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Abstract. Placental structural abnormalities and dysfunction 
in those with gestational diabetes mellitus (GdM) can lead to 
increased placental permeability, which is in turn related to a 
poorer maternal and fetal prognosis. The present study sought 
to assess whether increased placental permeability in rats with 
GdM was accompanied by alterations in tight junction (TJ) 
factors and to evaluate the impact of low molecular weight 
heparin (lMWH) on these factors. The present study was 
conducted using pregnant female rats that were randomized 
into control, GdM and GdM + lMWH groups. diabetes was 
induced via intraperitoneal administration of streptozotocin 
to rats in the GdM and GdM + lMWH groups, whereas rats 
in the GdM + lMWH group received daily subcutaneous 
lMWH starting on day 5 of pregnancy. on gestational day 16, 
all rats were sacrificed and Evans Blue (EB) assay was used 

to gauge vascular permeability based on EB dye leakage. 
Transmission electron microscopy was further used to 
assess TJ structures, and the TJ proteins zonular occludens-1 
(Zo-1) and occludin (ocln) were assessed using immu-
nohistochemistry and western blotting. Blood samples were 
obtained from the abdominal aorta for eliSa measurements 
of advanced glycation end products (aGes) concentrations, 
and placental receptor for aGes (raGe) and vascular endo-
thelial growth factor (VeGF) expression was assessed using 
reverse transcription-quantitative Pcr. in addition, western 
blotting was used to measure placental nF-κB. Compared 
with in the control group, EB leakage was markedly increased 
in GdM group rats; this was associated with reduced Zo-1 
and ocln expression. conversely, lMWH attenuated this 
increase in placental permeability in rats with GdM and also 
mediated a partial recovery of Zo-1 and ocln expression. 
Blood glucose and serum AGEs concentrations did not differ 
between the GdM and GdM + lMWH groups. Furthermore, 
lMWH treatment resulted in decreases in raGe and VeGF 
mrna expression levels, which were upregulated in the GdM 
group, whereas it had the opposite effect on the expression of 
nF-κB. In conclusion, GDM was associated with increased 
placental permeability and this may be linked with changes 
in TJs. lMWH intervention mediated protection against 
this GdM-associated shift in placental permeability via the 
raGe/nF-κB pathway.

Introduction

Gestational diabetes mellitus (GdM) is a form of diabetes 
that first manifests during pregnancy (1). Abnormalities of the 
placental barrier, including structural and functional dysfunc-
tion, are evident in the placenta of most women suffering from 
GdM in the form of abnormal glucose metabolism, and these 
changes can lead to adverse pregnancy outcomes (2,3). The 
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main structure of the placental barrier is the vasculo-syncytial 
membrane (VSM). The transcellular and paracellular path-
ways are the two main mechanisms whereby solutes are able 
to traverse the VSM. The syncytiotrophoblasts present on the 
maternal surface of the VSM lack any obvious fluid-filled 
paracellular space, but there is an inverse relationship between 
the rate of diffusion of inert hydrophilic solutes on the placenta 
and their molecular size, which suggests that a paracellular 
route exists at the VSM (4). Paracellular permeability is regu-
lated by tight junctions (TJs) and adherens junctions, and by the 
proteins that make up these adhesive cell-cell junction points. 
TJs have been reported to be present in both trophoblast cells 
and in fetal vessel epithelium (5).

Previous studies have suggested that placental dysfunction 
in patients with GdM is caused by hyperglycemia (6,7). in 
addition, other studies have identified that insulin therapy does 
not improve fetal or newborn metabolic outcomes (8), and that 
it can cause alterations in the placenta (9), indicating factors 
other than glucose may be involved in the pathophysiology of 
GdM. in a number of studies, advanced glycation end prod-
ucts (AGEs) have been identified to be present in higher levels 
in women suffering from GdM (10,11) and these products are 
associated with poor fetal outcomes (12). aGes are reportedly 
involved in increasing the permeability of retinal vascular and 
endothelial cells (13,14). aGes exert their deleterious effects 
by either directly damaging cells or by binding to the specific 
receptor for aGes (raGe). The binding of aGes with raGe 
stimulates nF-κB pathway activation (15), enhancing the 
release of vascular endothelial growth factor (VeGF) (16).

it was therefore hypothesized that aGes may be an impor-
tant factor worthy of study in the context of placental barrier 
dysfunction in patients with GdM. The present study evaluated 
placental permeability and the expression of TJ-associated 
proteins in rats with GdM, and investigated the association 
of GdM with alterations in aGes, raGe, nF-κB and VEGF. 
in addition, low molecular weight heparin (lMWH), as 
an anticoagulant capable of reducing the risk of recurrent 
placenta-mediated pregnancy complications (17), has a potent 
effect on the vascular endothelium (18,19). Kevane et al (20) 
identified that the LMWH tinzaparin serves a protective role 
in endothelial barrier function. as such, lMWH was employed 
to assess whether it had the ability to reduce placental perme-
ability and to evaluate its relationship with raGe.

Materials and methods

Materials. A total of 35 healthy 12-week-old female 
Sprague-dawley (Sd) rats (250-300 g) and 15 adult male 
SD rats (300-350 g) were acquired from Beijing Vital River 
laboratory animal Technology co., ltd. animals were main-
tained in a controlled environment (25±1˚C, 50% humidity 
and 12-h light/dark cycle) and were given free access to water 
and a standard laboratory diet. The Medical ethics committee 
of Southeast university approved all animal studies.

The primary antibodies used in this study were: rabbit 
anti-zonular occludens-1 (Zo-1) (cat. no. 61-7300; invitrogen; 
Thermo Fisher Scientific, inc.), rabbit anti-occludin 
(ocln; cat. no. ab216327; abcam), rabbit anti-nF-κB p65 
(cat. no. ab16502; abcam), rabbit anti-GaPdH (cat. no. ab9485; 
abcam) and horseradish peroxidase (HrP)-conjugated goat 

anti-rabbit secondary antibody (cat. no. ab130805; abcam). 
The lMWH used was nadroparin calcium injection, which 
was purchased from GlaxoSmithKline plc. Bull serum 
albumin (BSA) was purchased from Gibco (Thermo Fisher 
Scientific, Inc.).

Animal model preparation. Female rats in estrus were allowed 
to cohabitate for one night with male rats at a 2:1 ratio in order to 
facilitate conception; female rats with detectable sperm in their 
vaginal smear were considered pregnant (day 0). The 30 preg-
nant rats were randomized into three groups (n=10/group): 
normal control (nc) group, GdM group and GdM + lMWH 
group. GdM was induced in animals via intraperitoneally 
injecting a single dose of streptozotocin (45 mg/kg; Wako Pure 
chemical industries, ltd.), which had been freshly prepared. 
Blood glucose levels of all rats were detected with a glucom-
eter (onetouch, ultra, Johnson & Johnson). rats exhibiting 
a glucose concentration of >16.7 mmol/l for 3 days after the 
injection were used in this study. nc animals were instead 
injected with 1 ml sodium citrate buffer. on gestational day 5, 
rats in the GdM + lMWH group were injected subcutane-
ously with LMWH (600 IU/kg/d) to establish an LMWH 
intervention model, while other groups were administered an 
equal volume of 0.9% saline. On day 16 of pregnancy, animals 
were sacrificed and the placentas were removed for western 
blotting, reverse transcription-quantitative (rT-q)Pcr, 
transmission electron microscopy (TeM) and immunohisto-
chemistry (iHc).

ELISA. Blood samples (1 ml) were obtained from the 
abdominal aorta on day 16 after sacrifice and were centri-
fuged at 2,000 x g for 20 min at 5˚C. Concentrations of AGEs 
were measured from the collected samples using a rat aGes 
ELISA kit (cat. no. RA20685; Bioswamp Wuhan Beinle 
Biotechnology Co., Ltd.), according to the manufacturer's 
protocol. The sensitivity of this assay was <6 ng/ml, whereas 
the coefficient of intraplate variation was ≤9%, with interassay 
variation ≤11%. AGEs were detected using a microplate reader 
(ELx800; BioTek Instruments, Inc.) at an emission wavelength 
of 450 nm. Standard curves were used to calculate aGes 
concentrations (ng/ml) in serum.

Evans Blue (EB) assay. An EB assay was used to measure 
VSM leakage. EB (50 mg/kg; Sigma-Aldrich; Merck KGaA) 
was injected into the tail vein in 2% PBS. Rats were sacrificed 
45 min after injection of EB and the placentas were harvested, 
weighed, and incubated in 1 ml formamide at 55˚C for 24 h to 
extract EB from tissues. The supernatant was collected after 
centrifugation at 12,000 x g for 0.5 h at 4˚C and a microplate 
reader was used to measure absorbance at 630 nm. EB content 
in placental samples (in ng/ml) was calculated based upon 
a standard curve using the following formula: Placenta EB 
content (ng/mg)=sample EB content (ng/ml) x formamide 
volume (ml)/placental weight (mg) (21).

TEM. The ultrastructure of placentas was examined by TeM. 
The placental samples were placed in cacodylate buffer with 
0.05 M sucrose and stored at 4˚C for 24 h, following fixation 
with 2.5% glutaraldehyde in cacodylate buffer at 4˚C for 
1 h. The placental samples were fixed again in 1% osmium 
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tetroxide for 1 h at 4˚C after dehydration treatment with a 
graded ethanol series, and then placed into in a graded series 
of acetone. Samples were then sliced into sections (1 µm) 
after embedding in araldite. The sections were dyed with 2% 
uranyl acetate for 10 min and then with 100 µl lead citrate for 
5 min at 25˚C. The placental TJ ultrastructure was system-
atically investigated via digitalMicrograph 3.9 (Gatan inc.) by 
electron microscope (eVo Ma 10; Zeiss GmbH) at x25,000 
magnification.

IHC. iHc was conducted to investigate differences in the 
expression of Zo-1 and ocln in placental tissue. Placental 
samples were fixed in formalin at 22˚C for 6 h, dehydrated by 
different concentration gradients of ethanol, be transparent in 
xylene for 30 min, paraffin-embedded, and sectioned at 5 µm. 
The paraffin slices were dewaxed and rehydrated by xylene 
and with a graded ethanol series, then treated with 3% H2o2 for 
10 min, followed by incubation with appropriate primary anti-
bodies (dilution: rabbit anti-Zo-1, 1:200; rabbit anti-ocln, 
1:500) for 24 h at 4˚C. Secondary antibodies (1:500) were then 
used to probe samples for 50 min at 37˚C. The sections were 
then restained with 1% hematoxylin at 22˚C for 1 min, dehy-
drated, cleared and mounted. an automated light microscope 
(dMla, leica Microsystems GmbH) was used to detect the 
location of dyeing area.

Western blotting. riPa buffer [5 mM edTa, 150 mM nacl, 
3 µl PMSF, 1% NP40 and 50 mM Tris-HCl (pH 7.0)] was used 
for protein extraction. BCA protein assay kit (P0009, Beyotime 
Institute of Biotechnology) was used to quantify the protein of 
each samples. equivalent protein amounts from each sample 
(4.25 µg) were then separated via SDS-PAGE with 10% gels, 
followed by transfer onto a PVdF membrane (Ge Healthcare 
Life Sciences). Blots were washed three times using TBS-0.1% 

Tween (TBST; 10 min/wash), blocked using 5% fat-free milk 
in TBST at 22˚C for 4 h and then probed overnight at 4˚C with 
primary antibodies (dilution: rabbit anti-Zo-1, 1:1,000; rabbit 
anti-ocln, 1:2,000; rabbit anti-nF-κB p65 1:500; rabbit 
anti-GAPDH, 1:2,500). Blots were again washed three times 
with TBST and then probed with secondary HRP-conjugated 
goat anti-rabbit IgG (1:3,000 in TBST containing 10% BSA) 
at 22˚C for 1 h. An enhanced chemiluminescence kit (Tanon 
5200; Tanon Science and Technology co., ltd.) was used for 
protein visualization. images were recorded and data were 
analyzed with image J 1.8.0 (national institutes of Health).

RT‑qPCR. raGe and VeGF-a mrna expression levels 
were assessed using total rna that was extracted from 
placental homogenates using Trizol® (invitrogen; Thermo 
Fisher Scientific, Inc.) based on manufacturer's protocols. The 
first-strand complementary synthesis reaction was performed 
using a PrimeScript RT Reagent Kit (RR047A; Takara 
Biotechnology Co., Ltd.). RAGE and VEGF expression were 
detected using the Slan real-time Pcr detection system 
(Shanghai Hongshi Medical Technology co., ltd.). The primer 
sequences were as follows: VEGF, forward 5'-CAA TGA TGA 
AGC CCT GGA GTG-3', reverse 5'-GCT CAT CTC TCC TAT 
GTG CTG G-3'; RAGE, forward 5'-TGA GAC GGG ACT CTT 
CAC GCT-3', reverse 5'-CAC CTT CAG GCT CAA CCA ACA-3'; 
and β-actin, forward 5'-TGC TAT GTT GCC CTA GAC TTC G-3' 
and reverse 5'-GTT GGC ATA GAG GTC TTT ACG G-3'. β-actin 
was used as an internal control. Amplification conditions were: 
95˚C for 10 min for enzyme activation, 40 cycles of denatur-
ation at 95˚C for 15 sec, annealing at 60˚C for 10 min, and 
dissociation curve assessment between 75˚C and 95˚C with 
continuous fluorescence measurement. Only RNA samples 
with an od260/od280 ratio of 1.8-2.0 were used for rT. each 
sample was measured in triplicate and the 2-ΔΔcq method (22) 
was used to assess relative gene expression.

Statistical analysis. all data were presented as the 
means ± standard deviation of triplicate experiments. SPSS 
21.0 (SPSS, inc.) was used for all analyses, with analysis 
of variance via one-way analysis of variance followed by 
post-hoc Student-newman-Keuls test. P<0.05 was considered 
to indicate a statistically significant difference.

Results

Effects on placental permeability as measured by EB assay. 
EB is a dye with a high affinity for albumin, which cannot pass 
the endothelium; therefore, EB bound to albumin is restricted 
to blood vessels. in some pathological conditions associated 
with high vascular permeability, endothelial cells partially 
lose their TJs and allow small molecules such as albumin to 
pass through (21), thereby allowing EB leakage into tissues. 
In the present study, EB was injected into the tail vein of rats 
to evaluate paracellular permeability of the placenta in each 
group.

upon examination, it was evident that placental coloration 
differed between groups, with higher EB content corre-
sponding to a darker color (Fig. 1A). Furthermore, optical 
density analysis revealed that EB leakage in GDM group 
placentas was ~1.5-fold higher than in the nc group (P<0.05). 

Figure 1. EB content in the placentas in each group of rats. (A) Placentas were 
removed from rats by cesarean section after Evans Blue assay on day 16 of 
pregnancy in each group. Black arrows point to the rat placentas. (B) Content 
of EB in the placenta of each group on day 16 of pregnancy. Data are pre-
sented as the means ± standard deviation. aP<0.05 vs. nc group, bP<0.05 vs. 
GDM group. EB, Evans blue; GDM, gestational diabetes mellitus; LMWH, 
low molecular weight heparin; nc, normal control.
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LMWH-treated GDM rats exhibited lower EV leakage 
compared with in the GdM group (P<0.05), although this 
leakage was still higher compared with the NC group (P<0.05; 
Fig. 1B).

Alteration of placental TJ structure. The ultrastructure of TJs 
was assessed by TeM. under TeM, TJs between syncytiotro-
phoblasts and vascular endothelial cells in the placental tissue 
were loose and damaged in placental samples from the GdM 
group. in contrast, animals treated with lMWH exhibited 
reduced placental structural damage relative to animals in the 
GdM group (Fig. 2a).

TJ protein expression analysis. iHc was used to observe the 
localization and expression of TJ proteins, including Zo-1 and 
ocln. as expected, Zo-1 and ocln were mostly located 
in the syncytiotrophoblast cell membrane, localizing to the 
TJs between cells. The two proteins did not exhibit apparent 
redistribution in the GdM group or the GdM + lMWH group 
compared with in the NC group (Fig. 2B). The expression 
levels of Zo-1 and ocln were lower in the GdM group 
compared with in the nc group.

Western blotting was used to confirm differences in OCLN 
and Zo-1 protein levels, demonstrating clear reductions in 
these proteins in GdM placental tissues compared with in the 
nc group (P<0.05) (Fig. 2c and d), whereas lMWH upregu-

lated the expression levels of these proteins (P<0.05), albeit to 
levels lower compared with the nc group (P<0.05).

Increased blood glucose and serum AGEs levels in the GDM 
model. on day 16 of pregnancy, blood glucose and serum aGes 
levels were assessed in all groups. animals in the GdM and 
GDM + LMWH groups exhibited significantly higher blood 
glucose levels compared with in the nc group (P<0.05), but no 
significant differences were observed between the GDM and 
GdM + lMWH groups (P>0.05; Fig. 3a). aGes serum levels 
exhibited variations similar to those of blood glucose in the 
GDM and GDM + LMWH groups (Fig. 3B).

Altered placental RAGE/NF‑κB pathway activation. in order 
to clarify the signaling pathways associated with altered 
placental permeability in this model, the raGe/nF-κB 
signaling pathway was analyzed in the placental samples. The 
mrna expression levels of raGe and VeGF were assessed 
via RT-qPCR. RAGE expression was significantly increased in 
samples from the GdM and GdM + lMWH groups compared 
with in the nc group (P<0.05). lMWH treatment partially 
decreased this increase in raGe expression in animals with 
GdM (P<0.05; Fig. 4a). compared to normal rats, GdM rats 
exhibited a significant upregulation of VEGF mRNA (P<0.05), 
whereas lMWH treatment reduced VeGF expression to levels 
similar to in the NC group (P<0.05; Fig. 4B). These results 

Figure 2. alterations in the structure, location and expression of tight junctions in the placentas of each group. (a) electron micrographs of the placental 
ultrastructure in each group were captured via transmission electron microscopy at x25,000 magnification (scale bar, 0.5 µm). White arrows indicate the TJs 
on the membrane between cells. (B) Expression and localization of ZO-1 and OCLN in placental tissues were observed via IHC (scale bar, 100 µm). Images 
in the first row correspond to x100 magnification, while those in the second row correspond to x200 magnification. (C) Representative western blotting results 
for Zo-1, ocln and nF-κB. GAPDH served as a loading control. (D) Results of western blot analysis of the expression of ZO-1, OCLN and NF-κB, with 
semi-quantification shown. Data represent fold changes relative to the NC group. Data are presented as the means ± standard deviation from three independent 
experiments. aP<0.05 vs. nc group, bP<0.05 vs. GdM group. GdM, gestational diabetes mellitus; lMWH, low molecular weight heparin; nc, normal control; 
ocln, occludin; TJ, tight junction; Zo-1, zonular occludens-1.
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suggested that lMWH treatment may reduce the expression 
of raGe and VeGF at the mrna level.

nF-κB protein levels were assessed via western blotting 
(Fig. 2c). compared with in nc animals, rats in the GdM 
group exhibited significantly increased placental NF-κB levels 
(P<0.05). nF-κB levels were reduced following treatment with 
lMWH in GdM rats (P<0.05) to levels higher compared with 
nc animals (P<0.05; Fig. 2d).

Discussion

The present study established a rat model of GdM to observe 
the changes in placental permeability and TJs, the effects of 
lMWH on these parameters, and the potential underlying 
mechanisms. It was identified that the GDM rats exhibited a 
significant increase in EB leakage and a lower expression of the 
TJ proteins ocln and Zo-1 compared with in nc animals. 
Significant changes in the placentas of patients with GDM 
have previously been identified, including decreased syncy-
tiotrophoblasts apical microvilli density, a thickened placental 
barrier and increased ST vacuoles (23). Hayward et al (24) 
observed changes in placental glucose and neutral amino 
acids in the context of GdM; however, the changes in placental 
transfer of macromolecules, such as albumin, in GdM remain 
to be elucidated The leakage of EB bound to albumin in the 

present study provided evidence of the transfer of albumin 
through the placenta. reductions in TJ proteins in the placenta 
of GdM indicate dysfunction of the TJ barriers, thus increasing 
macromolecule flux via the paracellular route (6,25). The 
results of TEM and IHC in the present study identified that 
TJs were located in endothelial and trophoblast cells, which 
is consistent with previous studies (25,26). GdM placentas 
have been shown to exhibit a significant reduction in the TJ 
proteins, Zo-1 and ocln, and the adherens junction proteins, 
Ve-cadherin and β-catenin, particularly upon exposure to 
hyperglycemia during the first trimester when the vascular 
remodeling phase of placental growth occurs (25). alterations 
in placental permeability and the expression of TJ proteins in 
GdM placentas may account for adverse fetal and neonatal 
outcomes (6,8).

in the current study, the blood glucose and serum aGes 
levels in GdM rats were higher compared with in normal rats. 
Previous work by Li and Yang (27) indicated that the level 
of serum aGes was positively associated with glucose levels. 
chronic hyperglycemia has been highlighted as a possible 
contributing factor in diabetic vascular complications (28) 
and may be the cause of increased vascular permeability in 
the context of diabetic retinopathy (29). under conditions 
of chronic hyperglycemia, aGes are actively formed and 
accumulate in circulation and in various tissues, as they are 
produced due to the non-enzymatic glycation of proteins, 
lipids and nucleic acids (30). The diabetic vascular complica-

Figure 3. levels of blood glucose and serum aGes in each group of rats. 
(A) Blood glucose levels were tested with glucose oxidase. (B) Levels of 
serum aGes tested by eliSa. data are expressed as the means ± standard 
deviation. aP<0.05 vs. nc group, bP>0.05 vs. GdM group. aGes, advanced 
glycation end products; GdM, gestational diabetes mellitus; lMWH, low 
molecular weight heparin; nc, normal control.

Figure 4. mrna expression levels of raGe and VeGF in placentas of each 
group. (a) results of rT-qPcr analysis of the expression of raGe mrna. 
data represent fold changes relative to the nc group. data are presented as 
the means ± standard deviation from three independent experiments. aP<0.05 
vs. nc group, bP<0.05 vs. GDM group. (B) Results of RT-qPCR analysis of 
the expression of raGe mrna. aP<0.05 vs. nc group, bP<0.05 vs. GdM 
group. lMWH, low molecular weight heparin; raGe, receptor for advanced 
glycation end products; rT-qPcr, reverse transcription-quantitative Pcr; 
VeGF, vascular endothelial growth factor.
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tions triggered by aGes are dominant and independent of 
hyperglycemia in those with diabetes (31). Previously, aGes 
were reported to increase the permeability of retinal vascular 
and endothelial cells by upregulating certain chemokines or 
promoting actin rearrangement (32). In Alzheimer's disease, 
AGEs have been identified as disrupting TJs in the blood-brain 
barrier, thus increasing its permeability (33). Therefore, both 
hyperglycemia and aGes have an effect on vascular perme-
ability.

aGes exert their deleterious effects by either directly 
damaging cells or through a receptor-mediated pathway (15). 
raGe is the most studied receptor of aGes and is a member 
of the immunoglobulin superfamily, present primarily on 
vascular, endothelial and smooth muscle cells, and on mono-
cyte/macrophage membranes (34). once aGes are recognized 
by raGe on the cell membrane, downstream signaling leads 
to oxidative stress and inflammation in cells via the activation 
of nF-κB (35). The expression of RAGE can be upregulated 
by aGes, as evidenced by the fact that raGe protein levels 
are increased in settings where aGes are abundant (15). The 
present study identified that the expression of placental RAGE 
mrna was increased in GdM group animals that exhibited 
elevated levels of serum aGes. nF-κB is a downstream target 
of RAGE and was significantly elevated in the GDM group 
in the present study. Mice with enhanced nF-κB expression 
exhibit greater sensitivity to lipopolysaccharide-induced 
toxemia, which is associated with an increase in vascular 
permeability and a clear reduction in the formation of TJs (35). 
upon activation of raGe, the transcription factor nF-κB 
undergoes nuclear translocation and binds to the promoter 
region of raGe, thereby inducing raGe gene expression (15). 
it was therefore inferred that the raGe/nF-κB pathway was 
activated in GdM placentas in response to high aGes levels.

As a master regulator of inflammation, NF-κB is capable 
of controlling the transcription of a range of genes related to 
the inflammatory response, including VEGF, which is known 
to enhance vascular permeability (36). VeGF binding to its 
cell surface receptors triggers the disassembly of TJs and 
promotes an increase in vascular permeability (36). increased 
vascular permeability, deficiency of Ve-cadherin and 
elevated levels of VeGF have been reported in patients with 
GdM (26,37). Previous studies of barrier systems, such as the 
blood-brain barrier (33), the blood-retinal barrier (13) and the 
blood-placenta barrier (26), have confirmed the relationship 
between VeGF and TJs. research into the blood-brain barrier 
has revealed that the expression of VeGF is upregulated 
by hypoxia, thereby increasing blood-brain barrier perme-
ability (33). in addition, blood-retinal barrier dysfunction 
has been recovered by targeting Zo-1 through a reduction 
in VeGF (38). Hypoxia-induced TJ dysfunction in tropho-
blasts can be improved by downregulation of VeGF (26). a 
recent study identified that VEGF165b, intercellular adhesion 
molecule 1 (icaM-1) and aGes in GdM were higher, and 
VeGF165b/total VeGF ratio was higher in GdM, which was 
correlated with icaM-1 and aGes (39). The present study 
also identified that the expression of VEGF-A mRNA was 
increased in the placentas of GdM rats, but did not detect the 
expression of each isoform of VeGF-a. VeGF165 and VeGF121 
are the most highly expressed VeGF-a isoforms, whereas 
VeGF121 has no affinity for heparin (40). Therefore it was 

hypothesized that VeGF165 serves a major role in regulating 
placental permeability in GdM. it was further hypothesized 
that the raGe/nF-κB pathway in the placenta of animals 
with GDM can upregulate VEGF expression, making this an 
important mechanism underlying dysfunction at the GdM 
placental barrier.

The present study reported that lMWH attenuated the 
increase in VSM permeability in rats with GdM; this was 
accompanied by a partial recovery in the expression of Zo-1 
and ocln. There was no significant difference in blood 
glucose or serum aGes concentrations between GdM and 
GdM + lMWH animals, indicating that lMWH has no role 
in regulating blood glucose or serum aGes. This effect may 
instead be due to the non-anticoagulant effects of lMWH (40). 
according to previous studies, nadroparin, which was used in 
the present study, has anti-inflammatory, anti-metastatic and 
anti-fibrotic activities (41-44). Yalniz et al (44) reported that 
nadroparin exerts anti-oxidative and anti-inflammatory effects 
by regulating the nF-κB and nuclear factor erythroid 2-related 
factor 2/heme oxygenase 1 pathways. in contrast to tinzaparin, 
fondaparinux or to direct oral anticoagulants, enoxaparin 
increases the permeability of podocytes to albumin, as 
reported by delézay et al (45). The heterogeneity of lMWHs 
may explain these inconsistent and even opposite conclusions.

in the present study, lMWH intervention resulted in a 
decrease in raGe and VeGF mrna expression levels, which 
were upregulated in animals in the GdM group, whereas 
it markedly reduced NF-κB protein levels. The LMWH 
tinzaparin has been identified to serve a protective role in 
endothelial barrier function (20). Bentzer et al (46) revealed 
that heparins are potential inhibitors of hypertension-induced 
increases in vascular permeability.

lMWH has been reported to be a competitive antagonist 
of raGe that competes with aGes for raGe binding, inhib-
iting its activation. This was identified by Takeuchi et al (47), 
who demonstrated that lMWH attenuates changes in diabetic 
kidneys by inhibiting RAGE. This finding suggests that 
lMWH may serve as an inhibitor of raGe, which would 
alter the placental permeability in GdM. it was hypothesized 
that lMWH acts as a competitive antagonist of raGe, whose 
expression was downregulated, thereby inactivating the 
raGe/nF-κB pathway. Furthermore the expression of VEGF 
was decreased, thereby reducing placental permeability. a 
limitation of the present study is the lack of an in vitro study to 
further confirm the relationship between GDM and LMWH. 
in addition, the effects of GdM on the offspring were not 
analyzed.

in conclusion, the aGes-raGe system may represent a 
novel target for treating placental barrier dysfunction in GdM. 
lMWH may be a potential drug for the treatment of diseases 
related to the aGes-raGe system.
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