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ABSTRACT Background: Blood pressure (BP) is an essential indicator for human health and is known to
be greatly influenced by lifestyle factors, like activity and sleep factors. However, the degree of impact of
each lifestyle factor on BP is unknown and may vary between individuals. Our goal is to investigate the
relationships between BP and lifestyle factors and provide personalized and precise recommendations to
improve BP, as opposed to the current practice of general lifestyle recommendations.Method: Our proposed
system consists of automated data collection using home BP monitors and wearable activity trackers and
feature engineering techniques to address time-series data and enhance interpretability. We propose Random
Forest with Shapley-Value-based Feature Selection to offer personalized BP modeling and top lifestyle factor
identification, and subsequent generation of precise recommendations based on the top factors. Result:
In collaboration with UC San Diego Health and Altman Clinical and Translational Research Institute,
we performed a clinical study, applying our system to 25 patients with elevated BP or stage I hypertension
for three consecutive months. Our study results validate our system’s ability to provide accurate personalized
BP models and identify the top features which can vary greatly between individuals. We also validate
the effectiveness of personalized recommendations in a randomized controlled experiment. After receiving
recommendations, the subjects in the experimental group decreased their BPs by 3.8 and 2.3 for systolic and
diastolic BP, compared to the decrease of 0.3 and 0.9 for the subjects without recommendations. Conclusion:
The study demonstrates the potential of usingwearables andmachine learning to develop personalizedmodels
and precise lifestyle recommendations to improve BP.

INDEX TERMS Blood pressure, hypertension, machine learning, personalized modeling, smart healthcare.

Clinical and Translational Impact Statement— Our research demonstrates prospects for reducing BP through precise lifestyle
changes, either effectuated through personalized interventions by clinicians, or patients following an interactive lifestyle coach
with precise recommendations. (Category: Early/Pre-Clinical Research)

I. INTRODUCTION
High blood pressure, or hypertension is one of themost preva-
lent chronic diseases in the world [1]. Stepwise management
of hypertension begins with modifying lifestyle factors (e.g.,
activity, sleep) which, alone, can be effective in controlling
BP [2]–[5]. What remains lacking in the literature is the
individual effect of these lifestyle factors on BP. Tradition-
ally, these relationships have been investigated through large-
scale Randomized Controlled Trials (RCTs). However, the

aggregate insights derived from RCTs are not necessar-
ily tailored for individuals. That is, the impact of specific
lifestyle factors on BP may differ across individuals due to
an individual’s unique genomic makeup. Secondly, the data
in the RCTs are usually collected in healthcare settings or
self-reported fashions. It is well-established that BPmeasure-
ments obtained in healthcare settings are often unreliable [6],
while self-reported data often falls short of accuracy and
granularity.
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In contrast, wearable activity trackers, or wearables, such
as Apple Watch, Fitbit and Samsung Galaxy Watch, col-
lect a great amount of lifestyle data in high granularity and
continuity. As a result, a personalized model for BP and
lifestyle factors can be built for each individual based on
his/her data. To date, the potential of using wearables’ data
for BP management has not been fully investigated due to the
complex dependency between BP and lifestyle factors. In this
study, we propose to usemachine learning (ML) techniques to
elucidate the complex relationships between BP and lifestyle
factors at the level of the individual. Based on the continuous
data collected from wearables of users, we aim to 1) build a
predictive model of BP for individuals, which will give users
a quick and reliable way to understand their health condition,
and 2) utilize the above model to provide personalized and
precise insight to users, as opposed to general lifestyle rec-
ommendations.

In our preliminary work [7], we used Fitbit Charge HR
and Omron Evolv to collect lifestyle and BP data, respec-
tively, of 8 volunteers. We then trained a Random Forest (RF)
model [8] to predict the 24-hour-ahead BP for each volunteer
using lifestyle data. We proposed a stable and consistent fea-
ture selection technique, namely Random Forest with Feature
Selection (RFFS), to enhance the prediction accuracy of RF.
Moreover, we used the relative importance of the features
generated by RFFS to identify the most important lifestyle
factors for his/her BP. The most important lifestyle factors
were shared with selected subjects. We observed that the
above subjects changed their lifestyle factors according to the
shared information and their BP decreased from its previous
level. In [9], we proposed an onlineML technique to prioritize
training samples based on the performance of prediction. The
proposed technique addressed the challenge of concept drifts
and anomaly points due to sequential data collection.

However, there were three main limitations to be
addressed: 1.) The dataset consisted of a series of BP and
lifestyle factors data with mixed sampling frequency. Extra
feature engineering and modeling for time series were nec-
essary to fully utilize the potential of temporal dependency.
2) The selection of the feature in RFFS was based on how
each feature improved the prediction accuracy of BP; how-
ever, it did not imply how each feature is affecting BP. 3.) The
recommendation was only given to two subjects, and the
duration of observation after the recommendation was only
one week. The lack of a control group and short observation
time made it challenging to reach a significant conclusion.

To tackle the above challenges, we extract new features
from raw data collected by wearables and BP monitors.
We aggregated the raw lifestyle data, which was mostly
recorded every minute, into a summary of 1-hour, 24-hours,
48-hours and 72-hours before each BP reading and extracted
features with the above non-overlapping and contiguous time
windows. The improved granularity and representation of
features extracted from wearables are not only improving
the accuracy of BP prediction but also comprehendible for
patients and physicians. Secondly, to capture the periodicity

and the trend of previous BPs, we create new features based
on Autoregressive Integrated Moving Average (ARIMA)
model [10] to better represent the BP time series. To deal
with unevenly spaced BP readings, we propose to transform
the original BP time series into an evenly spaced time series
by resampling and interpolation. To explore the best feature
selection method, we evaluate multiple popular methods, and
we choose Shapley value [11] based on its prediction perfor-
mance and interpretability. Shapley value is a model-agnostic
feature interpretation method derived from Game Theory.
Given a set of feature values and a trainedMLmodel, Shapley
value can indicate how each feature contributes to the actual
BP prediction from the mean prediction. We propose a fea-
ture selection method, namely RF with Shapley-Value-based
Feature Selection (RFSV), which uses feature importance
based on Shapley value to remove redundant and irrelevant
features. Moreover, we use the top features selected by RFSV
to provide the precise insight that may affect an individual’s
BP.

To evaluate the effectiveness of the proposed techniques,
we conducted a randomized controlled experiment with
patients who have Elevated BP or Stage I hypertension and
were not taking any antihypertensive medications. We col-
lected BP and wearable data and trained the BP predic-
tion model for each subject. Subjects were randomized to
either receive personalized lifestyle recommendations based
on their data (experimental group) or not receive lifestyle rec-
ommendations (control group). We compared and discussed
the change of BP levels across the study period for both
groups.

The rest of the paper is organized as follows. In Section II,
we will investigate the related work of BP prediction
technique and BP studies using lifestyle intervention.
In Section III, we present the overall architecture of the
BP prediction and recommendation system with the pro-
posed RFSV. We then detail data collection and represen-
tation, ARIMA time series feature extraction and RFSV.
In Section IV, the prediction performance of the proposed
method is compared with other ML methods. Moreover,
we will discuss the effectiveness of personalized lifestyle
factors recommendations suggested by the proposed system.
Finally, we conclude the paper in Section V.

II. RELATED WORK
The authors in [13] predicted BP using demographic and
contextual data (e.g., age, weight and smoking habit) with
an artificial neural network (ANN). However, the prediction
was based on a single BP measurement and did not con-
sider the dynamics of BP. In [14]–[18], PPG signals were
used to predict short-term BP with ensemble trees mod-
els [14]–[16] and neural-network-based models [17], [18].
However, PPG-based prediction is only applicable for a very
short time horizon (∼10 minutes), while our technique aims
to predict BP in a longer time horizon, to provide action-
able information to users. In [19], the 24-hour time series
of BP and heart rate were trained with Extreme Learning
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TABLE 1. Cohort statistics (n = 25).

Machine (ELM) to provide hourly BP prediction. However,
the length of collected data in [19] was only a single day,
and the prediction performance was not compared with other
ML methods. The authors in [20] proposed to predict BP
using Long Short-Term Memory (LSTM) models [47] with
additional contextual data (e.g., age, BMI and BP medi-
cation) layer. The data in [20] was averaged every month,
so the temporal relationship of data was not fully utilized
due to lower temporal resolution and information loss in
the averaging process. All the above studies did not use
physical activity and sleep data, which were the most rel-
evant lifestyle data related to BP that can be collected by
current technology. During physical activity, heart rate and
stroke volume increase to meet the metabolic requirements of
the muscles, which result in expansion of arteries and force
exerted against the artery changes, which is translated into
BP [21]. Although BP normally increases during physical
activity, the inverse relationship between physical activity and
BP has been shown in numerous observational studies and
can be explained by the reduction of arterial stiffness through
exercise [22]. Secondly, inadequate sleep, including issues of
quantity and efficiency, also has a significant negative impact
on BP, possibly by higher hypothalamic-pituitary-adrenal
axis activation [23]. Besides activity and sleep factors, it has
been known that dietary factors, like sodium intake, may also
affect BP [2], [24]. Traditional methods assess food (nutri-
tion) intake with self-report measures, such as food frequency
questionnaires (FFQs) and photo-assisted dietary assess-
ments [25]. However, the accuracy of dietary intake assess-
ment remains a challenge. Moreover, no widely adopted
technology can assess dietary intake automatically and accu-
rately [25]. Therefore, we focus on only physical activity and
sleep factors in our study. Based on heart rate and steps col-
lected by wearables, the authors in [26] trained bidirectional
LSTM models to diagnose various chronic diseases, includ-
ing hypertension. However, the proposed methods focused on
the diagnosis of hypertension and did not provide a numerical
prediction of BP.

In addition to BP prediction, the other critical insight
from BP analysis is how lifestyle factors such as physical
activity and sleep affect an individual’s BP. Although the
effectiveness of lifestyle interventions on BP management
has been proven in many studies [2]–[5], the insight on an
individual level is absent. Long-term BP and the result of

FIGURE 1. Block diagram of data storage and access.

exercise treadmill stress tests were used for BP factor analysis
in [27]. The authors compared different interpretable ML
techniques and concluded that those techniques could derive
different insights on the model behavior. In [28], a mobile
app was designed to deliver behavioral recommendations on
diet and exercise to manage hypertension. The authors in [28]
collected biometric, demographic and engagement data from
a mobile app, and they proposed ML models to predict par-
ticipant completion of the intervention. The BP factors col-
lected by the above studies were either from electronic health
records or self-reported methods, so the accuracy and granu-
larity of lifestyle factors were limited. In contrast, our method
uses wearables to collect lifestyle data, which enhances the
quality and granularity of the data. Therefore, our model can
pinpoint the lifestyle factors responsible for an individual’s
BP. Moreover, the conclusions of previous studies are only
drawn from ML models without validating the effectiveness
of the recommendations. In our study, we provide recommen-
dations based on Shapley Value and conduct a randomized
experiment to validate the effectiveness of recommendations.

III. METHOD
In this section, we will first introduce the clinical study and
data collection process. We will give an overview of the BP
prediction and lifestyle recommendation system and discuss
each step in more detail.

A. CLINICAL STUDY COHORT AND SYSTEM
ARCHITECTURE
Our clinical study (protocol #181405) was reviewed and
approved by UC San Diego Human Research Protections
Program, which operates Institutional Review Boards (IRBs)
at UC SanDiego. The studywas in collaborationwith UCSan
Diego Health, with patient enrollment, onboarding and man-
agement conducted by the Altman Clinical & Translational
Research Institute at UC San Diego. Patients were screened
for recruitment with UC San Diego Health System’s elec-
tronic health record. The selection criteria included subjects
whowere pre-hypertensive or with Stage I hypertension (SBP
between 120-140/DBP under 90 per ACC/AHA 2017 guide-
lines [12]) and who were not taking any antihypertensive
medications. Subjects who had consented were provided a
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FIGURE 2. System architecture of the proposed method.

Samsung Galaxy Watch and an Omron Evolv wireless BP
monitor to collect their lifestyle factors and BP data for
90 days. Of the 36 consented subjects, data of 11 subjects
were excluded since they withdrew from the study or failed
to collect data for at least half the study duration (45 days)
in the study period. The characteristics of the included cohort
are shown in Table 1. Data was collected remotely through
the application programming interfaces (APIs) provided by
Samsung andOmron, as shown in Fig. 1. The primarymetrics
used to measure BP are systolic and diastolic blood pressure
(SBP and DBP), which are defined as the maximum and
minimum BP, respectively, during a pulse.

The objectives of our proposed system, shown in Fig. 2,
are prediction of BP for an individual, identification of the
most important features that impact the individual’s BP trend
and providing personalized and precise recommendations on
lifestyle factors that will positively impact his/her BP trend.
To achieve the objectives, we train a ML model to predict the
current BP level using one’s historical BP readings as well as
activity, sleep and heart rate data collected from the Galaxy
Watch. The raw data are then filtered, extracted and imputed
as features. To better capture temporal information in BP time
series, we extract time-series features of BP using ARIMA,
as discussed in Sec. III-C. The feature selection based on
a pre-trained RF model and Shapley value is performed to
remove redundant and/or irrelevant features in BP prediction.
In addition to building a predictive model of BP, we will pro-
vide personalized lifestyle recommendations to our subjects
by pointing out the most important factors affecting their BP
based on Shapley value.

B. DATA CHARACTERISTICS AND FEATURES EXTRACTION
The GalaxyWatch provides heart rate (HR), number of steps,
walking/running speed, floors climbed, sleep duration and
sleep stages of the user. Also, we discretize the activity data
into different levels of active time (sedentary, lightly active,
very active) based on subjects’ steps and heart rate every
minute. Maximum HR (HRmax) of each subject is calculated
as [29]:

220− age. (1)

Three HR zones (zone 1, 2, and 3) are defined as [27]:

Z ∗ HRmax , Z ∈ [.5, .7, 1] . (2)

We define three active levels as follows: sedentary (steps
< 10 or HR in zone 1), lightly active (steps≥ 10 and HR is in
zone 2), and very active (steps≥ 10 and HR in zone 3). Sleep
data includes sleep duration, bedtime, wake-up time and sleep
stages. Bedtime and wake-up time represent the time subjects
go to sleep and wake up, respectively. Sleep stages include
light sleep, REM sleep and deep sleep. We also define the
average heart rate during sleep as slpHR.

Data from the Galaxy Watch is mostly recorded every
minute while BP is measured by subjects twice per day,
so the data consists of time series with different frequencies.
Moreover, although the guideline for BP measurement in
this study is to measure in the morning (8-10 am) and at
night (7-9 pm), there are missing values, time deviations
(e.g., measurement in the afternoon) and redundant values
(e.g., two-morning measurements at 7 am and 9 am, respec-
tively). Thirdly, most of the lifestyle factors such as sleep
and activity, have a daily cycle. Based on the above obser-
vations, we extracted the lifestyle factors data as a summary
of 24-hours, 48-hours and 72-hours before each BP reading
and extracted features using the above non-overlapping and
contiguous time windows. For example, for each pair of
(SBP, DBP), the feature ‘‘steps_24’’ was defined as the total
number of steps in the previous 24 hours before the measured
BP and ‘‘step_48’’ was the average of the total daily steps
in the previous 48 hours. Note that instead of summation,
HR and walking/running speed were averaged over the previ-
ous 24/48/72 hours and MaxHR is the maximumHR over the
previous 24/48/72 hours. Finally, ‘‘measure_time’’ denotes
the time in a day when BP was measured. The statistics of
the representative features over the previous 24 hours and the
method of feature extraction are shown in Fig. 3. The original
and derived features are summarized in Table 2.

C. ARIMA FEATURE EXTRACTION FROM BP TIME SERIES
Time series prediction problems include a set of time-ordered
observations sj =

(
Xj, yj

)
, j = 1, 2 . . . J where Xj are the

values of features X and yj is the value of target y observed

2700513 VOLUME 9, 2021



P.-H. Chiang et al.: Using Wearables and ML to Enable Personalized Lifestyle Recommendations

FIGURE 3. Left: Statistics of representative features. Right: Illustration of feature extraction.

at time j, and the task is defined as predicting the future
values of yu for time u > j given s1, s2 . . . , sj. In addition
to using X as features, time-series features can be extracted
from y1, y2 . . . , yj to capture the temporal relationship of y.
In this paper, we use ARIMA [10] to capture the temporal
pattern of BP series.

Three parameters (p, d, q) are used to construct the
ARIMA model, and (p, d, q) stands for the order of the
autoregressive model, the order of differencing, and the order
of the moving average model, respectively, and the prediction
yj can be expressed by:

(1− S)dyj = δ + α1yj−1 + α2yj−2 + . . .+ αpyj−p + ε1
−β1εj−1 − β2εj−2 − . . .− βqεj−q (3)

where S stands for the backward shift operator for S
(
yj
)
=

yj−1, δ is the constant, α1, α2, . . . , αp are the autoregres-
sive parameters, εj is the random error at time t and εj ∼
N (0, σ 2), and β1, β2, . . . , βq are the moving average param-
eters. To cope with seasonality, the authors in [30] proposed
Seasonal ARIMA (SARIMA). In SARIMA, additional sea-
sonal AR and MA terms are used for prediction using values
at times with lags that are multiples of pre-defined periods
T (the span of the seasonality). In this paper, we set T = 1
days. To determine these three parameters (p, d, q), we run

an exhaustive search to determine the best ARIMA model
for each subjects’ BPs and the corresponding set of optimal
parameters. After the model is developed, one-step forecasts
from the ARIMA model are defined as additional features,
namely SBP_arima and DBP_arima.

As described in the previous section, the BP series is not
evenly spaced due to manual measurements. For example,
a subject may measure his/her BP at 7 am, 3 pm and 9 pm
on one day while measuring his/her BP only at 6 pm on
another day. However, ARIMA can onlymodel evenly spaced
time series. To address this issue, we transform the BP data
into evenly spaced observations by resampling and linearly
interpolating the closest two BP readings before and after
each resample point. Note that the resampled BP series is
not the actual BP measurement and is used only to generate
ARIMA features.

D. PREDICTIVE MODELING USING RANDOM FOREST (RF)
To select the best ML methods for our task, we evaluate
popular machine learning techniques, including Random For-
est, Support Vector Machine [45], Gradient Boosting Deci-
sion Trees [46], LSTM [47], and ARIMA [10]. Although
neural network-based approaches outperform in unstructured
data like image and language, tree-based ensemble ML
models constantly have the best performance in structured

TABLE 2. Features and target variables.
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data where data is essentially in tabular form [31]. More-
over, neural networks are highly prone to overfitting when
the underlying data sizes are small and no domain-specific
insight can be used to design the architecture of the under-
lying neural network [32]. In this study, the number of
BP samples for each subject is less than 180 (subjects are
requested to measure their BP twice per day for 90 days)
and the data is structured for interpretation purposes, which
is best suited for tree-based ensemble ML models. Among
the ML models, we find that RF gives the best perfor-
mance through the evaluation in Sec. IV-B (Table 3). There-
fore, RF is used to model BP and lifestyle factors in this
study.

RF is an ensemble predictor of several decision tree predic-
tors. We will first introduce the decision tree and its applica-
tion in ML tasks, Classification and Regression Tree (CART)
model. CART [33] is a non-parametric method used to build
decision tree predictors in ML problems. CART arranges a
sequence of questions (decision rules) based on input fea-
tures into a tree-lie structure. A decision tree consists of two
types of nodes: 1) internal nodes, which split the samples
into two sub-trees or leaf nodes based on decision rules.
Each internal node is labeled with a single input feature
and a corresponding split threshold of that feature. 2) leaf
nodes, where no more split is performed. In regression tasks,
the target variable is continuous, so the prediction of the
target variable is the average of all training samples at that
node. In the training phase, the topmost internal node (root
node) contains all training samples. At each internal node,
the feature and its split threshold are selected to minimize the
mean squared error of the prediction. In the prediction phase,
the new sample moves down from the root node to one of the
leaf nodes according to the splitting criteria along its path.
The predicted value is then the average training sample at that
leaf node.

RF is an enhanced approach by aggregating a collec-
tion of decision trees to reduce overfitting of the data and
the resulting high variance of the prediction [8]. Com-
pared with CARTs, RF introduces two major enhancements:
bootstrap aggregation (bagging) and feature bagging. RF pro-
duces bootstrap datasets that are randomly and indepen-
dently drawn with replacement from the training dataset.
Each bootstrap dataset with the same size as the original
training set is used to train a decision tree. Bootstrap aggre-
gation in RF averages the prediction of decision trees trained
with bootstrap samples, which greatly reduces the variance
of prediction from a single decision tree. Moreover, since
individual trees generated in the bagging process are identi-
cally distributed, the expected prediction of RF is the same
as the expected prediction of individual trees. As a result,
RF has a lower variance than individual trees, while its bias
remains the same [34]. In addition to bootstrap aggrega-
tion, RF further reduces the correlation between its member
decision trees by introducing feature bagging, which ran-
domly selects a subset of features when constructing each
tree.

E. FEATURE IMPORTANCE WITH SHAPLEY VALUE
Although RF performs well on classification and regression
tasks, high-dimensional data will degrade the performance,
especially when the number of samples is relatively small.
There may be redundant features, which provide no more
information than the currently selected features, or irrelevant
features, which may introduce noise instead of any useful
information.

Feature selection techniques improve the prediction accu-
racy and reliability by removing irrelevant or redundant fea-
tures across the datasets. In our study, the candidate feature
selection method should not only improve the prediction
performance but also measure the relevance between BP
and the features. With the relevant information, the most
relevant (important) feature can be used for personalized and
precise recommendations. Based on the above objectives,
we choose four representative feature selection methods,
namely, Pearson Correlation-based Feature Selection [35],
Information Gain-based Feature Selection [36], Random For-
est Feature Importance (mean decrease impurity) [37], and
Shapley Value Feature Importance [38], [39]. All four meth-
ods provide a numerical importance or relevance measure for
each feature, which can be used to select the features for ML
tasks and provide recommendations based on the importance
score. Based on the empirical evaluation of prediction accu-
racy, which is detailed in Sec. IV, we select Shapley Value
Feature Importance to select the features.

Shapley value, derived from Game Theory, assumes that
each feature in a data sample is a ‘player’ in a game, and
the prediction is the payout [11]. The Shapley value aims
to distribute the payout among the features based on their
contribution. To calculate feature importance for each feature
xk , k = 1, 2 . . .K , based on Shapley value, the model is
evaluated over all possible feature value combinations with
and without xk . The Shapley value is calculated by [40]:

φk =
∑

S⊆X\{xk }

|S| ! (p− |S| − 1) !
p!

(f (S ∪ xk )−f (S)) (4)

where S represents all possible feature sets S ⊆ X\{xk} and
X is the set of all features. p is the number of the features in
X and |S| is the number of features in S. f (S ∪ {xk}) − f (S)
is calculated by the marginalized prediction using the model
trained with feature set S ∪ {xk} minus the prediction using
model trained with feature S.
The complexity to compute the exact form of φk is pro-

hibitively high since the number of possible sets S in (4) is
2n where n is the number of features. In [41], the authors pro-
pose Tree Shapley Additive exPlanation (SHAP) algorithm to
approximate Shapley value in polynomial time for tree-based
ML models. This algorithm has been used in this work to
calculate the feature importance. By averaging the absolute
value of all Shapley values across all training samples, we can
get the average contribution of a feature to the prediction
of our pre-trained model. We define the feature importance
vector for the jth sample as IXy(j) = [φ1, φ2 . . . , φk ] where
j = 1, 2 . . . J , k = 1, 2 . . .K . The average feature importance
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can then be calculated by

ĪXy =

∑J
j=1

∣∣IXy(j)∣∣
J

. (5)

F. RF WITH SHAPLEY-VALUE BASED FEATURE
SELECTION (RFSV) AND PERSONALIZED
RECOMMENDATIONS
To select the best features for BP prediction, we first train a
RF model using all features of training samples and calculate
the feature importance ĪXy for all features. Based on ĪXy,
we select a subset of features with higher feature impor-
tance. To decide the selection ratio of total features, we com-
pare the performance between different ratios. Fig. 4 shows
the BP prediction performance, measured by mean absolute
error (MAE) of the final RF models trained with features
under different selection ratios. We can observe that the ratio
of 0.5 performs the best in terms ofMAE. Based on the empir-
ical results, we select 0.5 as the ratio of feature selection. The
resulting BP predictionmodel is the RFmodel re-trained with
only the selected features based on ĪXy.

FIGURE 4. Prediction error with different ratios of selected features.

In addition to prediction performance, Shapley value sug-
gests how each feature contributes to the deviation of BP
prediction from the average BP prediction among the dataset.
Therefore, we select the top three lifestyle factors with the
highestShapley importance for each person as his/her per-
sonalized and precise recommendation. Note that in the rec-
ommendation, we exclude measure_time, heart rate and BP
time-series features derived in Sec. III-B, even if they are
selected as the top factors. The rationale is that those factors
are not actionable for subjects although they might contribute
to BP prediction.

IV. RESULTS AND DISCUSSION
In this section, we will first discuss the experiment settings.
We will present the results obtained by using the proposed
RFSV and compare the results with existing ML models.
Secondly, we will validate the effectiveness of personalized
and precise recommendations of lifestyle factors generated
by our BP model using RFSV.

A. EXPERIMENT SETTING
Of the 25 subjects, we sorted out the 13 subjects to train and
evaluate the BP-lifestyle model based on the quality, length,
and availability of their data. Each person’s model is trained
with only his/her data. The other 12 subjects had sufficient
BP data but less than 45 effective days of continuous lifestyle
data. However, their BP data was included in Sec. IV-C as in
the control group to evaluate the effectiveness of personalized
recommendation. We implement and evaluate our proposed
methods in the Python environment. We also use the Tree
SHAP [41], Scikit-learn library [42], Keras [43] and Auto.
Arima [44] to implement RFSV and other MLmodels. MAE,
root mean square error (RMSE), mean absolute percentage
error (MAPE) and Coefficient of determination (R2) are cal-
culated and used as our evaluation metrics. Their definitions
are as follows:

MAE =

∑n
i=1

∣∣∣B̂Pi − BPi∣∣∣
n

(6)

RMSE =

√√√√∑n
i=1

(
B̂Pi − BPi

)2
n

(7)

MAPE =
nMAE∑n
i=1

∣∣BPi∣∣ × 100% (8)

R2 = 1−

∑n
i=1

(
B̂Pi − B̂Pi

)2
∑n

i=1

(
BPi − B̂Pi

)2 (9)

where B̂Pi is the ith prediction of BP made by trained models
and BPi is the actual value of the ith BP.

We use 5-fold cross-validation to randomly split our
dataset into training (80%), and test (20%) sets five times
and average the prediction results. To show the effective-
ness of RFSV, we compare the predictive performance with
several representative ML algorithms referenced earlier in
Sec. II, including Support Vector Machine (SVM), Gradient
Boosting Decision Trees (GBDT), Long Short-TermMemory
(LSTM), and ARIMA. We also compare our performance
against a regressor (termed as SimpleMean), which always
predicts the mean of the training data. The rationale is that
the prediction error may largely depend on the underlying
BP fluctuation of the subject. By comparing SimpleMean and
other ML algorithms, we can exclude the dependency of the
underlying fluctuation. In ARIMA, we take SBP_arima and
DBP_arima, the ARIMA forecasts introduced in Sec. III-C.
For setting details of other models, we set the number of trees
to 500 for all RF models. We set the maximum ratio of total
features used in each tree as 0.33 and the minimum number
of samples to split as 2. For SVM, the RBF kernel is used,
and the best γ and C are selected using cross-validation. For
GBDT, the number of trees as 500 and the learning rate as
0.05. LSTM was trained using 0.001 and 20 as the learning
rate and batch size with Adam optimizer [48]. The total depth
of the fully connected layers in LSTMmodels was set to 4 and
the maximum neurons in each layer to 50. We also use early
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TABLE 3. Prediction error of RFSV and related models.

TABLE 4. MAE in different prediction horizons using RF, RF-ARIMA and
RFSV MAE (SBP/DBP).

stopping and dropout layers with a dropout rate of 0.2 to avoid
overfitting.

B. BP PREDICTION USING RFSV
The MAE and RMSE of BP prediction of the proposed
method and other methods are summarized in Table 3. Note
that the values in Table 3 are the average MAE and RMSE
over all the users. As shown in Table 3, most of the meth-
ods outperform SimpleMean, which suggests the prediction
power of lifestyle factors. The possible reason why LSTM
performs the worst of all methods is LSTM may overfit the
small training dataset (∼180 samples for each user). GBDT
and SVM perform similarly while GBDT has a slightly better
prediction error. ARIMA is the second-best method based on
MAE for SBP and MAE and RMSE for DBP. The possible
reason is the temporal dependency in historical BP contains
enough information, that with proper modeling, it outper-
forms ML models only based on lifestyle factors. However,
worse RMSE for SBP using ARIMAmay suggest overfitting
to the SBP series. Among all methods, our proposed RFSV
model achieves the lowest prediction error in terms of MAE,
MAPE and RMSE. Our proposed RFSV performs better than
ARIMA by 10.1% and 6.2% in terms of MAE for SBP
and DBP; 10.9% and 7.5% in terms of MAPE for SBP and
DBP; 14.4% and 10.4% in terms of RMSE for SBP and
DBP, respectively (RMSE of SBP is compared with GBDT).
In terms ofR2, RFSV achieve 0.51 and 0.52 for SBP andDBP,
which means the most proportion of the variance is explained
by RFSV compared to other methods.

We carry out a Paired Student’s t-test [49] separately
for each subject to assess the statistical significance of the
difference in estimation errors between our method RFSV
and two methods, ARIMA and GBDT, which achieve the
closest performance to our method shown in Table 4. The
null hypothesis of the Paired Student’s t-test is that there is

TABLE 5. MAEs using different feature selection methods.

no difference between the performance of two ML models.
We then calculate the p-value using the method in [49] for
each subject and compare it with a significance level α, the
probability of rejecting the null hypothesis given that it is
true (α = 0.05 is used in most studies). If the p-value is
smaller than α, the null hypothesis is rejected. Therefore,
the results statistically provide convincing evidence that two
MLmodels perform differently. For 16 out of the 25 subjects,
the performance difference between RFSV and ARIMA is
statistically significant at the level α = 0.05 for both SBP
and DBP. Similarly, for 20 out of the 25 subjects, the perfor-
mance difference between RFSV and GBDT show statistical
significance at the level α = 0.05 for both SBP and DBP.

Besides the prediction of current BP, we will discuss
the effect of applying ARIMA prediction of BP and
Shapley-based feature selection for different prediction time
horizons. The BP predictions of current BP (the MAEs
in Table 3 ), 12 hours, 24 hours and 48 hours ahead are
summarized in Table 4, comparing our proposed RFSV with:
1) RF, which does not include SBP_arima and DBP_arima
and feature selection, and 2) RF-ARIMA, which includes
SBP_arima and DBP_arima but without feature selection.
As shown in Table 4, we can make the following observa-
tions: 1) RFSV consistently gives the best BP prediction,
which shows the effectiveness of ARIMA feature extraction
and Shapley-based feature selection. 2) For each method,
the MAE worsens as the prediction horizon expands, except
for 12-hours ahead prediction, which is the worst performer.
The result indicates that the accuracy of the prediction based
on lifestyle factors and historical BP decreases with time.
The worst performance for 12-hours ahead prediction sug-
gests that the proposed technique may work better when the
prediction horizons are multiples of 24 hours.

Finally, we compare the average MAE of RFSV (which
uses Shapley value for feature selection) with three
other feature selection methods introduced in Sec. III-E,
namely Pearson Correlation-based Feature Selection (PCFS),
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FIGURE 5. Left: SHAP values of features on SBP for subject 1. Right: SHAP values of features on SBP for subject 2.

Information Gain-based Feature Selection (IGFS), and Ran-
dom Forest Feature Importance (RFFI). As shown in Table 5,
all feature selection methods result in lower MAE than the
prediction without feature selection. While RFSV and RFFI
perform significantly better than PCFS and IGFS, RFSV has
the lowest MAE. We also carry out a Paired Student’s t-test
to assess the statistical significance of the difference in esti-
mation errors between feature selection methods. Between
RFSV and No Feature Selection, 12 out of the 25 subjects
show statistical significance at the level alpha= 0.05 for both
SBP and DBP. However, only 4 out of the 25 subjects show
statistical significance when we compare RFSV and RFFI.
This is consistent with the observation that feature selection
can reduce the MAE, and RFSV performs just slightly better
than RFFI in terms of MAE. We decide to use RFSV because
of its lowest MAE and strong interpretability base on Game
Theory.

C. PERSONALIZED AND PRECISE RECOMMENDATION
In Fig. 5, we illustrate the contribution from each feature to
an increase (or decrease) in SBP prediction for two subjects
using SHAP [41]. Each dot represents the Shapley value for
the feature listed on the Y-axis to the BP prediction of a
sample. The placement on the X-axis represents the amount
of positive/negative contribution to BP prediction. The color
represents the actual value of the feature (red is high while
blue is low). The feature list is sorted by contribution to the
model from most to least. For example, from heart_rate_1 of
subject 1 we can observe most blue dots (lower heart rate)
are associated with higher BP prediction and most red dots

(higher heart rate) are associated with lower BP. On the con-
trary, heart_rate_1 of subject 2 has the opposite relationship
with his/her SBP.Moreover, the order of the top features from
the two subjects is very different. The above observations
confirm that different lifestyle factors may affect the BP of
different individuals differently, with the top factors different
for different individuals, and hence the motivation to provide
personalized recommendations based on his/her data. With
high granularity of lifestyle data collected from individuals
and interpretation by Shapley values, patients and doctors can
understand how lifestyle factors affect BP in a more precise
and personalized fashion. In addition to using two subjects
as examples to discuss the SHAP results above, we next
expand the discussion to all subjects in this study. We first
calculate the mean absolute value of SHAP values (which
are the dots plotted in Fig. 5) of each feature. Based on the
mean SHAP values of each subject, we provide a box plot
of representative features over the previous 24 hours used in
Sec. III-B to show the minimum, the maximum, the median,
and the first and third quartiles of the SHAP values among all
subjects, as shown in Fig. 6.We can observe that heart_rate24,
speed_24, and bed_time_24 (the time when subjects go to
sleep) have the highest median SHAP values while sleep_24
(total sleep duration) and up_time_24 (the timewhen subjects
wake up) have the lowest median. Among the 17 features
in Fig. 6, heart_rate24 has the highest SHAP values in 3
of 25 subjects; speed24 has the highest SHAP values in 7
of 25 subjects and bed_time_24 has the highest SHAP values
in 5 of 25 subjects. For the other 10 subjects, their top features
are not the three features with the highest median SHAP
values shown. The above result validates our motivation to
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FIGURE 6. Box plot of SHAP values of lifestyle features (over the previous
24 hours).

provide recommendations based on each subject’s SHAP
values. However, the statistical analysis of SHAP values from
all subjects may still provide valuable insights for designing
population health management solutions.

To further validate the correlation between BP and the
features, Fig. 7 displays a heatmap of the Pearson correlation
between all features and SBP for the two subjects shown
in Fig.5. For subject 1, the top three factors based on SHAP
are heart_rate_1, speed_24 and steps_72, and all of them are
negatively correlated to SBP. For subject 2, the top three fac-
tors based on SHAP are heart_rate_1 (positive correlation),
measure_time (positive correlation) and up_time72 (negative
correlation). We can observe the top features selected based
on SHAP are largely consistent with the correlation heatmap,
in terms of both direction and intensity.

To validate the effectiveness of the lifestyle recommenda-
tions suggested by the RFSV model, we randomly selected
6 of the 13 eligible subjects to form the experimental group
which would receive personalized recommendations. That is,
one month before the end of the study, we sent each subject in
the experimental group an email consisting of 1) basic statis-
tics of their BP during the study period, including the average,
minimum and maximum blood pressure during the trial and
2) top lifestyle features for his/her BP prediction model based
on Shapley value. The design of recommendation language
for each feature is done in consultation with the physician
collaborator in our research team. Lastly, we plot the fig-
ures which show the daily values of BPs and the correspond-
ing top features to serve as subjects’ reference. An example
of the recommendation for subject 1 is shown in Fig. 8.
Although heart_rate_1 is the top feature for subject 1 (Fig. 5),
it is not an actionable factor. Therefore, we recommend the
next top feature, walking/running speed (speed_24), as the
top factor. From Fig. 5, we can observe most red dots (higher
speed) of speed_24 are associated with lower BP, so our
personalized recommendations suggest the subject increase
his walking/running speed. Following this email feedback,
we collect BP data for a month for the experimental group
and compare it with the control group.

The other 7 subjects are assigned to be in the control
group which did not receive any feedback. As mentioned in
Sec. IV-A, the other 12 subjects complete BP measurements
across the study period, but they did not have enough lifestyle
factor data collected from wearables. Those subjects are
assigned to the control group since they had the same treat-
ment (not receive feedback) as the 7 subjects in the control
group and we only focus on their BP measurements.

In Table 6, we list the top features (recommendations) of
the subjects in the experimental group and their BP statistics
before and after receiving the recommendations. For the same
type of feature in different time windows, we give the same
recommendation without mentioning the time windows. For
example, if user 1’s top feature is steps_24 and user 2’s top
feature is steps_48, we will give both users the same recom-
mendation as steps. The rationale is that features extracted
based on different time windows may be useful to enhance
predictive accuracy, but they are not intuitive for people to
follow. From Table 6, we can observe that the top features
can be very different for different subjects. For example,
BP is mainly correlated to activity-related features for some
subjects (1, 3, 4), sleep-related features for others (2, 5).
To evaluate the change in BP, we calculate the mean and
maximum of daily BP in the first week and the last week
of the study since BP fluctuates with time and each single
measurement may not reflect the actual BP of an individual.
Additionally, we use longitudinal linear regression to calcu-
late the linear slope of BP trend before and after receiving the
recommendation to further understand their BP changes.

In Table 6, we show that the mean and maxi-
mum BP of most subjects in the experimental group
improved (decreased) after the recommendation, except for
subject 3 whose mean SBP remained the same. The average
changes in mean BP for all subjects were −3.8 and −2.3 for
SBP and DBP, respectively, and the average changes of
maximum BP were −10.5 and −8.8 for SBP and DBP,
respectively. For the slope of BP trend, we observe the BP
trend turns from slightly increasing to decreasing for subjects
5 and 6 and from slightly decreasing to a steeper decreasing
trend for subjects 1, 2 and 4. The exception is the DBP
trend for subject 3. The change in BP varies significantly
among the subjects where the change ranges from −10 to
0 points for mean BP and −25 to −1 points for maximum
BP, from the first week to the last week of the study. One
possible reason for such variation is that the stableness of
BP and its correlation to lifestyle factors may differ among
people. Finally, we discuss subject 3, whose BP remained
mostly unchanged during the study. Although his BP records
satisfied the initial subject screening criteria (SBP between
120-140 and DBP under 90), his measured BP was mostly
recorded to be under 120/80 during the study. Therefore,
lifestyle recommendations may have less effect on his BP
which is already in a normal range.

Next, we compare the change of BP between the control
group and the experimental group, as shown in Table 7. For
consistency, we use the same method to derive the mean BP,
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FIGURE 7. Left: Pearson Correlation Heatmap for subject 1. Right: Pearson Correlation Heatmap for subject 2.

FIGURE 8. Example of personalized recommendation of subject 1.

max BP, and BP trend slopes for subjects in the control group.
The average mean and max BPs of subjects in both groups
decreased by the end of the study, suggesting a positive effect
of awareness through only using the wearable device and
measuring BP daily. However, the decreases in mean BPs
(−3.8 and −2.3 for SBP and DBP) and max BPs (−10.5 and
−8.8 for SBP and DBP) for the subjects in the experimental
group are meaningfully greater than subjects in the con-
trol group, which are (−0.3, −0.9) and (−3.3, −2.5) for
mean BPs and max BPs respectively. A two-sided Student’s
t-test [49] is done to compare the reduction of mean BPs
and max BPs for the two groups. The null hypothesis is that
the mean BPs and the max BPs for the two groups have no

difference. The p-values for mean BPs are 0.15 and 0.22 for
SBP and DBP, and the p-values for max BPs are 0.07 and
0.05 for SBP and DBP respectively. The result does not reject
the null hypothesis for significance level α = 0.05 except
for max DBP. One possible reason for higher p-values is the
impact of random error due to the smaller sample size, espe-
cially for the experimental group. Since the average changes
cannot fully represent the individual effect, we also calculate
the ratio of subjects in each group who improved (reduced)
their mean and max BP. In the experimental group, 83% (5 of
6 subjects) and 100% (6 of 6 subjects) improved their mean
SBP and DBP, respectively, compared to only 47% (9 of
19 subjects) and 53% (10 of 19 subjects) of the control group.
Similarly, all subjects in the experimental group improved
their max SBP and DBP, respectively, compared to only 63%
and 58% of the subjects in the control group, respectively.
Finally, in the last 30 days, the BP trend slope of subjects
in the control group is relatively flat, while a decreasing
trend is observed in the experimental group. In summary,
subjects who received personalized recommendations about
their lifestyle factors and BPweremore likely to have demon-
strated a decrease in their mean and max BP by the end of the
study. Furthermore, the magnitude of this decrease in BP was
greater in this experimental group compared to the control
group.

Limitations to this experiment include, by definition, the
relatively small number of subjects who had complete BP
and lifestyle data for analysis by study end (13 of the original
36 subjects enrolled), due to early participant drop-off and
missing data. The lower ratio of eligible subjects demon-
strates the universal challenge of keeping patients engaged in
their health and the need to create more automated and conve-
nient means of remote health monitoring. In addition, while
this snapshot in time showed promising results, the lasting
effect of any intervention is best demonstrated over longer
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TABLE 6. Cohort statistics and summary of the BP changes in the experimental group and the control group.

TABLE 7. Recommendations and BP of subjects in the experimental group before and after their personalized recommendation.

study periods. In summary, while the results presented above
are encouraging, future studies with a greater number of
participants monitored over a longer duration are needed.

V. CONCLUSION
In this paper, we investigate the personal effect of lifestyle
factors on BP using data collected from wearables and home
BP monitors, on 25 subjects in a clinical trial conducted in
collaboration with UC San Diego Health and Altman Clinical
and Translational Research Institute. Our proposed approach
includes developing a personalized BP model for each indi-
vidual using BP and lifestyle data for that individual, identify
the most important lifestyle attributes that impact an indi-
vidual’s BP trend and provide precise recommendations to
improve the individual’s BP. Specifically, we propose a RFSV
personalized model which we demonstrate can outperform
other existing ML techniques in terms of prediction accuracy
- by 10.1% and 6.2% in terms of MAE for SBP and DBP;
10.9% and 7.5% in terms of MAPE for SBP and DBP; 14.4%
and 10.4% in terms of RMSE, for SBP and DBP respectively,
and also achieving the highest R^2.We also propose amethod
based on Shapley value to identify the top features which
affect the BP for each individual and provide personalized
recommendations. Using a randomized control experiment,
we show that significant improvement in BP can be achieved
with personalized lifestyle recommendations. After receiving

recommendations, the subjects in the experimental group
decreased their BPs by 3.8 and 2.3 for systolic and diastolic
BP, compared to a decrease of 0.3 and 0.9 for the subjects
who did not receive recommendations.
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