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Physiology May Be the Key: Cardiovascular Risk Stratification
in Obstructive Sleep Apnea
It has been 40 years since Sullivan and colleagues first described
the effectiveness of continuous positive airway pressure (CPAP)
therapy in obstructive sleep apnea (OSA) (1). Since then, CPAP
therapy has become the most popular therapy for OSA because it
ameliorates many adverse consequences of OSA. It is widely
accepted that CPAP therapy reduces daytime sleepiness and risk
of crashes and improves quality of life, erectile function, and
systemic blood pressure (2, 3).

There has been considerable interest in the impact of OSA on
cardiovascular health. Abnormal breathing in OSA is associated with
several physiologic insults that are implicated in the development of
cardiovascular disease (CVD), such as intermittent hypoxemia and

hypercapnia, sleep fragmentation, autonomic activation (4), and large
intrathoracic pressure swings that have been shown to promote
inflammation, endothelial dysfunction, andmetabolic derangements.
Observational studies have consistently shown associations between
OSA and hypertension (5), coronary disease and heart failure (6),
atrial fibrillation (7), stroke (8), and CVD deaths (9). Many studies
have shown that CPAP therapy improves endothelial function (10)
and reduces inflammatory markers (11), blood pressure (12), and
early signs of atherosclerosis (13). Together, these observations
suggest that CPAP therapy should reduce the risk of CVD in patients
with OSA. However, several randomized controlled trials (RCT) and
meta-analyses have shown no risk reduction in CVD events from the
use of CPAP therapy in OSA (14). While the validity of the RCT
findings and their generalizability to clinical sleep apnea populations
continues to generate considerable debate, it is fair to say that the role
of CPAP therapy in CVD prevention remains uncertain.

A potential explanation for the ineffectiveness of CPAP therapy
in reducing CVD events in OSA observed in RCTs is that the effect of
OSA on CVD could vary between individuals. Although OSA severity
is generally quantified using frequency-orientated metrics such as the
apnea–hypopnea index (AHI) and oxygen desaturation index, these
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metrics may not adequately quantify the magnitude of OSA-related
physiologic insults that are experienced by an individual with OSA
and that could contribute to CVD events. This has led to efforts to
identify OSA subgroups that appear to be most vulnerable to CVD
events and efforts to stratify patients with OSA according to
measurable physiologic insults. To this end, several studies have
highlighted an association between the severity of OSA-related
hypoxemic burden and CVD events (15).

In this issue of the Journal, Azarbarzin and colleagues (pp.
1546–1555) report on associations between the pulse rate response
to an apnea or hypopnea (DHR) and CVD outcomes (16). The
DHR, measured by pulse oximetry, is considered a biomarker of the
autonomic (sympathetic and parasympathetic) response to a
respiratory event and is a novel method of attempting to quantify
another potentially important OSA-related physiologic insult. The
authors examined the association between DHR and CVD in two
community-based cohorts.

In a preliminary analysis of 1,395middle-aged and older adults
without overt CVD from theMESA (Multi-Ethnic Study of
Atherosclerosis) cohort, the cross-sectional association betweenDHR
and subclinical CVD biomarkers (coronary calcium, NT-proBNP, and
Framingham risk score) was explored. The study found a U-shaped
relationship betweenDHR and subclinical CVD biomarkers.
Compared with those with mid-DHR (25th–75th centiles), individuals
with highDHR (upper quartile) and lowDHR (lowest quartile) had
elevated biomarker scores. The authors postulate that a highDHRmay
reflect more severe respiratory events or an overreactive autonomic
system, both of which are likely to adversely affect the cardiovascular
system. In contrast, a lowDHRmay represent more subtle respiratory
events or an underresponsive cardiovascular system, possibly owing to
heart disease, diabetes, or other causes of autonomic dysfunction. This
hypothesis was consistent with the observation that individuals with a
lowDHRwere older and had a higher baseline pulse rate and a higher
prevalence of established CVD.

In the primary analysis of 4,574 adults from the SHHS (Sleep
Heart Health Study) cohort, the investigators examined the
association of DHR with nonfatal and fatal CVD events and all-
cause mortality over a mean follow up of 10.7 years. Compared
with those with mid DHR, participants with high DHR had an
increased risk of nonfatal and fatal CVD and all-cause mortality.
The highest risk was observed in participants with high DHR and
severe OSA as defined by the AHI and substantial hypoxemic
burden, suggesting an additive effect of different physiological
insults. An exploratory analysis found that the association between
high DHR and increased risk of CVD and all-cause mortality was
exclusively observed in nonsleepy individuals.

If these findings are validated in prospective studies, they
imply that measurements of OSA-related physiologic insults
may be more accurate prognostic markers of CVD risk than AHI
and oxygen desaturation index in isolation. The measurement of
DHR could be easily incorporated into home sleep studies, as it
relies only on measurements of respiration and pulse oximetry,
and analysis can be automated. The ability to identify patients
with OSA at higher risk of CVD would facilitate the design of
future clinical trials to assess the role of CPAP therapy on CVD
events. The association of high DHR with CVD morbidity and
mortality in individuals without excessive sleepiness may be
particularly valuable in facilitating the inclusion of nonsleepy
individuals with an increased CVD risk profile in future

randomized trials. These findings are important steps toward
developing a more sophisticated and personalized approach
to managing OSA.�
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New Diagnostics to Infer Risk in Tuberculosis
Is the Term “Latent Tuberculosis Infection” Obsolete?

Accurate diagnosis and estimation of risk in latent tuberculous infection
(LTBI) remains a major clinical and global health challenge (1, 2).
Mycobacterium tuberculosis (Mtb) infection reflects a continuum
between LTBI and active tuberculosis (TB). LTBI is themost common
formMtb infection, which affects one-quarter of the world’s population
and kills approximately 2,000,000 people every year (3, 4).
Immunocompetent individuals with LTBI have a 5–10% risk of
developing active TB during their lifetime, most commonly within the
first 2 years after exposure (5). Treatment of LTBI is effective in
reducing the risk of developing subsequent active TB disease, but
identifying patients most at risk of developing active TB and ensuring
successful LTBI treatment remain significant challenges (1, 2).

Available laboratory tests for the detection of LTBI have serious
diagnostic limitations, including a poor predictive value (,5%) for
identifying subjects with LTBI who will actually develop active TB (1).
Tuberculin skin testing and IFN-g release assays can detect cell-
mediated immune reactivity inMtb infection. However, none of these
tests can differentiate LTBI from active TB, nor can they distinguish
between those who achieve subsequent bacterial clearance and/or
effective infection containment from others who have silent and
persistent infection at high risk to develop TB (6). Therefore,
improvements in current TB diagnostics are urgently needed not only
to improve both sensitivity and specificity of Mtb infection detection
but also to more accurately determine the risk of progression or
reactivation into active disease. Such advances in diagnostic testing
could consequently improve the selection of people who would
actually benefit from TB preventive therapy, thus helping to improve
TB control and eradication efforts in many parts of the world (1, 2, 7).

TheWorld Health Organization established the goal of reducing
active TB and correspondingmortality by 90% and 95%, respectively,
by 2035. This will be unachievable without new prevention strategies,
including new diagnostic approaches for rapidly identifying infection in

asymptomatic patients at the highest risk for developing active TB (1, 2,
8). Fortunately, there has been important scientific progress in recent
years in our understanding of TB pathophysiology as well as in the
development of new predictive diagnostics and preventive therapies (6).
Among these new TB diagnostics, detection of blood RNA signatures
have been validated to not only differentiate LTBI from TB but also to
predict those who will likely progress to TB (“incipient TB”) within 2
years (7, 9, 10). Blood-based immune profilingmethods have been
developed and validated to differentiate LTBI from TB, but until now,
their predictive value has not been validated in adults (7, 11).

In this issue of the Journal, Mpande and colleagues (pp.
1556–1565) retrospectively studied antigen-specific T-cell activation
markers in blood, measured with flow cytometry (FC) assays that can
stratify different stages of TB infection and thus infer risk of TB
progression (12). They selected a subset of available blood samples from
a large prospective adolescent cohort study that were serially tested with
QuantiFERON-TBGold In-Tube (QFT) to define “recent” (QFT
conversion,6mo) and “remote” (persistent QFT1 for.1 yr) TB
infection reactivity. They identified and defined theDHLA-DRmedian
fluorescence intensity (MFI) biomarker as the difference inHLA-DR
expression between IFN-g1 TNF1Mtb-specific and total CD31 T
cells (12, 13). The diagnostic performance of this composite FC
biomarker was assessed by blinded prediction in test cohorts with
“recent” versus “remote” TB infection reactivity. They also applied a
single-cell TCR sequencing tomeasure theDHLA-DRMFI biomarker
results and conducted an unblinded analysis of asymptomatic
individuals with LTBI who remained healthy (nonprogressors) or who
progressed tomicrobiologically confirmed TB disease (progressors)
from a separate cohort of the same adolescent study. In the test cohorts,
frequencies ofMtb-specific T cells differentiated betweenQFT(2) and
QFT(1) individuals (area under the curve [AUC] of the receiver
operating characteristic curve and 95% confidence intervals: 0.94; 0.
87–1.00).DHLA-DR significantly differentiates between “recent” and
“remote” individuals with TB infection reactivity (0.91; 0.83–1.00),
“remote” TB infection reactivity and newly diagnosed TB (0.99; 0.96–1.
00), and TB progressors and nonprogressors (0.75; 0.63–0.87). The
authors conclude that theDHLA-DR biomarker can identify individuals
with recentMtb infection and those with disease progression, allowing
targeted provision of preventive treatment to those at highest risk of TB
(12).

We applaud the authors for this important research work with
high significance for global TB control. The study was retrospective but
reasonably well-designed and utilized stored blood samples from a large
prospective cohort study for their training, testing, and validation study
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