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Abstract: The objective of this study was to investigate the accuracy of a Deep Neural Network
(DNN) in recognizing activities typical for hospitalized patients. A data collection study was
conducted with 20 healthy volunteers (10 males and 10 females, age = 43 ± 13 years) in a simulated
hospital environment. A single triaxial accelerometer mounted on the trunk was used to measure
body movement and recognize six activity types: lying in bed, upright posture, walking, wheelchair
transport, stair ascent and stair descent. A DNN consisting of a three-layer convolutional neural
network followed by a long short-term memory layer was developed for this classification problem.
Additionally, features were extracted from the accelerometer data to train a support vector machine
(SVM) classifier for comparison. The DNN reached 94.52% overall accuracy on the holdout dataset
compared to 83.35% of the SVM classifier. In conclusion, a DNN is capable of recognizing types
of physical activity in simulated hospital conditions using data captured by a single tri-axial
accelerometer. The method described may be used for continuous monitoring of patient activities
during hospitalization to provide additional insights into the recovery process.

Keywords: deep learning; human activity recognition (HAR); multiclass classification; patient
monitoring; wearable sensors

1. Introduction

Hospitalized patients spend most of their time inactive and lying in bed [1–3]. This is especially
concerning for older patients as physical inactivity following hospitalization can lead to functional
decline [4]. On the other hand, stable or improved activity levels can serve as a valuable input for
assessing patient discharge readiness [5]. Currently, monitoring mobility of hospitalized patients relies
largely on direct observation from the caregivers. There are multiple tools available to assess the
mobility and functional ability of patients. The choice of which assessment tool to use depends on
feasibility and the clinician’s preference. These tools are mainly divided into two categories; self-report and
performance-based measures [6]. Self-report questionnaires are easy to use and rapid, which makes
them more preferable to performance-based measures [6]. However, self-report is based on the patient’s
perception of their mobility rather than actual performance, which can lead to misleading results due
to recall bias and under-reporting [7]. On the other hand, performance-based measures, such as timed
“up and go” [8] or 6-minute walk test (6-MWT) [9], provide objective evidence about the capabilities
of the patient. The downside of using performance-based measures is that setting up a test course
requires equipment and measurements that can be time consuming for the clinician.

Wearable accelerometers have the potential to act as powerful tools in evaluating the health
status of patients during recovery in an objective way and enabling evaluation of rehabilitation
and other medical interventions [10]. Metrics such as amount of time spent in an upright position
and daily step count have been found to have a relationship with length of hospital stay [5,11–13].
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In addition, posture detection algorithms can provide important information for preventing pressure
ulcer formation [14]. These metrics can be determined by using human activity recognition (HAR)
based on camera systems or wearable sensors such as accelerometers, gyroscopes, magnetometers
and barometric pressure sensors. Processing signals from wearable sensors requires considerably
less computational power compared to the camera-based approach and imposes a less invasion of
privacy. HAR using accelerometers embedded in smartwatches and smartphones as fitness trackers
has recently become widely accepted in the consumer industry. However, step detection shows high
error rates during slow walking and when using walking aid [15,16], which remains as one of the
challenges for applying this technology in clinical settings, such as for patient monitoring.

HAR can be achieved by extracting hand-crafted features from sensor data and training classifiers
that learn patterns and relationships between features and class labels. This is the traditional approach
of using feature-based machine learning methods. Another approach that has become a popular
choice for HAR recently is deep neural networks (DNNs). DNNs have developed and advanced
considerably in recent years and has brought about breakthroughs in fields such as visual object
recognition and natural language processing [17]. The advantage of using DNNs over conventional
machine learning approaches is that they are able to automatically extract high-level features from raw
input so hand-crafted feature extraction is not required.

This paper introduces a classification model that can recognize typical activities of patients during
hospitalization using a single accelerometer mounted on the trunk. Two different approaches will be
explored and compared; a deep learning approach and a feature-based machine learning approach.
The aim is to investigate how accurately a deep learning algorithm can recognize activities typical for
hospitalized patients using a single trunk-worn accelerometer.

2. Related Work

2.1. Methods Used for Human Activity Recognition (HAR)

2.1.1. Feature-Based Approaches

Several acceleration features have been found to be valuable for HAR. These features are often
based on the frequency of the signal or the statistical distribution of signal values.

A few examples are: tilt angle estimates to discriminate between lying and upright [10], discrete
wavelet transform or vertical velocity estimates to recognize sit-to-stand transitions [18,19] and signal
power to distinguish static activities from dynamic [10,20–22]. Machine learning classifiers, such as
random forests, k-nearest neighbors and support vector machines, are often used to process acceleration
features and classify activity types [23–30].

2.1.2. Deep Neural Networks (DNNs)

Two types of DNN structures have been shown to perform well in accelerometer-based HAR in
literature. These are convolutional neural networks (CNNs), a type of recurrent neural networks called
long short-term memory (LSTM) and a combination of both. CNNs have been applied to sensor data
for HAR with outstanding performances [31–41]. Previous studies proposed augmenting the feature
vector extracted by a CNN with several statistical features [33,34]. Aviléz-Cruz et al. [35] developed a
three-headed CNN model for recognizing six activities. The three CNNs work in parallel, all receiving
the same input signal coming from a triaxial accelerometer and a triaxial gyroscope. The feature maps
of the three CNNs are flattened and concatenated before they are passed into a fully connected layer
and at last an output layer with a softmax activation.

Other studies have shown the relevance of using LSTM networks for HAR [36,42–45]. Lastly, a few
studies have suggested augmenting CNNs with LSTM layers [37,46,47]. Karim et al. [37] proposed a
model architecture in which a three-layer CNN and an LSTM layer extract features from sensor data in
parallel. The resulting feature vectors are then concatenated and passed into a softmax classification
layer. Others added LSTM layers after the CNN [46,47].
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2.2. Human Activity Recognition (HAR) for Patient Monitoring

Using accelerometers for monitoring mobility of patients has been shown to be suitable for
application in a clinical setting [10]. Aminian et al. [20] presented a rule-based HAR model
comprising two accelerometers worn on the chest and thigh to classify lying, sitting, standing and
dynamic activities. The model was tested on three hospitalized patients and compared to patient
self-report. The authors found a significant discrepancy between the sensor outcome and patient
self-report, which was explained by subjective bias of patients. The authors suggested that the
thresholds used for classification should be adapted to each patient for improved performance.
Rauen et al. [22] used a rule-based HAR model to monitor position changes of 30 immobile patients in
early neuro-rehabilitation using triaxial accelerometers worn on the chest and thigh. The chest-worn
accelerometer performed considerably better than the thigh sensor and was able to detect all position
changes of the patients, and a few in addition to what was recorded in the standard written care
documentation. The authors concluded that their approach was promising for monitoring position
changes of immobile patients and evaluating their overall health.

3. Methods

3.1. Data Collection

Twenty healthy subjects, ten males and ten females (age = 43 ± 13 years, weight = 78 ± 15 kg,
BMI = 26 ± 3 kg/m2) were recruited for the data collection. Inclusion criteria for volunteers was
age in range of 18–65 years. This age range was selected to represent the typical age of hospitalized
patients and a wide range of BMI were allowed for the participants in the study. Exclusion criteria
were pregnancy, movement disorders, hypersensitivity to stainless steel and allergy to medical grade
adhesives. The study, according to the regulations in the Netherlands, was waived as non-medical
research and therefore approval by a IRB institution was not needed. The Internal Committee
for Biomedical Experiments at Philips approved the study. Informed consent was obtained from
all volunteers.

A GENEActiv (Activinsights Ltd., Kimbolton, UK) sensor was attached to the left side of the
trunk of subjects by using a medical grade double adhesive. Careful orientation of the device allowed
alignment of the y-axis of the GENEActiv device to the caudo-cranial direction of the body, resulting
in alignment of the x-axis and the z-axis along the medio-lateral and antero-posterior direction of the
body, respectively. This accelerometer placement was used as it proved to be an effective location for
accelerometer-derived vital signs monitoring in patients. The sensor measured acceleration at 100 Hz
sampling frequency with 12 bit resolution in the range of ±8 g (1 g = 9.8 m/s2). More wearable sensors
were used to collect additional data during the measurement sessions, however, this data was not
used for the classification models described in this paper. All sessions were recorded with a video
camera for activity class label annotation purposes. Prior to the start of the data collection protocol,
the accelerometers were all calibrated by orienting the sensor axis along the vertical direction to set the
average signal to 1 g.

The protocol consisted of various activities typical for hospitalized patients such as lying in bed,
eating and drinking, performing physiotherapy exercises and walking with and without walking aids
at very slow to normal pace. A summary of the protocol can be found in Table 1 in chronological
order. The order of activities was not randomized between subjects. The subjects were asked to act as
a patient in the hospital (i.e., move slowly) for all tasks except for the Ebbeling test and the 6-MWT.
That is because these tests were used to determine the subjects’ fitness and physical performance.
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Table 1. Activities used in the study protocol, with corresponding class labels and duration per
participant. 6-MWT stands for 6-minute walk test.

Activity Label Class Label Duration (mm:ss)

Activities in and around bed
Lie supine Lying in bed 3:00
Lie left Lying in bed 0:30
Lie right Lying in bed 0:30
Restless in bed Lying in bed 1:00
Physiotherapy in bed Lying in bed 1:00
Reclined Lying in bed 0:30
Upright Upright 0:30
Sitting edge of bed Upright 0:30
Standing next to bed Upright 0:30

Treadmill activities
0.4 km/h Walking 2:00
0.6 km/h Walking 2:00
0.8 km/h Walking 2:00
1.0 km/h Walking 2:00
1.2 km/h Walking 2:00
1.5 km/h Walking 2:00
2.0 km/h Walking 2:00
3.0 km/h Walking 2:00
4.0 km/h Walking 2:00
Ebbeling Walking ∼10:00

Activities of daily hospital living
Dressing/undressing Upright 1:00
Reading Upright 1:00
Physiotherapy on a chair Upright 1:00
Eating/drinking Upright 1:00
Sit-to-Stand transitions Upright 1:00

Hospital ambulation
Patient transport in wheelchair Upright 1:00
Washing hands brushing teeth Upright 1:00
Crutches Walking 1:00
Anterior walker Walking 1:00
IV pole Walking 1:00
4-wheel rollator Walking 1:00
Self propelled wheelchair Wheelchair 1:00
6-MWT Walking 6:00

Stair walking
Stair ascent one leg injured Stair ascent 1:00
Stair descent one leg injured Stair descent 1:00
Stair ascent Stair ascent 1:00
Stair descent Stair descent 1:00

3.2. Data Preprocessing

Out of the 20 volunteers, one subject was not able to complete the 6-MWT and the walking
up/down stairs activities due to fatigue. For another subject the acceleration signals during the 6-MWT
had notably larger peaks than for all other subjects. That was due to one of the other devices used for
data collection colliding with the GENEActiv sensor during this activity. The 6-MWT acceleration data
for this subject was removed from the dataset because this periodic collision between devices is not
expected during measurements outside the laboratory environment.

Activities were manually annotated and synced with the acceleration signal. Camera recordings
were used to properly review volunteers activities during the protocol and generate annotations of start
time and stop time for the various tasks. A single researcher reviewed the captured videos to generate
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activity label timestamps. The activities of the protocol were categorized into six activity classes;
Lying, upright (sitting or standing), walking, stair ascent, stair descent and wheelchair transport.
The dataset was split randomly into training, validation and test subsets based on participant IDs.
Data from 50% of the subjects was used for training, 25% of the subjects for validation and 25% of the
subjects for final testing.

Fixed-length sliding window technique, with length set to 6 seconds and 50% overlap, was used to
segment the data. This segment length was chosen to make sure that relevant information was captured
in each data segment during activities like slow walking and wheelchair transport. Indeed, for slow
walking activities intervals of 6 seconds guaranteed the presence of at least 2 steps as well as for slow
wheelchair activities movement were often repetitive on a 3–4 s period. Labels were assigned to each
segment determined by class majority. Segments containing only unlabelled data or a majority of
unlabelled data, such as during breaks between activities, were not used for training the classifiers.

3.3. Classification

Two different classifiers were trained and their performances compared. The first classifier
was a DNN that achieves automatic feature extraction from the normalized acceleration segments.
The second classifier was a support vector machine (SVM) that required handcrafted features as input.
Figure 1 shows the different data preparation needed for the two classification models.

Figure 1. Flowchart showing the difference between handling the acceleration segments when using
a feature-based machine learning classifier, in this case a support vector machine (SVM), and a deep
neural network (DNN).

3.3.1. Deep Neural Network

Figure 2 shows the model architecture of the DNN. Normalized acceleration segments with
dimensions 600 × 3 (6 s of x-, y- and z-acceleration sampled at 100 Hz) were used as input for the
DNN. Three convolutional layers (filters: 8, 8 and 16 with kernel sizes: 23, 10 and 7, respectively)
followed by an LSTM layer (units: 6) performed automatic feature extraction for the classification.
The convolutional layers used a ReLu activation function and zero padding to avoid losing information
at the boundaries of the input data. Max pooling layers (pool sizes: 10, 4 and 2, respectively), also with
zero padding, and dropout layers (ratio: 30%) followed the convolutional layers to reduce risk of
overfitting. Batch normalization layers were added after each convolutional layer as they have been
shown to be effective in accelerating training of DNNs [45,48]. The last layer is a fully connected layer
with a softmax activation that returns the classification predictions. The model was trained using an
Adam optimizer [49] and batch size of 100. Hyperparameters such as number of filters, kernel size,
pool size, dropout ratio and batch size was determined by iterating one hyperparameter at a time.
The model was developed using Keras with TensorFlow backend.
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Figure 2. Model architecture of the deep neural network. Acceleration segments with dimension
N × 600 × 3 , where N represents number of segments, were used as input. Batch normalization layers
are not shown for simplicity. The dimensions of the feature maps before each feature extraction layer
are noted below the layers.

Due to class imbalance, models were trained using a balanced batch generator the by
imbalanced-learn library [50]. The purpose of the balanced batch generator was to make sure that
in every batch there were equal amounts of samples from each class. The batch generator did so
by creating copies of randomly selected samples belonging to all classes except the majority class of
the batch.

3.3.2. Feature-Based Classifier

A total of 86 features, from both time and frequency domains, were extracted from each
acceleration segment. The features are listed in Table 2 and have previously been proposed for
HAR [23,51,52]. Each feature was computed from the x-, y-, z-acceleration and the acceleration
magnitude. Features were normalized to zero mean and unit standard deviation.

Table 2. The features extracted from each acceleration segment. Each feature was extracted from four
signals; the x-, y-, z-acceleration and the acceleration magnitude.

Feature Description

Mean Mean value of the vector
Absolute mean Mean of absolute values in the vector
Median Median value of the vector
Mean absolute deviation Mean absolute deviation of the vector
Standard deviation Standard deviation of the vector
Variance Variance of the vector
Minimum value Lowest value in the vector
Maximum value Highest value in the vector

Full range Difference between the maximum and minimum value
of the vector

Interquartile range Difference between the 1st and 3rd quartile
Area Sum of all values in the vector
Absolute area Sum of all absolute values in the vector
Energy Sum of squared components of the vector
Correlation Correlation coefficients between each pair of vectors
Skewness Shape of distribution
Kurtosis Shape of distribution
Spectral entropy A measure of the complexity of a signal
Spectral centroid Mean of fourier transform
Spectral variance Variance of fourier transform
Spectral skewness Skewness of fourier transform
Spectral kurtosis Kurtosis of fourier transform
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Prinicpal component analysis has commonly been used for reducing dimensionality of a feature
set used for HAR [53–56]. By using the first 30 principal components, 99% of the cumulative variance
of the original data can be maintained. A radial basis kernel was used and the γ parameter was set
to γ = 0.001. Class weights were inversely proportional to class size to deal with class imbalance.
The classifier was implemented using Sklearn [57]. Feature normalization and development of the
PCA transform parameters were obtained on the training dataset and then applied to the validation
and testing datasets.

4. Results

The dataset contained approximately 23,000 labelled segments in total. Roughly 64% of the
segments belonged to the walking class while the wheelchair class, which was smallest class, accounted
for less than 2% of all the samples. Both the DNN and SVM classifiers were evaluated on the same
holdout dataset containing data from 25% of the subjects. Table 3 shows the performance scores of
both classification models. The DNN reached a considerably better performance with 94.5% in overall
accuracy compared to 83.35% for the SVM. The between-subject variability in the DNN classification
accuracy within the holdout dataset was 6%. F1-score is often considered a better metric when dealing
with classification problems of imbalanced datasets and is therefore listed in the table.

Table 3. Classification performance of the deep neural network (DNN) and support vector
machine (SVM) on holdout data. Precision, recall and F1-scores are reported as weighted averages.

Accuracy Precision Recall F1-Score

DNN 0.9452 0.9507 0.9452 0.9464
SVM 0.8335 0.8919 0.8335 0.8507

Figure 3 shows the accuracy and loss of the DNN model on training and validation datasets.
The performance of the model stops improving around the 50th training epoch. The model performs
similarly for the training data and the validation data, which indicates low risk of overfitting.

(a) (b)

Figure 3. Learning curves during training of the deep neural network (DNN). (a) Accuracy of the
training and validation data, (b) loss of the training and validation data.

Figure 4a shows the confusion matrix resulting from applying the DNN to the holdout data.
Lying in bed was correctly classified for 100% of the segments. Segments labelled as upright and walking
were correctly classified 94.7% and 94.9% of the time, respectively. The stair ascent, stair descent and
wheelchair classes had slightly poorer classification rates of 82.1%, 85.1% and 86%, respectively.
For comparison, the confusion matrix of the SVM on the same holdout data is shown in Figure 4b.
The classification rate of the SVM is less for all classes except for lying in bed and wheelchair.
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Figure 4. Normalized confusion matrices on holdout data of (a) the deep neural network (DNN) and
(b) the support vector machine (SVM) classifier.

Figure 5 shows the percentage of wrongly classified segments per activity of the holdout dataset
to indicate which activities are more difficult to classify than others. Slow walking, walking with
walking aid and walking up/down stairs are the most challenging activities to classify for both models.

(a)

(b)

Figure 5. Percentage of wrong predictions per activity by (a) the deep neural network (DNN) and
(b) the support vector machine (SVM). The colors represent the wrongly predicted class.
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5. Discussion

This study demonstrated that a DNN model could be used to accurately classify activities that
are typical for hospitalized patients using an accelerometer worn on the trunk. The DNN model
showed substantially larger accuracy than a feature-based SVM on the presented laboratory data.
Continuous patient monitoring using this approach could add insight into the recovery process by
providing objective information about patients’ mobility and behavior. The DNN architecture was
relatively small with 3 convolutional layers, a recurrent layer and a final dense layer. This model
architecture and the number of operations required for real time data processing make the
implementation of the DNN feasible for embedded processing in wearable devices equipped with
modern processors capable of running computing libraries such as TensorFlow Lite [58].

Monitoring patient activity requires accurate walking detection at slow speeds as patients often
ambulate at less than 1 km/h [59]. At very slow walking speeds, both classifiers had difficulties
detecting walking. The DNN misclassified 27% of segments in the holdout dataset representing
walking at 0.4 km/h as upright position. The ratio of misclassified segments improved as speed
increased and for speeds higher than 1 km/h, 100% of the segments were correctly classified as walking.
Segments representing walking with a 4-wheel rollator, walker and crutches were misclassified as
upright for 18% to 26% of the segments. Activities while standing such as dressing/undressing,
washing hands and brushing teeth were sometimes mistaken as walking or wheelchair. That may be
due to small movements that resemble acceleration signals belonging to those two classes. The walking
up/down stairs activities had 9% to 26% misclassification rates, which was expected partly because
the acceleration signals while walking up/down stairs resemble those during walking in the corridor.
In addition, in between floors there were parts where the subjects had to walk a few steps on a flat
level before continuing walking up/down the stairs. These short flat level parts were not specifically
annotated and therefore it is possible that there were some segments labelled as walking up/down
stairs that should have been labelled as walking.

The amount of misclassified segments is considerably higher for the SVM. Walking with crutches
was the activity with the highest percentage of misclassifications, in total 82%. These segments where
misclassified as upright, wheelchair, stair ascent and descent. Walking with an anterior walker and
4-wheel rollator follow with misclassification rates 67% and 53%, respectively. Many of the activities
while standing or sitting, such as dressing, undressing, physiotherapy and reading, were falsely
predicted as belonging to the wheelchair class. The difficulties of the SVM in predicting walking with
walking aid and the wheelchair class might indicate that different features were needed for these
patient-specific activities.

A limitation of this study was that the algorithm was trained and tested using laboratory
data. Previous studies have shown that performance of algorithms in laboratory conditions may
not accurately reflect performance in daily life [60]. This especially applies to algorithms such as
DNNs that require large and representative datasets for generalizing. However, preliminary testing
including the unlabelled activities from the dataset collected for this study indicates good performance
on new data, with just a few false positives for wheelchair and stair walking activities. Figure 6 shows
the predictions of the DNN classifier for segments of the whole recording session of a representative
participant from the holdout dataset. Another limitation is that this study does not address the
challenge of monitoring changes in activity pattern in patients which is an important target when
looking into clinical applicability of the presented model to support assessment of patient recovery
during hospitalization.
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Figure 6. Predictions of the deep neural network (DNN) when the whole recording session of one
subject is passed into the model. The grey areas represent unlabelled activities, which were not included
when training the model.

6. Conclusions

This work showed that a single trunk-worn accelerometer has the potential to monitor mobility of
patients in hospitals. The DNN model presented in this report is a reliable algorithm for recognizing
activities that are typical of daily patient behavior in the hospital. The model can accurately detect
walking at speeds down to 1 km/h. This method has the potential to provide nurses and doctors
insight into the recovery process of their patients and valuable objective information for making
decisions regarding patient discharge. Future studies are needed to validate the classification model in
continuous monitoring of hospitalized patients.
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