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Editorial

Epidemic models: why and how to use them

The uncontrolled rise in the incidence of SARS-CoV-2 has
prompted the adoption of mitigation measures of an unprece-
dented magnitude worldwide since March 2020. The dire
perspective of an acute infectious disease saturating the health
system – an unexpected situation in developed countries with a
healthcare system focusing on chronic diseases – was highlighted
in a report made public by Imperial College scientists at the end of
February 2020: using ‘‘epidemic modelling’’, they announced the
overwhelming of acute care capacities and the need for long term
and harsh social distancing measures to fight the disease [1].

Throughout the pandemic, epidemic modelling has been used
to characterise risks associated with COVID-19, forecast impact on
healthcare [2], support and justify the adoption of measures [3],
guide the optimal deployment of vaccines [4], and many aspects of
our lives with the virus [5]. Yet, given the urgency and the issues at
stake in the last 2 years, attention has been mostly focused on the
results of modelling, with little opportunity to explain the
methodology behind model building. We aim to fill this gap in
this short editorial.

‘‘Epidemic modelling’’ describes a set of approaches where
mathematical, statistical, and computational tools are used to
study the spread of communicable pathogens in host populations.
It uses data and hypotheses describing the demographic processes,
environmental characteristics, transmission opportunities, and
health consequences of diseases [6]. Equipped with suitable
equations for evolution, it can be used for logical verification with
conceptual ‘‘what if. . .’’ experiments, quantification, and conjec-
ture based on the construction of forecasts and scenarios [7]. As in
other scientific domains, these models aim at providing a
simplified representation of a real phenomenon, focusing on the
subset of properties and processes considered as essential drivers.
The construction of these models is therefore the result of

There are various reasons to model epidemics. First of all,
measuring the effect of interventions by direct observation is
seldom possible. Contrary to drugs that can be evaluated at the
patient level and compared between groups of patients, inter-
ventions in epidemics can only be assessed at the population level.
Setting aside the difficulty of measuring incidence at the
population level, this implies that repeated observation of the
same population under different regimes is not possible. In this
context, modelling is the only way to compare potential scenarios
for evolution. A second difficulty is the non-linear nature of
epidemic dynamics [8] and the importance of their stochastic
components (beginning and end of a wave, super-spreading) [9]:
the trajectory of an epidemic cannot be predicted by simple
proportionality rules and more sophisticated computations, as
performed in models, are required. A third challenge is that
unbiased descriptors of an epidemic would require complete
knowledge of the whole population at all times, when observation
is at best partial. Take for example the positive predictive value of a
PCR test: it is well known that this quantity depends on the
prevalence of the infection in the population as well as on
characteristics of the test. However, the prevalence of the disease is
generally unknown because it cannot be measured in real-time. A
statistical model may be used to reconstruct prevalence using
more readily available incidence data and information on the
incubation time of the disease. Finally, modelling allows account-
ing simultaneously for the uncertainty on all parameters describ-
ing the disease and its spread, especially for the computation of
prediction intervals: while it is relatively easy to produce a point
estimate, quantifying its robustness requires advanced analyses
[10–12].

Modelling can be used to retrospectively understand the past
course of an epidemic, quantify the current situation, or anticipate
the future course under different scenarios. Although the same
model may be able to answer several of these related questions, it
will generally require significant adaptations to accommodate
different time and space scales, as well as changes in the
environment and behaviours. Furthermore, considering the
potential importance of stated (or sometimes unrecognised)
hypotheses in model outputs, it is better if policymakers can be
informed by a set of congruent results from independent and,
when possible, methodologically complementary models, weight-
ed according to their fit to present or past data, as illustrated by
Fig. 1, reinforcing shared conclusions and highlighting discrepan-
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nterface of demography, medicine, and biology. The vast majority
f models adopt a ‘‘compartmental’’ description of the disease as a
equence of different stages encountered upon infection to cure or
eath [6]. The paradigmatic example is the ‘‘S-I-R’’ model,
escribing individuals as first susceptible to infection (S), then

nfected with the disease and contagious (I), and finally removed
rom transmission by recovery or deaths (R). In such models, the
ncidence is described as both proportional to the number of
usceptible individuals and the number of infected individuals,
eading to the non-linear equation for evolution [13].

The solution of these models can be obtained by (partial)
ifferential equations. This approach has produced numerous
heoretical and numerical tools. For example, this includes how
o compute the reproduction number as a function of other
arameters in the model. It is also highly flexible, allowing
efining the natural history with several stages, partitioning the
opulation according to relevant characteristics (age, sex,
egion. . .). These models provide a parsimonious (i.e., using
ew parameters) means to understand the non-trivial behaviour
f epidemic pathways. Despite their structural simplicity,
xperience has shown that such models generate robust results
hat reinforce their usefulness, even if only at the outset of an
pidemic [14]. The same models can also be solved by accounting
or stochastic effects, for example in the case of large inter-
ndividual variability and one wishes to quantify the impact of
his heterogeneity on epidemiologic dynamics, especially in
ontexts with small numbers of cases (emergence, importation,
xtinction, local spread). The logic of these compartmental
odels is to subdivide the population under study by categories
ith equivalent epidemiological contribution (by infection

tatus, by age, sex. . .). However, this approach does not scale
fficiently when the number of relevant characteristics increases.
n this case, an ‘‘individual-based model (IBM)’’ solution may be

ore appropriate. In this approach, mathematical equations for
he average population are replaced by individual rules of change
hat will be solved by computer simulation. Each individual in the

aspects of the COVID-19 pandemic can be covered by a single
model, a suite of modelling approaches allows examining all
relevant questions.

As always, models will benefit from being based on good data:
hence collecting comprehensive, independent, and unbiased data
in the early weeks of the spread of an emerging infectious disease,
or a new variant, is a major challenge. For example, in the initial
reconstruction of the course of the COVID-19 epidemic in the
French population, testing data were too limited while signal
extraction from hospital data required external age-stratified
infection fatality ratios [10]. Importantly, models can be used for
short-term extrapolation (‘‘forecasting’’), from a few days to a few
weeks in the case of COVID-19, because of ‘‘epidemic inertia’’, i.e.,
the fact that most cases likely to occur or be hospitalised soon are
determined by the current incidence. It is a totally different task to
use models to explore possible middle or long-term scenarios of
evolution (projections) as this will rely more heavily on
assumptions for change that are widely uncertain, as illustrated
by the successive selection of SARS-CoV-2 variants with changing
characteristics.

The relevance of a model requires confrontation with real data
and critical assessment of the underlying hypotheses. A mismatch
between the data and the model’s projections may challenge the
model’s assumptions and provide an opportunity to improve it.
Importantly, modelling allows exploration of scenarios that could
not be amenable to direct experimentation but does not guarantee
that such scenarios are desirable or feasible.

Given necessary simplifications, an epidemiological model will
have shortcomings that must be looked for, acknowledged,
discussed, and alleviated as new data become available. A last,
and sometimes mocked, feature of model-based scenario explo-
rations is that they produce ‘‘what if. . .’’ explorations that can
induce change in the very dynamics they are modelling. Unlike in
meteorology, where physical processes are unaffected by the
prediction of weather models, epidemiological model results have
the potential to change the future course of the epidemic. For
example, adopting a lockdown based simulated scenario compa-
risons makes the ‘‘no lockdown’’ strategy counterfactual and voids
predictions based on this hypothesis.

The rapidly conducted work since the onset of the COVID-19
pandemic helped provide valuable tools for epidemiological
surveillance and health forecasting. Modelling has proved a
framework where different fields can more easily communicate
through explicit hypotheses and data, all useful qualities that wild
guesses and verbal models lack. Claude Bernard was not a
supporter of the ‘‘numerical approach’’ in the medical sciences.
However, in 1865, he wrote [15]: "it is not that I condemn the
application of mathematical application in biological phenomena,
because it is by it alone that, in science will be constituted; only I
have the conviction that the general equation is impossible for the
moment, the qualitative study of the phenomena having neces-
sarily to precede their quantitative study." After almost one
century and a half of parallel advances in both empirical and
modelling approaches to infectious diseases, the COVID-19
pandemic undoubtedly constitutes the opportunity for the
junction predicted by Claude Bernard to finally happen.
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[15] Bernard C. Introduction à la médecine expérimentale. Ligaran 1865.

Mircea T. Sofoneaa,*, Simon Cauchemezb, Pierre-Yves Boëllec
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