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Abstract

Background: Spatial sequencing methods increasingly gain popularity within RNA biology studies. State-of-the-art techniques quan-
tify messenger RNA expression levels from tissue sections and at the same time register information about the original locations of the
molecules in the tissue. The resulting data sets are processed and analyzed by accompanying software that, however, is incompatible
across inputs from different technologies.

Findings: Here, we present spacemake, a modular, robust, and scalable spatial transcriptomics pipeline built in Snakemake and
Python. Spacemake is designed to handle all major spatial transcriptomics data sets and can be readily configured for other tech-
nologies. It can process and analyze several samples in parallel, even if they stem from different experimental methods. Spacemake’s
unified framework enables reproducible data processing from raw sequencing data to automatically generated downstream analysis
reports. Spacemake is built with a modular design and offers additional functionality such as sample merging, saturation analysis,
and analysis of long reads as separate modules. Moreover, spacemake employs novoSpaRc to integrate spatial and single-cell tran-
scriptomics data, resulting in increased gene counts for the spatial data set. Spacemake is open source and extendable, and it can be
seamlessly integrated with existing computational workflows.

Keywords: bioinformatics, computational biology, computational pipeline, sequence analysis, spatial transcriptomics, single-cell tran-
scriptomics, reproducibility, modularity, scalability, workflow

Background
Tremendous advances during the past decade have led to high-
throughput single-cell RNA sequencing (scRNA-seq) technologies
that became the state of the art for dissecting cellular hetero-
geneity within tissues. Spatial transcriptomics sequencing (STS)
technologies present a further vital development that allows the
assignment of single molecules to spatial positions, thus obtain-
ing coordinates of gene expression. When spatial resolution is
high enough to discern individual cells, this enables the iden-
tification of cell types and their interactions in spatial context.
Spatial information is crucial in studying cell–cell communica-
tion mechanisms within the native tissue context and can yield
new insights in disease states [1]. Recently published array-based
methods are able to retain spatial information at different res-
olutions. Slide-seq (and Slide-seqV2) operates with 10-μm beads
that are evenly and randomly distributed on a 2-dimensional sur-
face termed “puck” [2, 3]. This size roughly corresponds to single-
cell resolution. Other methods, such as spatial transcriptomics or
the commercially available 10X Visium, work with a grid of 100-
μm diameter spots, regularly placed on a square glass (with a
200-μm distance between the centers), or 55-μm diameter spots
with a 100-μm distance between the centers, respectively [4, 5].

These methods usually capture between 1 and 10 cells per spot,
depending on the cellular density of the studied tissue. In more
recent publications, high-definition spatial transcriptomics recov-
ers gene expression at a 2-μm spatial resolution [6], while MiSeq
Illumina flowcells were used to sequence mouse colon and liver
tissues, achieving subcellular spatial resolution [7]. Fluorescent
RNA labeling methods also achieve very high, often subcellu-
lar resolution but operate on only a preselected panel of genes
and are hence restricted to targeted studies of gene expression
[1, 8, 9].

Akin to a technological revolution that took place with the ad-
vance of RNA-seq and scRNA-seq, we anticipate STS techniques to
become invaluable for better understanding biological processes
and mechanisms that lead to diseased states. Dissection of a tu-
mor’s transcriptional heterogeneity is a prime example. Tumor
progression is an intricate process that involves the coexistence
of several cell types within the tumor, such as immune cells, na-
tive tissue cell types, and abnormally growing tumor cells. While
scRNA-seq can accurately identify different cell types and their
transcriptional programs, all spatial information regarding the
cellular communication across cell types is lost. This information
is critical to characterize spatial interactions within the tumor
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microenvironment and identify the mechanisms that create suit-
able conditions for the further progression of the disease, such as
angiogenesis and hypoxia.

The various array-based STS methods differ not only in their
experimental procedures but also in the data they output and
the associated software provided to process and analyze the raw
data. Therefore, researchers who wish to take advantage of mul-
tiple methods need to get acquainted with several computational
pipelines that operate with different logic and output structures.
Such a situation can be time-consuming and perplexing, and it
can lead to the accumulation of errors when alternating between
the different methods. There are a few computational processing
tools available to date, namely, the spaceranger from 10X [5], the
ST pipeline [10], and slideseq-tools [2, 3, 10]. These tools, however,
were developed for one specific STS technology (ST pipeline and
spaceranger for Visium and slideseq-tools for Slide-seq data sets)
and are therefore not accommodating different types of data. Fur-
thermore, they lack a unified framework to enable simultaneous
processing of many different samples. Finally, they lack additional
functionality, such as subsampling or merging of samples, inte-
gration of scRNA-seq with spatial data sets, or support for trou-
bleshooting of sequencing library construction by using long-read
sequencing (Table 1).

Here, we present spacemake, a unified computational frame-
work for analyzing spatial transcriptomics data sets produced
with Visium, Slide-seq, Seq-scope, or any other STS technology.
Importantly, spacemake performs data processing and down-
stream analysis in the same way, resulting in uniform reports and
quality metrics that are easier to compare and interpret across
different technologies. This renders spacemake an excellent can-
didate for multimethod projects. Apart from the standardized pro-
cessing of raw data, spacemake can perform additional analy-
ses that we organize in different modules: integration of histo-
logical staining images, downsampling and saturation analysis,
merging of biological replicates, spatial reconstruction of scRNA-
seq data or merging of scRNA-seq and STS data sets by using
novoSpaRc [11, 12], and analysis of long-read sequencing data for
troubleshooting. Spacemake is written in snakemake [13] with
a back-end logic written in Python. It provides an easy-to-use
command-line interface, through which it can be configured and
run using a handful of commands. It readily works with vari-
ous types of array-based STS methods and allows diverse, user-
definable processing modes. Spacemake is versatile and can be
used as a new workflow or be readily integrated into existing
pipelines. Finally, spacemake is open source and freely distributed
through a GitHub repository.

Findings
Spacemake processes different input data in a
single workflow
Spacemake can handle different sequencing-based spatial-
transcriptomic data sets, such as those stemming from—but not
limited to—Slide-seqV2, 10X Visium, or Seq-scope. In particular, it
processes raw data (Illumina basecalls or fastq files) in identical
fashion, regardless of the sequencing technology or the barcoding
strategy of the spatial unit. As STS methods differ experimentally,
we employ throughout the text the term spatial unit to describe
the fundamental barcoded unit in space (e.g., beads, spots, or
clusters).

To allow for maximum flexibility, in spacemake, each sample
is associated with a set of “sample variables,” namely, a “barcode-

flavor,” at least one “run-mode,” a “puck,” and a “species” (Meth-
ods). The “barcode-flavor” describes the barcoding strategy, that
is, how the spatial unit barcodes and the unique molecular identi-
fiers (UMIs) should be extracted from Read1 and Read2. The “run-
mode” parameter contains several variables that describe how
the sample will be processed downstream and currently include
poly(A) and adapter trimming, tissue detection, multimapping
read counting, intronic read counting, barcode cleaning, meshgrid
creation, and UMI cutoff (Methods). The “puck” parameter allows
the user to specify the spatial dimensions and bead diameter size
of the underlying STS assay. Lastly, “species” is a pair of a genome
fasta file and an annotation file, from which spacemake will gen-
erate indices to be used later during mapping. After spacemake
is configured and all parameters are set for all samples, it can be
run, producing a unified and structured output for each sample
(Fig. 1, Methods).

Overview of the spacemake pipeline
Spacemake processes each sample starting from raw reads, which
can be either Illumina basecalls or demultiplexed fastq files. In
the first case, spacemake demultiplexes the data using Illumina’s
bcl2fastq2 tool [14]. Once raw fastq files have been created, a cus-
tom preprocessing script creates an unmapped BAM file: from
each Read1, Read2 pair, a spatial unit barcode (or Cell Barcode,
CB) and a UMI will be extracted and attached to the unmapped
BAM file as CB and MI tags, respectively. For each sample, this ex-
traction is based on the previously defined barcode-flavor. Read
sequences in this unmapped BAM come from Read2 sequences.
Next, using Dropseq-tools [15], adapters and 3′ poly(A) stretches
are optionally trimmed from each read. Reads are then mapped
with STAR [16] and by using samtools [17] to input the unmapped
BAM. After mapping, each read that maps to a gene body will be
assigned a gene annotation using the TagReadWithGeneFunction
command of Dropseq-tools. If the run-mode has a multimapper
counting turned on, spacemake will process the mapped BAM file
line-by-line and out of all possible alignments keep at most one
alignment per read, to be counted later. Specifically, a multimap-
per is kept only if there is exactly one alignment to a genic region
and all others to intergenic regions. In this case, the intergenic
alignments are discarded. If a read aligns to multiple genes, it is
discarded. Finally, the digital gene expression (DGE) matrix is cre-
ated using the DigitalExpression command of Dropseq-tools, with
spatial unit barcodes used as a whitelist (Fig. 1). After the DGE
matrix is created, each sample is automatically analyzed: data
filtering and clustering is done with scanpy [18], and the result-
ing data are saved as an hdf5 file. At the last step, web-based
reports are generated by using Rmarkdown [19] and knitr [20]
(Methods).

Spacemake produces unified quality control
reports
Spacemake assesses the quality of each sample with multiple
metrics. The commonly used FastQC [21] tool is first optionally
called to assess sequencing library quality by flagging repeti-
tive sequences, adapter content, GC bias, nucleotide composi-
tion, and basecall qualities, among others. Then, each sample
is mapped to ribosomal RNA (rRNA) with bowtie2 [22] to assess
the efficacy of poly(A) messenger RNA (mRNA) capture relative
to abundant, contaminating rRNAs. After these quality control
(QC) steps are run, a per-sample web-based QC report is generated
(Fig. 2). In particular, the number of genes, reads, UMIs, and the
reads/UMIs ratio are shown both as a histogram over all barcodes
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Table 1: Comparison of spacemake with other published spatial transcriptomics pipelines

Slideseq-
tools Spaceranger ST pipeline Spacemake

Input data Slide-seqV2 � � � �

10X Visium � � � �

Seq-scope � � � �

Other array-based STS � � � �

Fluorescence in situ
hybridization

� � � �

Pipeline Customizable processing mode � � � �

H&E integration � � � �

Structured output � � � �

Parallel sample processing � � � �

Graphic quality control reports � � � �

Automated downstream
analysis

� � � �

Additional modules Saturation analysis � � � �

Technical replicate merging � � � �

novoSpaRc integration � � � �

Pacbio reads for troubleshooting � � � �

General aspects Open source � � � �

Extendable � � � �

Figure 1: Overview of spacemake. (A) Spacemake can handle inputs from different spatial transcriptomics technologies. (B) Spacemake is able to
handle any barcode strategy. Cell barcode and unique molecular identifier (UMI) lengths are variable, and their position can be on either read. (C)
Preprocessing, qualuty control, and processing steps. Each sample is processed the same way, regardless of the input type. (D) Spacemake is modular
and extendable. Each module is implemented with a separate set of rules and commands, and everything is assembled in a top-level Snakefile.
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Figure 2: Spacemake produces uniform quality control reports. (A) Histograms showing the number of genes, reads, UMIs, and reads/UMIs ratios per
spatial unit. (B) Quality control metrics plotted in tissue space. Top to bottom: number of genes, percentage of mitochondrial counts, reads/UMIs
ratios, and barcode length after compression, all shown per spatial unit. (C) Nucleotide frequencies per barcode position and quantile (segregated by
the number of reads). (D) Shannon entropy and string compression length of the sequenced barcodes versus the expected theoretical distributions.

(Fig. 2A) and in tissue space (Fig. 2B). Randomness underlies the
combinatorial complexity of the barcodes and is required for
collision-free encoding spatial information. To assess the bar-
code randomness, the spacemake QC contains the following
plots: a per-position nucleotide ratio, separated into quartiles by
read counts (Fig. 2C, Methods), histograms of the Shannon en-
tropy, and the string compression length of the observed bar-
code sequences against the expected theoretical distributions
(Fig. 2C and D, Methods). Barcodes exhibiting unusual distribu-
tions in the per-position nucleotide ratio plot would imply ar-
tifacts in the sequencing data. Similarly, large deviations from
the expected theoretical distributions of the Shannon entropy
and the string compression would imply the existence of low-
complexity barcodes in the data, so that troubleshooting would be
required.

Spacemake can readily aggregate spatial units
In some cases, it is useful to join nearby spatial units, effectively
trading spatial resolution for statistical power by accumulating
read counts (Fig. 3, Methods). This is particularly suitable for ir-
regularly spaced data points, such as Slide-seq, or when the data
stem from an STS assay with subcellular resolution and are hence
sparse, such as Seq-scope [7]. In addition, this aggregation also fa-
cilitates the comparison of spatial technologies operating at dif-
ferent resolutions, for instance, Slide-seq and Visium.

In Seq-scope, for instance, ∼800,000 barcodes spread out on
a 1 × 1 mm2 surface, so that the underlying diameter of each
spatial unit is smaller than 1 μm and contains a very low (not
more than a few dozen) number of transcripts. To efficiently an-
alyze such a sparse data set, it is practical to create a “meshed”
grid (meshgrid) in silico, where the diameter of each newly
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Figure 3: Spacemake seamlessly aggregates spatial units. (A) Spacemake can automatically create a Visium-style mesh grid (a 55-μm diameter in a
100-μm distance; also user defined) and further processes the data mapped on this mesh. (B) Running on subcellular resolution data sets, such as
Seq-scope, spacemake utilizes mesh-creation to join subcellular diameter spots into a 10-μm-side hexagonal mesh. After the hexagonal mesh is
created, downstream analyses use it as input (e.g., for cell type identification). (C) The highest expressed gene for this adult mouse liver sample is
shown. Top right: raw counts in the subcellular spots; bottom right: counts assigned to hexagonal mesh cells.

created spatial unit is 10 μm, the approximate size of a eukary-
otic cell. Spacemake offers two types of meshgrids out of the box:
(i) a Visium-style meshgrid, where circles with a certain diameter
are placed at equal distances from each other in a hexagonal grid
(Fig. 3A) and (ii) a hexagonal meshgrid, where equal hexagons are
created on top of the whole data set, without holes in between
(Fig. 3B). As the hexagonal meshgrid covers the entire area, no
counts are discarded. For both meshgrids, spatial units falling into
the same hexagon/circle are joined together and their gene ex-
pression counts are summed up (Fig. 2A, B).

Downsampling analysis reveals library
complexity and depth saturation
To assess library complexity and if saturation has been reached in
scRNA-seq or STS experiments, a downsampling analysis is em-
ployed to estimate whether resequencing would result in a higher
number of molecular counts per spatial unit. In spacemake, satu-
ration analysis is implemented as a separate module (Fig. 4, Meth-

ods). First, the final BAM file is subsampled to 10%, 20%, …, 90%
of the total reads using sambamba [23], and for each ratio, a sep-
arate DGE matrix is generated. A saturation report is then com-
piled where median metrics are plotted as a function of the down-
sampling ratio (Fig. 4A). From the linearity of this curve, it can be
deduced that saturation has not yet been reached for this Seq-
scope sample, even at 109 sequenced reads. In addition to plot-
ting the median values, spacemake also reports histograms for
each downsampling ratio per spatial unit, showing the global pat-
tern rather than a single value per ratio (Fig. 4B, Supplementary
Fig. S3E).

Spacemake can readily merge technical
replicates
Resequencing a library of sufficient complexity is a common prac-
tice to achieve higher molecular counts. A single experiment can
result in several sequencing runs, with each of these replicates
being technical, as the underlying library is the same. In these
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Figure 4: Spacemake can readily downsample the data to perform a saturation analysis. (A) Median number of reads, UMIs, and reads/UMIs ratios per
spatial unit are plotted against the downsampling percentage. Saturation analysis reveals that this Slide-seq sample has not reached saturation yet, as
the median UMIs curve has not reached a plateau. (B) Density plots of a Seq-scope downsampled data set.

cases, the original and resequenced data sets have to be joined
together, so that counts are quantified in the DGE matrix by prop-
erly removing duplicate reads. In spacemake, this process is im-
plemented in the sample merging module, which inputs the two
separate, already processed data sets and joins them. If a sequenc-
ing run was repeated for a sample, the user can add both sam-
ples separately to a spacemake project and later merge them us-
ing the spacemake command line (using the “spacemake projects
merge_samples” command). After this step, a new, merged sam-
ple is created, and this sample will be processed in an identical
manner downstream as the individual nonmerged samples. As a
result, this module significantly reduces the hands-on computa-
tional analysis time when processing technical replicates.

Spacemake offers a spatial reconstruction
baseline of scRNA-seq data
Although spacemake is primarily designed to process STS data
sets, it can also efficiently process data produced by the more
standardized and popular scRNA-seq technologies. By now, sev-
eral pipelines exist for analyzing scRNA-seq data, for instance [24].
None of these, however, aims at incorporating a spatial recon-

struction to the analysis. For this, spacemake utilizes novoSpaRc,
a computational framework that reconstructs spatial information
solely from scRNA-seq data based on the hypothesis that cells
that are spatially neighboring also share similar transcriptional
profiles [11, 12]. Although novoSpaRc greatly benefits when a ref-
erence atlas of gene expression is available, its de novo mode is
powerful and can yield insights into substructures of complex tis-
sues, such as liver lobules, the intestinal epithelium, or the kidney
[11]. Spacemake employs novoSpaRc to yield a basic spatial recon-
struction of scRNA-seq data that can serve as a baseline and be
used to derive further insights (Fig. 5, Table 2, Methods). Applied to
a data set of an adult mouse brain, for instance, spacemake recov-
ers the basic structure representation of the mouse brain cortex
when compared to the Allen Reference Atlas [25] (Fig. 5A).

Spacemake can integrate scRNA-seq data to a
spatial transcriptomics data set
When both spatial and scRNA-seq data sets of the investigated
tissue are available, spacemake leverages novoSpaRc to integrate
them. For this, the spatial data set is regarded as a reference
atlas and the scRNA-seq transcriptomes are mapped onto the
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Figure 5: Spacemake can integrate scRNA-seq and spatial transcriptomics data sets. (A) Spatially mapping an adult mouse brain scRNA-seq data set
with 30,000 cells onto an in silico created circular puck with 5,000 locations reveals cortical layers (left). Tissue labels used: Thal, CA1, Hypoth, Ctx2,
DentGyr, SScortex. The identified clusters correspond to spatially distinct anatomical regions (right, adapted from Allen Reference
Atlas—http://atlas.brain-map.org). (B) Expression of neuronal markers (Map2, Slc2a3, Slc17a7) in the original Visium data (right column), after
novoSpaRc integration (middle column) and in in-situ images from the Allen Brain Atlas (left column). (C) The bimodal distributions of gene expression
are shown together with the corresponding mean values. To arrive at the results of panel (D), the expression of each gene was modeled with a
Gaussian mixture model with 2 components. For each spatial unit, only genes whose expression was in the upper mode were counted. (D) Integrating
the single-cell and spatial transcriptomics data sets increases the number of genes quantified per spatial unit.

Table 2: NovoSpaRc: modes offered by spacemake and their outcome based on data availability

Data produced Publicly available data NovoSpaRc mode Outcome

– scRNA-seq De novo Basic spatial
reconstruction

– scRNA-seq + spatial With markers Enhanced gene counts
scRNA-seq – De novo Basic spatial

reconstruction
scRNA-seq Spatial With markers Enhanced gene counts
Spatial scRNA-seq With markers Enhanced gene counts
Spatial + scRNA-seq – With markers Enhanced gene counts

http://atlas.brain-map.org
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locations of the spatial units. Importantly, spacemake is not re-
stricted to a specific technology but can utilize any spatial data
set as a reference atlas guiding the reconstruction. This becomes
especially useful for widely studied or stereotypical tissues for
which spatial data sets are already available, such as the adult
mouse brain [26]. Mapping a publicly available scRNA-seq data set
[26] onto an existing spatial data set [27], for instance, results in an
enhanced number of genes per spatial unit (Fig. 5). Upon inspec-
tion of the spatial patterns of genes expressed across all neurons
(Map2, Slc2a3, Slc17a7 taken from http://mousebrain.org/ [26]), the
expression profiles become more distinct and defined in space af-
ter novoSpaRc integration (Fig. 5B). Moreover, when compared to in
situ images from the Allen Mouse Brain Atlas [28], the expression
profiles with scRNA-seq data integration are more similar to the in
situ hybridization (ISH) data than those without (Fig. 5B). To quan-
tify the number of genes that are expressed in Visium spots after
novoSpaRc integration, we modeled the expression of each gene
by using a Gaussian mixture model with 2 components (Fig. 5C).
Assuming that the lower (upper) mode of the bimodal distribu-
tion describes low-to-no (low-to-high) expression, we calculated
for each spot the number of genes expressed and compared it to
the original data (Fig. 5D).

Spacemake can leverage long-reads to
troubleshoot library construction
Generation of STS and scRNA-seq libraries can be challenging due
to the low amounts of RNA that may be captured from some sam-
ples. Especially when protocols are customized to accommodate
specific experimental goals and needs, we have found it helpful
to investigate our sequencing libraries by long-read sequencing.
To this end, spacemake features a module to automatically anno-
tate tens of thousands of long reads against a user-provided ref-
erence of expected adapter sequences and other oligonucleotides
such as primers used during library construction (Supplementary
Fig. S2, Methods). The module then groups these annotations into
recurring patterns of how these building blocks are arranged and
provides an overview of the relative contributions of each class of
such arrangements to the library. This allows the user to moni-
tor cDNA integrity, for example, from 10X Chromium beads (Sup-
plementary Fig. S2B, C), and enables to detect and subsequently
mitigate potential primer and Template Switch Oligo (TSO) con-
catenations as described in [29].

Spacemake offers flexible run-mode settings
A major strength of spacemake are the user-defined run-mode
settings. A run-mode is created with the configuration command
and provides complete control over how samples using this run-
mode should be processed downstream (Methods). Adapter- and
poly(A)-trimming can be turned on or off, and multimapper and
intronic-read counting rules can be set. As each of these settings
produces different results (Fig. 6A, B), it is often beneficial to ini-
tially run the analysis with several run-modes in parallel and then
identify robust and reproducible results.

To demonstrate spacemake’s flexibility, we compared it against
spaceranger on a publicly available adult mouse brain data set
[27]. First we ran spacemake by using several run modes and then
compared the results with that of spaceranger. We focused on
2 types of correlations between spaceranger and spacemake: (i)
gene–gene expression Pearson correlation over all spatial units,
treating the data as bulk (Fig. 6B, Supplementary Fig. S1C) and
(ii) gene–gene expression Pearson correlation per spatial unit, in
space (Supplementary Fig. S1A, B). We found the (i) correlations to

be between 0.48 and 0.99 for all run-modes (Fig. 6B, Supplemen-
tary Fig. S1C) and the (ii) correlations to have a median value (per
run-mode) between 0.5 and 1.0 (Supplementary Fig. S1A, B). As
we observed that these correlation metrics mostly depend on the
highest expressed gene in the data set (Bc1), we further counted
the number of genes that are twice as abundant in spaceranger
versus spacemake or vice versa (Fig. 6B, Supplementary Fig. S1C)
and how large the difference of counts between the 2 processing
methods is per gene (Supplementary Fig. S1D). Spacemake pro-
duced most similar results to spaceranger when poly(A) trimming
is turned off; only exonic reads are counted and multimapping
read counting is turned on (Fig. 6A ,B and Supplementary Fig. S2).

Building on top of the flexibility offered by run-modes, space-
make also allows to cluster the data using different parameters
and saves all clustering results in the same automated analysis
report (Fig. 6B). For the aforementioned data set, higher cluster-
ing resolution leads to more biologically meaningful regions iden-
tified: at resolution 1.2, for instance, the pyramidal layer of the
hippocampus separates into CA1/2, CA3, and the dentate gyrus
(Supplementary Fig. 4A).

Spacemake provides automated downstream
analysis
After processing is completed, spacemake performs a basic au-
tomated analysis of the data (Methods). For this, spacemake em-
ploys scanpy [18] and squidpy [18, 30]. More specifically, space-
make identifies cell types and their corresponding marker genes
and plots them in an automatically generated report. If the user
defines multiple UMI cutoffs for performing the downstream
analysis, then multiple such reports are generated. For STS data
sets in particular, spacemake uses squidpy to generate a cluster-
to-cluster neighborhood enrichment heatmap (Supplementary
Fig. S4B) to calculate co-occurrence of spatial units and predict
ligand–receptor interactions between spatial units.

We benchmarked spacemake against the results obtained in a
Slide-seqV2 data set [3]. For this, we first generated a raw fastq
file from the slideseq-tools processed BAM file provided by the
authors. Then, from the same file, we created a DGE matrix us-
ing Dropseq-tools [15]. Finally, using the raw fastq files as input,
we ran spacemake and compared the results with the DGE ma-
trix from the Slide-seqV2 BAM file. Spacemake achieves very high
correlation with the Slide-seqV2 data, with most beads having a
gene–gene correlation higher than 0.95 and the overall correlation
being as high as 0.98 (Supplementary Fig. S4B). Spacemake au-
tomatic clustering identifies spatially informative clusters, such
as the cortical region, mouse hippocampus pyramidal layer, den-
tate gyrus, and thalamic region, and the squidpy neighborhood
enrichment analysis reveals spatial closeness of pyramidal-layer
and cortical neurons (Supplementary Fig. S3C).

Spacemake can automatically align and integrate
hematoxylin and eosin data
Integrating imaging with spatial transcriptomics data can fa-
cilitate the investigation of complex tissues. Spacemake auto-
matically aligns imaging data, such as hematoxylin and eosin
(H&E) microscopy images, with count-based data (Fig. 6C, D,
Supplementary Fig. S5, Methods). Upon aligning the Visium mouse
brain data set [27] with the corresponding H&E .tiff image, we
observed that the pyramidal layer of the hippocampus perfectly
aligns with clusters from the automated clustering performed by
spacemake (Fig. 6D). To further demonstrate spacemake’s image
alignment capability, we downloaded and processed 2 more public

http://mousebrain.org/
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Figure 6: Spacemake offers several processing modes while producing a unified downstream output and can align spatial count data with H&E
images. (A) Spacemake can be run using several user-defined settings. Gene quantification depends on the run-mode set to include reads mapping
only on exons, on both exons and introns, on exons and intergenic regions, and whether the reads should be trimmed for poly(A)-tails and adapters.
(B) Comparison of spacemake run-modes with spaceranger. Genes with twice higher counts are colored red (higher in spaceranger) or green (higher in
spacemake); all other genes are colored gray. (C) Spacemake automatically performs clustering analysis of the data. At 1.2 resolution, clusters become
distinct along defined structures in space, such as the cortical layers, CA2/CA3, CA1, and dentate gyrus. (D) Spacemake automatically aligns spatial
transcriptomics data with H&E images. Here the pyramidal layers and the dentate gyrus, as taken from the Allen Brain Atlas, are shown to perfectly
overlap with the corresponding clusters.

Visium data sets: a sagittal mouse brain section [31] and a coro-
nal mouse kidney section [32] with their corresponding images.
Spacemake successfully aligned both samples, illustrating that its
underlying algorithm works well with Visium data (Supplemen-
tary Fig. S5C, Methods).

Contrary to Visium images, Seq-scope images do not possess a
clear tissue boundary, thus hindering the alignment. Spacemake
addresses this by first attempting to deduce the tissue boundaries
from the H&E. In case this fails, the user can manually set the
parameters to achieve a better match (Supplementary Fig. S5A, B).
After identifying the tissue for the Seq-scope images, spacemake

utilizes the same algorithm as for Visium to match the imaging
and count data (Supplementary Fig. S5B, Methods).

Spacemake is fast and scales with number of
reads
Spacemake is fast, is scalable, and supports multithreaded pro-
cessing. To benchmark spacemake, we processed the publicly
available adult mouse 10X Visium data using both spaceranger
and spacemake. We observed that when using 6 cores, space-
make is 1 hour faster than spaceranger while producing the same
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results (Supplementary Fig. S6A). Spacemake also scales well with
the number of reads: for the Slide-seqV2 sample with 70 million
reads, total run-time was just over 1 hour, while 1 billion Seq-
scope reads took 18 hours to process (Supplementary Fig. S6A, B).
Moreover, spacemake can run several samples in parallel. For a
single sample, spacemake requires 4 cores minimum to run, so
that with 8 or 12 cores, several samples can be processed together,
thus starkly reducing the average running time per sample.

Conclusions
As spatial sequencing technologies become increasingly available,
the existence of robust, reproducible bioinformatics pipelines is of
paramount importance. Here, we present spacemake, a compre-
hensive computational framework that efficiently analyzes spa-
tial transcriptomics data sets stemming from different technolo-
gies. Spacemake is extendable, is scalable, and provides a com-
plete solution from processing of raw data over several quality
controls and automated reports all the way to advanced down-
stream analyses. Spacemake’s core strength is the unified process-
ing of different data types, rendering it highly suitable for projects
that use multiple methods. Spacemake is open source, is freely
available, and can be smoothly integrated with other packages
that perform downstream analysis [30].

Spacemake is highly modular. It currently contains modules for
downsampling and saturation analysis, sample merging, a base-
line spatial reconstruction of scRNA-seq data sets, and analysis
of long reads, and it can be readily extended to add more func-
tionality. Moreover, spacemake is versatile enough and can be
used to analyze not only spatial transcriptomics data sets but
also scRNA-seq data. To demonstrate spacemake’s capabilities,
we have used it to process and analyze Slide-seqV2 and 10X Vi-
sium data sets, showing that spacemake accurately reproduces
the processed data of the 2 technologies. We further illustrated
how spacemake can integrate scRNA-seq and STS data sets by
employing novoSpaRc.

It should be noted that currently, spacemake processes and an-
alyzes sequencing data but not imaging data. Some spatial tran-
scriptomics techniques, however, require registering the barcodes
of the beads or spots in space by imaging. In a companion paper,
some of us present a complete computational framework for effi-
ciently handling such data sets, called Optocoder [33]. Spacemake
can be readily integrated with Optocoder or similar methods.

Finally, it would be useful to extend spacemake to handle dif-
ferent types of data (e.g., protein expression or chromatin state).
As novel techniques that provide diverse molecular readouts from
the same cell are being constantly developed, it will be essential
to possess a unified framework that can process the different data
modalities. We plan to extend spacemake to accommodate such
data sets in the future.

Methods
Run-mode settings
For each sample, 1 or multiple “run-modes” are defined to de-
scribe how spacemake should process it downstream. Each run-
mode has a name and several parameters: automatic tissue de-
tection (on/off), poly(A) and adapter trimming (on/off), intronic
read counting (on/off), multimapping read counting (on/off),
data meshing (on/off), number of expected barcodes, UMI cut-
off, and DGE matrix cleaning (on/off). Each of these parame-
ters is set through the command line. Currently, spacemake of-

fers the following run-modes out of the box: scRNA_seq, visium,
slide_seq, and seq_scope, with parameters corresponding to each
technology.

Data preprocessing and mapping
The publicly available data sets were obtained as described in the
data availability section below. FastQC (v0.11.9) was used to assess
sequencing quality, and a Python custom script was used to re-
trieve the cellular barcodes and UMIs for the different read struc-
tures (Visium: R1[1–16] for the spot barcode and R1[16–24] for the
UMI and cellular barcodes; Seq-scope: R1[1–20] for the bead bar-
code and R2[1–9] for UMI; Slide-seq: R1[1–14] for bead barcode and
R2[15–23] for UMI). During the barcode and UMI retrieval, an un-
mapped BAM was created where each R2 sequence was tagged
with the correct cell-barcode and UMI.

Poly(A) and adapter trimming
If poly(A) and adapter trimming is switched on for the current run-
mode, the 3′ ends of reads are trimmed for poly(A) and overlapping
user-defined adapter stretches. This processing is performed with
the functions TrimStartingSequence and PolyATrimmer of Drop-
seq tools (v2.4.0) for poly(A) and adapter trimming, respectively.

Mapping and gene tagging
Alignment to the genome was performed with STAR (v2.7.9a) us-
ing the unmapped BAM as input and under the default param-
eters. The following genomes and annotation files were used:
mm10 and M23 and were downloaded from Gencode. Gene
tags were added with the function TagReadWithGeneFunction of
Dropseq-tools.

Multimapping read counting
Multimapping reads were counted using a custom Python script
that parsed the read-name sorted (STAR default output) final BAM
line-by-line. For each read name, maximally 1 read was kept. If
a read mapped to several genomic locations—but only 1 exonic
region—this exonic-mapping read was kept and the rest were dis-
carded. If a read mapped to several exonic locations, it was re-
moved altogether. During parsing, each kept read was flagged as
primary, and the parsed output (now containing at most 1 read
for each multimapper) was piped into the DigitalExpression of
Dropseq-tools, which was run with a MAPQ = 0 filter, to ensure
multimapper inclusion.

DGE creation
Once the aforementioned steps are run, the DGE matrix is gener-
ated. If the provided data set contains a list of spatial barcodes, it
is used as a “whitelist.” Otherwise, snakemake uses the n_beads
parameter of the current run-mode to select the top n_beads
number of barcodes with the highest read count using the Bam-
TagHistogram function of Dropseq-tools. Finally, the DGE matrix is
generated using either the “whitelist” of spatial barcodes or the
top n_beads barcodes.

DGE barcode cleaning
For a user-defined set of primers, spacemake can optionally dis-
card barcodes that overlap with any of these primers. This is con-
trolled by the clean_dge parameter of a run-mode. When set to
true, the following barcodes are removed: (i) barcodes that have
at least 4 nt overlap with any of the primers in the 3′ end and (ii)
barcodes that have an at least 7 nt overlap with any of the primers,
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anywhere in the barcode itself. If selected, this step is run before
generating the DGE matrix.

Tissue detection
For the samples in which tissue detection was turned on, space-
make performed it as follows: first, spatial units with UMIs above
a certain threshold (provided by the user) were treated as “under-
the-tissue” spatial units. Then, for each tissue spatial unit, its
neighboring spatial units were computed. For 10X Visium, that is
straightforward, as the data points lie within a hexagonal grid. For
irregular grids such as Slide-seq data sets, we created a meshgrid
and then quantified the spatial unit neighborhoods. This resulted
in the generation of contiguous areas. Spatial units lying within
the largest contiguous area were then considered to be under the
tissue.

Automated downstream analysis
For downstream analysis, the text-based DGE matrix was first
parsed line-by-line using a custom Python script to create a
sparse matrix (Compressed Sparse Column), cast as an Ann-
Data object, and finally saved in h5 format to ensure minimal
space. Then, the standard scanpy single-cell workflow followed
with default parameters. We selected the top 2,000 highly vari-
able genes and 40 principal components to use for clustering us-
ing the leiden algorithm [34] and lower-dimensional represen-
tation with UMAP [35]. Each sample was clustered using the
scanpy.tl.leiden functions and for several resolution values. Cell-
type markers were identified with the rank_genes_groups func-
tion. For STS data sets, squidpy was used by running the built-in
squidpy.gr.spatial_neighbors function. Spatial co-occurrence was
computed with squidpy.gr.co_occurrence and the ligand–receptor
analysis with squidpy.gr.ligrec.

Meshgrid creation
We created the mesh grids in silico using the numpy.mesh func-
tion. For both grids (Visium style and hexagonal), a rectangu-
lar grid was first created with spot_distance_um (spacemake
parameter—user definable) horizontal distances and sqrt(3) ∗
spot_distance_um vertical distances. This mesh was then dupli-
cated and spatially translated, so that the result of the 2 meshes
was a mesh where the distance between any 2 neighboring points
was exactly spot_distance_um. For the Visium-style mesh, we
joined beads that fall into any circle (with mesh points as circle
centers) with a diameter of diameter spot_diameter_um. For the
hexagonal mesh, we calculated the distance between each spatial
unit in the data and the mesh points, and for each spatial unit, we
selected exactly one mesh point, the one with the minimum value.

Downsampling analysis
Downsampling analysis was done by first splitting the final BAM
file into different percentages with sambamba (v0.6.8). Then,
the downsampled BAM files were fed into the same processing
pipeline described above for further analysis.

Spatial reconstruction with novoSpaRc
The de novo spatial reconstruction of the adult mouse brain
scRNA-seq data was done with novoSpaRc (v0.4.3) and by using
the default parameters and a circular disk as a target space. The
top 100 highly variable genes were selected for the reconstruc-
tion. For the spatial reconstruction with markers, the correspond-
ing Visium data set was used to first create a reference atlas. The
top 200 highly variable genes were first obtained (both from Vi-

sium and single-cell data sets), and 195 of them remained after
intersecting them. Reconstruction was done with novoSpaRc and
with parameter alpha = 0.5. For the de novo reconstruction, we
used single-cell data from 6 areas: Thal, CA1, Hypoth, Ctx2, Dent-
Gyr, and SScortex. To assign each of the 5,000 positions to one of
the annotated areas, for each position, the area having the high-
est median value for that position was picked. In this way, each
position was assigned only to 1 area. Out of the 6 original areas, 4
were assigned to at least 1 position (Ctx2, DentGyr, Thal, Hypoth)
and 2 did not have the highest median probability for any position
(SScortex, CA1).

Long-read analysis
The complementary DNA (cDNA) molecules should contain spe-
cific oligonucleotide building blocks in the right places, in addi-
tion to mRNA sequence and (parts of) the original poly(A) tail.
Spacemake first aligns a catalog of such building blocks (SMART
primer handles, poly(T), Template Switch Oligo, Illumina sequenc-
ing adapters, etc.) via local Smith & Waterman to each read. These
alignments are then analyzed jointly for each long read and con-
densed into “signatures” that identify the presence/absence and
relative ordering of each building block. Finally, the observed sig-
natures are counted, compared systematically against the ex-
pected signature (for example: P5, bead_start, poly(T), N70X for
a Dropseq bead-derived Illumina library) and the following diag-
nostic plots are generated: graphical breakdown of the library by
signatures, zoom-in on bead-related features, mismatch and dele-
tion analysis, and histograms of start/end positions for each part
of the expected signature. We acquired the publicly available data
as described below, and every 250th read was selected and ana-
lyzed with the spacemake.longread module using the “chromium”
long-read signature.

QC reports
QC plots were created with custom R scripts based on the ggplot2
package (v3.3.5). The automatically generated QC sheets were cre-
ated with a custom Rmarkdown script, which takes the down-
stream processed and analyzed data files and creates the .html
QC report. The Shannon entropy for each spatial unit barcode BC
was calculated using the following formula:

HBC = −
∑

n∈BC

f (n, BC) ∗ log2 ( f (n, BC)) ,

where f (n, BC) is the relative frequency of a nucleotide n in bar-
code BC. The length of string compression for a spatial unit bar-
code was calculated the following way: first the barcode BC was
compressed (such that AAACATTA becomes 3A1C1A2T1A) and
then the character length of this compression representation was
returned. The observed values were compared against theoretical
values as follows: random barcodes were first generated for each
sample, and their Shannon entropy and string compression were
then computed. The number of random barcodes generated was
always the same as the number of real barcodes, for all samples.

External DGE processing
Spacemake offers the possibility to process external count data.
In this case, instead of starting from the raw data, the sample is
processed downstream from the DGE matrix creation. Spacemake
will perform the automated analysis and clustering and generate
the corresponding reports.
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Alignment of H&E images with count data
Generating binary images from count data
To align H&E images with spatial count data, spacemake first gen-
erates gray-scale images from the count data themselves. For Vi-
sium, a 1,000 × 1,000 pixel image was generated (corresponding
to a 6.5 × 6.5 mm square glass) based on the beads that were pre-
viously identified by spacemake as under the tissue (Methods).
Each bead was then drawn using the openCV circle() function—
according to Visium coordinates—with a 100-micron distance
from each other, with each bead having 55-micron diameter. Each
circle was drawn black and the rest of the image was white.

For the Seq-scope samples, a pixel image was first generated
from the actual count data. Raw counts were scaled to have a
maximum value of 255, so that the image could be stored as an 8-
bit grayscale. Then, pixels were aggregated so that the image had
a 1,000 × 1,000 pixel dimension. Next, a binary filter was run be-
tween 190 and 200 to generate the binary image from grayscale,
hence resulting in the final binary count image.

Generating binary images from H&E
H&E images were first loaded using the openCV imread() func-
tion. Next, grayscale images were generated using the openCV
cvtColor() function. Then a binary image was generated using the
openCV threshold() function, using automatic thresholding.

Matching binary H&E image and binary count image
To align the H&E image and the count image, we used the openCV
matchTemplate() function. This function, given a reference image
(in our case the binary H&E), finds the position at which a tem-
plate image (in our case, the binary count image) has the highest
correlation with the reference image. Our algorithm will first scale
down the binary count image to be one-third of the size of the H&E
image, and then gradually the zooming ratio will be increased and
the highest correlation will be picked. The zooming itself scales
y and x independently, thus ensuring that if the x–y ratios are
not matching between the template and the reference, the match
would be still found. Finally, at the last step, the highest correla-
tion is picked, and the resulting H&E is imaged and saved. Then,
this image can be imported using spacemake’s attach_he_image
function.

Code Availability and Requirements
Spacemake is freely available and can be found on GitHub [36].
Operating system: Unix
Programming language: Python, R
Requirements: Python 3.6 or higher, R 4.0 or higher
License: GPLv2
RRID: SCR_022 207
biotools ID: spacemake

Data Availability
Spacemake
Supporting data and an archival copy of the code are also avail-
able via the GigaScience database GigaDB [37].

Slide-SeqV2
The Slide-seqV2 adult mouse brain data set was downloaded from
[38] (Puck_200 115_08).

Visium
The 10X Visium data sets were downloaded from [27] (coro-
nal mouse brain), [32] (coronal mouse kidney), and [31] (sagittal
mouse brain).

For each sample, we downloaded the original .fastq.gz raw files
and processed them with spacemake. For the H&E integration, we
downloaded the original high-resolution .tif images and resized
them to 10% using ImageMagick [39] before integration.

Seq-scope
Seq-scope data were downloaded from [40]. For the analysis
shown in this article, the data set from healthy mouse liver with
accession ID SRR14082759 was used. We used tile numbers 2105,
2106, and 2107 and extracted the bead barcodes, and their posi-
tions were from raw fastq files found in [41], with the help of Seq-
scope’s own script available in [42].

For the H&E integration, we downloaded the original .jpg
files from [43]. We aligned count data from tile 2105 with used
wt_4X_2.jpg and for count data from tiles 2106 and 2017 with
wt_4X_1.jpg.

Single-cell data
For the single-cell and novoSpaRc mapping, we used publicly
available adult mouse brain data from [26], available in [44]. We
only used tissue labels comparable with the spatial Visium sam-
ple, namely, Thal, CA1, Hypoth, Ctx2, DentGyr, and SScortex. We
processed the data using spacemake and by treating them as an
external DGE matrix.

Long-read data
For long-read sequencing data, we used a subset of reads from
SRR9008425 and SRR9008429, which were Nanopore sequenced
cDNA sequences derived from 10X Chromium beads from [45].

Additional Files
Supplementary Fig. S1. Spacemake offers customizable run-
mode settings and correlates well with spaceranger.
Supplementary Fig. S2. Nanopore long-read analysis.
Supplementary Fig. S3. Spacemake efficiently processes Slide-
seqV2 data.
Supplementary Fig. S4. Using a higher-resolution parameter dur-
ing clustering leads to more defined clusters in the physical space.
Supplementary Fig. S5. Spacemake integrates and aligns spatial
count data with H&E images.
Supplementary Fig. S6. Spacemake is fast, scales well, and can
simultaneously process multiple samples.
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