) /e proposed model is based on the idea of inte-
grating encoding-decoding and attention mecha-
nisms simultaneously into the recurrent neural
network. Different from GRU-AE-AM and BiGRU-
AE-AM, the proposed method develops the atten-
tion mechanism in the decoding stage to capture the
degree of importance between different intervals.
/erefore, compared with other methods, the pre-
sented method establishes significant advantages on
different evaluation indicators.

5.3. Demand Forecast for Shared Bicycle Data

5.3.1. Shared Bicycle Data Description. /e datasets of this
experiment are derived from the shared bicycle demand of
three streets in Shenzhen, China, such as Longgang Central
City, Pingshan Street, and Zhaoshang Street. Each data set
contains the historical travel data of shared bicycles, time
attribute data (such as hours, working day or not), and
weather data (such as temperature, rainfall, wind speed, and
humidity). /e details are listed in Table 13.

5.3.2. Parameters Analysis. In this experiment, the influ-
ence of the time step on the prediction performance is also
analyzed adequately. /e step size setting is consistent with
stock price prediction experiments, and experimental re-
sults are shown in Tables 14–16. We can see that the effect

Table 2: /e settings of the key parameters in the training
procedure.

Description Value
Batch-size 256
Optimizer Adam
Epochs 400
Loss function MSE

Table 3: /e details of three stock datasets.

Stock
name

Stock
code Start and end time Number of

records
SCI-50 000016 2004.01.02–2021.06.23 4245
CSI-300 399300 2002.01.07–2021.03.17 4657
SZCI 399001 1991.04.04–2021.06.23 7349
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Table 5: Some data and statistical information on CSI-300.

Data Closing price Highest price Lowest price Opening price Previous day’s closing price Change Ups and downs
2002/1/7 1302.08 1302.08 1302.08 1302.08 1316.46 −14.38 −1.0923
2002/1/8 1292.71 1292.71 1292.71 1292.71 1302.08 −9.37 −0.7196
. . . . . . . . . . . . . . . . . . . . . . . .

2009/3/2 2164.666 2177.294 2112.336 2123.367 2140.489 24.177 1.1295
2009/3/3 2142.154 2168.222 2100.644 2109.841 2164.666 −22.512 −1.04
. . . . . . . . . . . . . . . . . . . . . . . .

2013/1/4 2524.409 2558.529 2498.892 2551.814 2522.952 1.457 0.0577
2013/1/7 2535.985 2545.969 2511.603 2518.047 2524.409 11.576 0.4586
. . . . . . . . . . . . . . . . . . . . . . . .

2021/3/9 4970.999 5094.311 4917.909 5066.155 5080.025 −109.025 −2.1462
2021/3/10 5003.612 5055.279 4981.616 5047.059 4970.999 32.6127 0.6561
Count 4657 4657 4657 4657 4657 4657 4657
Mean 2762.711 2785.604 2734.602 2760.16 2761.898 0.812626 0.042789
Std 1187.877 1201.201 1171.218 1187.38 1187.571 52.6816 1.65268
Min 818.033 823.86 807.784 816.546 818.033 −391.866 −9.2398
25% 1493.776 1507.972 1472.001 1481.582 1488.291 −16.284 −0.7247
50% 2851.915 2888.093 2818.248 2848.155 2850.829 1.3386 0.069
75% 3607.985 3648.027 3560.634 3605.372 3606.924 20.534 0.8142
Max 5877.202 5930.912 5815.609 5922.071 5877.202 378.179 9.3898

Table 4: Some data and statistical information of SCI-50.

Data Closing price Highest price Lowest price Opening price Previous day’s closing price Change Ups and downs
2004/1/2 1011.347 1021.568 993.892 996.996 1000 11.347 1.1347
2004/1/5 1060.801 1060.898 1008.279 1008.279 1011.347 49.454 4.8899
. . . . . . . . . . . . . . . . . . . . . . . .

2012/2/1 1713.684 1751.558 1709.536 1739.638 1744.708 −31.024 −1.7782
2012/2/2 1761.941 1761.941 1714.246 1719.999 1713.684 48.257 2.816
. . . . . . . . . . . . . . . . . . . . . . . .

2015/2/2 2332.533 2376.426 2329.151 2337.196 2405.38 −72.847 −3.0285
2015/2/3 2405.76 2413.006 2335.107 2362.413 2332.533 73.227 3.1394
. . . . . . . . . . . . . . . . . . . . . . . .

2021/6/21 3431.252 3455.565 3410.403 3440.744 3454.589 −23.3363 −0.6755
2021/6/22 3464.706 3469.808 3437.955 3444.75 3431.252 33.4535 0.975
Count 4245 4245 4245 4245 4245 4245 4245
Mean 2136.173 2156.355 2113.242 2134.459 2135.591 0.582177 0.043547
Std 811.6843 820.2789 801.5931 811.7199 811.6128 40.36138 1.685313
Min 700.434 706.879 693.528 699.266 700.434 −296.696 −9.4708
25% 1600.299 1614.014 1586.092 1599.408 1599.012 −13.545 −0.7423
50% 2127.203 2150.033 2101.088 2127.804 2127.094 0.493 0.0259
75% 2692.54 2718.884 2666.817 2694.952 2692.181 16.22 0.8297
Max 4731.826 4772.933 4688.263 4726.083 4731.826 296.077 9.6729

Table 6: Some data and statistical information of SZCI.

Data Closing price Highest price Lowest price Opening price Previous day’s closing price Change Ups and downs
1991/4/4 983.11 983.11 983.11 983.11 988.05 −4.94 −0.5
1991/4/5 978.27 978.27 978.27 978.27 983.11 −4.84 −0.4923
. . . . . . . . . . . . . . . . . . . . . . . .

2010/1/4 13533.54 13782.81 13533.54 13766.1 13699.97 −166.433 −1.2148
2010/1/5 13517.38 13597.36 13324.56 13539.83 13533.54 −16.162 −0.1194
. . . . . . . . . . . . . . . . . . . . . . . .

2016/1/4 11626.04 12659.41 11625.41 12650.72 12664.89 −1038.85 −8.2026
2016/1/5 11468.06 11687.48 11063.64 11116.9 11626.04 −157.978 −1.3588
. . . . . . . . . . . . . . . . . . . . . . . .

2021/6/21 14641.29 14721.69 14468.74 14563.05 14583.67 57.6251 0.3951
2021/6/22 14696.29 14706.5 14564.5 14678.37 14641.29 54.9937 0.3756
Count 7349 7349 7349 7349 7349 7349 7349
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of steps differs from the experimental results on the stock
data. Firstly, with the increase of steps, the evaluation
indicator values of the proposed method decreased on
Longgang and Pingshan datasets. However, this trend does
not always remain unchanged, and the opposite result will
occur when the step continues to increase. Accordingly, the
performance of the proposed model will also decrease.
Secondly, the results are different from Tables 7–9 and
Tables 14–16 on the Longgang Street dataset. When the step
is set to the minimum (L � 5), the proposed method can
obtain the optimal results. /e cause is maybe that time
series data has strong dependence and complex data
structure.

5.3.3. Performance Analysis. Similarly, the proposed
method is compared with other well-known methods, and
the results are shown in Tables 17–19. On the whole, the
experimental results are consistent with those of stock ex-
periments, except for the data in Longgang. In particular, the
proposedmethod can achieve better performance with a step
value of 20. It indicates that the data structure is relatively
simple, which is prone to overfitting for the complex model.
/erefore, the evaluation metrics of the bidirectional re-
current neural network model (BiGRU, BiGRU-AE, and
BiGRU-AE-AM) are higher than those of the recurrent
neural network model with unidirectional structure (GRU,
GRU-AE, and GRU-AE-AM).

Table 6: Continued.

Data Closing price Highest price Lowest price Opening price Previous day’s closing price Change Ups and downs
Mean 6709.184 6778.63 6628.694 6704.283 6707.301 1.885397 0.05939
Std 4325.842 4369.826 4270.334 4322.335 4325.313 153.7217 2.1302
Min 402.5 408.02 397.67 401.57 402.5 −1293.66 −19.7807
25% 3112.336 3134.055 3077.097 3112.637 3111.4 −42.702 −0.8978
50% 4834.614 4867.142 4795.043 4836.637 4831.989 0.381 0.0112
75% 10316.82 10410.65 10223.16 10315 10315.75 51.813 0.9835
Max 19531.16 19600.03 19203.11 19554.58 19531.16 1254.795 26.1963

Table 7: /e results with different steps on SCI-50.

Time step MSE RMSE MAE MAPE
5 1682.935 41.024 27.188 1.023
10 1673.594 40.910 27.266 1.025
15 1736.988 41.677 27.588 1.036
20 1757.061 41.917 28.304 1.062
25 1752.673 41.865 28.084 1.055
30 1780.636 42.198 28.547 1.072
Bold in the table indicates the optimal results.

Table 8: /e results with different steps on CSI-300.

Time step MSE RMSE MAE MAPE
5 3157.709 56.193 36.205 1.001
10 3085.284 55.545 36.214 1.005
15 3233.284 56.862 36.904 1.025
20 3287.964 57.341 37.026 1.026
25 3438.429 58.638 39.390 1.082
30 3393.111 58.250 38.940 1.069
Bold in the table indicates the optimal results.

Table 9: /e results with different steps on SZCI.

Time step MSE RMSE MAE MAPE
5 34522.267 185.802 127.234 1.186
10 33851.601 183.988 127.063 1.180
15 34495.000 185.730 128.299 1.190
20 34767.899 186.462 128.943 1.195
25 36065.960 189.910 132.394 1.226
30 36287.302 190.492 132.812 1.228
Bold in the table indicates the optimal results.
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Figure 9: Continued.
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Figure 9: /e curves of loss values (MSE) on the training set and validation set of three stock datasets. (a) SCI-50. (b) CSI-300. (c) SZCI.

Table 10: /e results with step value of 10 on SCI-50.

Method MSE RMSE MAE MAPE
GRU 2356.925 48.548 35.958 1.328
BiGRU 2267.462 47.618 35.466 1.342
GRU-AE 2371.064 48.694 37.074 1.419
BiGRU-AE 1964.477 44.322 31.129 1.164
GRU-AE-AM 2040.477 45.172 31.334 1.164
BiGRU-AE-AM 1814.952 42.602 28.483 1.062
Our method 1673.594 40.910 27.266 1.025
Bold in the table indicates the optimal results.

Table 11: /e results with step value of 10 on CSI-300.

Method MSE RMSE MAE MAPE
GRU 4262.664 65.289 46.799 1.264
BiGRU 3614.219 60.118 41.625 1.137
GRU-AE 3382.457 58.159 38.588 1.070
BiGRU-AE 3828.393 61.874 44.642 1.244
GRU-AE-AM 3798.575 61.633 41.392 1.127
BiGRU-AE-AM 3726.034 61.041 39.880 1.084
Our method 3085.284 55.545 36.214 1.005
Bold in the table indicates the optimal results.

Table 12: /e results with step value of 10 on SZCI.

Method MSE RMSE MAE MAPE
GRU 37269.796 193.054 137.383 1.271
BiGRU 35012.771 187.114 126.924 1.180
GRU-AE 34737.291 186.379 128.821 1.203
BiGRU-AE 37163.139 192.777 134.793 1.257
GRU-AE-AM 35198.463 187.613 130.611 1.218
BiGRU-AE-AM 34946.619 186.940 131.015 1.216
Our method 33851.601 183.988 127.063 1.180
Bold in the table indicates the optimal results.
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Table 13: /e description of shared bicycle datasets.

Dataset Time Quantity by hour
Longgang central city 2016.6–2017.8 (except Dec.) 6935
Pingshan street 2016.7–2017.8 (except Dec.) 6935
Zhaoshang street 2016.7–2016.11 2907

Table 14: /e results with different steps of shared bicycle data on Longgang.

Time step MSE RMSE MAE MAPE
5 684.764 26.168 17.429 102.576
10 663.629 25.761 16.881 89.556
15 672.780 25.938 16.598 79.102
20 652.445 25.543 16.421 88.784
25 726.195 26.948 17.697 93.377
30 695.377 26.370 17.800 123.276
Bold in the table indicates the optimal results.

Table 15: /e results with different steps of shared bicycle data on Pingshan.

Time step MSE RMSE MAE MAPE
5 240.870 15.520 11.778 20.356
10 227.618 15.087 11.386 17.991
15 222.815 14.927 11.247 17.931
20 238.981 15.459 12.046 22.808
25 228.705 15.123 11.449 19.670
30 224.910 14.997 11.343 17.497
Bold in the table indicates the optimal results.

Table 16: /e results with different steps of shared bicycle data on Zhaoshang.

Time step MSE RMSE MAE MAPE
5 1071.253 32.730 22.051 76.338
10 1084.648 32.934 22.286 58.965
15 1282.643 35.814 24.423 63.207
20 1201.246 34.659 23.586 63.110
25 1322.340 36.364 24.477 62.043
30 1430.125 37.817 25.936 67.414
Bold in the table indicates the optimal results.

Table 17: /e results with step 20 of shared bicycle data on Longgang.

Method MSE RMSE MAE MAPE
GRU 717.634 26.789 17.791 76.668
BiGRU 718.049 26.796 17.711 63.458
GRU-AE 784.713 28.013 18.660 106.267
BiGRU-AE 904.714 30.078 22.273 163.759
GRU-AE-AM 740.382 27.210 17.726 85.522
BiGRU-AE-AM 828.928 28.791 18.109 91.725
Our method 652.445 25.543 16.421 88.784
Bold in the table indicates the optimal results.

Table 18: /e results with step 15 of shared bicycle data on Pingshan.

Method MSE RMSE MAE MAPE
GRU 308.121 17.553 13.758 21.750
BiGRU 229.627 15.153 11.481 17.345
GRU-AE 275.273 16.591 12.690 19.307
BiGRU-AE 270.095 16.435 12.397 17.419

14 Computational Intelligence and Neuroscience



6. Conclusions and Future Works

In this paper, to improve the accuracy of time series data
prediction, the autoencoder, recurrent neural network, at-
tention mechanism, convolution module, and full connec-
tion module are integrated to establish a novel prediction
model based on an encoding-decoding framework. /e
prediction performances are evaluated for the stock price
and the demand for shared bicycles on three stock datasets
and three shared bicycle datasets, respectively. In addition,
we compare it with many other related methods, which
demonstrate that the proposed model has higher prediction
accuracy from the views of multiple quantitative indicators
(such as MSE, RMSE, MAE, and MAPE).

/e future works mainly include the following points. (1)
We will try to apply the proposed model to prediction tasks
of time series data in other fields (such as medical, energy,
environment, and other industrial data). (2) Using the core
idea, we will further extend it to solve the anomaly detection
task of time series data. (3) We will intensively study how to
combine the traditional multivariate time series method
with deep learning to further improve the prediction per-
formance in real applications.
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