
From genome to phenome: Predicting multiple cancer 
phenotypes based on somatic genomic alterations via the 
genomic impact transformer

Yifeng Tao1, Chunhui Cai2, William W. Cohen1,†, Xinghua Lu2,3,†

1School of Computer Science, Carnegie Mellon University

2Department of Biomedical Informatics, University of Pittsburgh

3Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 
Pittsburgh, PA, USA

Abstract

Cancers are mainly caused by somatic genomic alterations (SGAs) that perturb cellular signaling 

systems and eventually activate oncogenic processes. Therefore, understanding the functional 

impact of SGAs is a fundamental task in cancer biology and precision oncology. Here, we present 

a deep neural network model with encoder-decoder architecture, referred to as genomic impact 

transformer (GIT), to infer the functional impact of SGAs on cellular signaling systems through 

modeling the statistical relationships between SGA events and differentially expressed genes 

(DEGs) in tumors. The model utilizes a multi-head self-attention mechanism to identify SGAs that 

likely cause DEGs, or in other words, differentiating potential driver SGAs from passenger ones in 

a tumor. GIT model learns a vector (gene embedding) as an abstract representation of functional 

impact for each SGA-affected gene. Given SGAs of a tumor, the model can instantiate the states of 

the hidden layer, providing an abstract representation (tumor embedding) reflecting characteristics 

of perturbed molecular/cellular processes in the tumor, which in turn can be used to predict 

multiple phenotypes. We apply the GIT model to 4,468 tumors profiled by The Cancer Genome 

Atlas (TCGA) project. The attention mechanism enables the model to better capture the statistical 

relationship between SGAs and DEGs than conventional methods, and distinguishes cancer drivers 

from passengers. The learned gene embeddings capture the functional similarity of SGAs 

perturbing common pathways. The tumor embeddings are shown to be useful for tumor status 

representation, and phenotype prediction including patient survival time and drug response of 

cancer cell lines.*
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1. Introduction

Cancer is mainly caused by the activation of oncogenes or deactivation of tumor suppressor 

genes (collectively called “driver genes”) as results of somatic genomic alterations (SGAs),1 

including somatic mutations (SMs),2,3 somatic copy number alterations (SCNAs),4,5 DNA 

structure variations (SVs),6 and epigenetic changes.7 Precision oncology relies on the 

capability of identifying and targeting tumor-specific aberrations resulting from driver SGAs 

and their effects on molecular and cellular phenotypes. However, our knowledge of driver 

SGAs and cancer pathways remains incomplete. Particularly, it remains a challenge to 

determine which SGAs (among often hundreds) in a specific tumor are drivers, which 

cellular signals or biological processes a driver SGA perturbs, and which molecular/cellular 

phenotypes a driver SGA affects.

Current methods for identifying driver genes mainly concentrate on identifying genes that 

are mutated at a frequency above expectation, based on the assumption that mutations in 

these genes may provide oncogenic advantages and thus are positively selected.8,9 Some 

works further focus on the mutations perturbing conserved (potentially functional) domains 

of proteins as indications they may be driver events.10,11 However, these methods do not 

provide any information regarding the functional impact of enriched mutations on 

molecular/cellular phenotypes of cells. Without the knowledge of functional impact, it is 

difficult to further determine whether an SGA will lead to specific molecular, cellular and 

clinical phenotypes, such as response to therapies. What’s more, while both SMs and 

SCNAs may activate/deactivate a driver gene, there is no well-established frequency-based 

method that combines different types of SGAs to determine their functional impact.

Conventionally, an SGA event perturbing a gene in a tumor is represented as a “one-hot” 

vector spanning gene space, in which the element corresponding to the perturbed gene is set 

to “1”. This representation simply indicates which gene is perturbed, but it does not reflect 

the functional impact of the SGA, nor can it represent the similarity of distinct SGAs that 

perturb a common signaling pathway. We conjecture that it is possible to represent an SGA 

as a low-dimensional vector, in the same manner as the “word embedding”12–14 in the 

natural language processing (NLP) field, such that the representation reflects the functional 

impact of a gene on biological systems, and genes sharing similar functions should be 

closely located in such embedding space. Here the “similar function” is broadly defined, 

e.g., genes from the same pathway or of the same biological process.15 Motivated by this, 

we propose a scheme for learning “gene embeddings” for SGA-affected genes, i.e., a 

mapping from individual genes to low-dimensional vectors of real numbers that are useful in 

multiple prediction tasks.

Based on the assumption that SGAs perturbing cellular signaling systems often eventually 

lead to changes in gene expression,16 we introduce an encoder-decoder architecture neural 

network model called “genomic impact transformer” (GIT) to predict DEGs and detect 

potential cancer drivers with the supervision of DEGs. While deep learning models are being 

increasingly used to model different bioinformatics problems,17,18 to our knowledge there 

are few studies using the neural network to model the relationships between SGAs and 

molecular/cellular phenotypes in cancers. The proposed GIT model has the following 
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innovative characteristics: (1) The encoder part of the transformer19 first uses SGAs 

observed in a tumor as inputs, maps each SGA into a gene embedding representation, and 

combines gene embeddings of SGAs to derive a personalized “tumor embedding”. Then the 

decoder part decodes and translates the tumor embedding to DEGs. (2) A multi-head self-

attention mechanism20,21 is utilized in the encoder, which is a technique widely used in NLP 

to choose the input features that significantly influence the output. It differentiates SGAs by 

assigning different weights to them so that it can potentially distinguish SGAs that have an 

impact on DEG from those do not, i.e., detecting drivers from passengers. (3) Pooling 

inferred weighted impact of SGAs in a tumor produces a personalized tumor embedding, 

which can be used as an effective feature to predict DEGs and other phenotypes. (4) Gene 

embeddings are pre-trained by a “Gene2Vec” algorithm and further refined by the GIT, 

which captures the functional impact of SGAs on the cellular signaling system. Our results 

and analysis indicate that above innovative approaches enable us to derive powerful gene 

embedding and tumor embedding representations that are highly informative of molecular, 

cellular and clinical phenotypes.

2. Materials and methods

2.1. SGAs and DEGs pre-processing

We obtained SGA data, including SMs and SCNAs, and DEGs of 4,468 tumors consisting of 

16 cancer types directly from TCGA portal.22 Details available in SI (Sec. S1).

2.2. The GIT neural network

2.2.1. GIT network structure: encoder-decoder architecture—Figure 1a shows 

the general structure of the GIT model with an overall encoder-decoder architecture. GIT 

mimics hierarchically organized cellular signaling system,23,24 in which a neuron may 

potentially encode the signal of one or more signaling proteins. When a cellular signaling 

system is perturbed by SGAs, it often can lead to changes in measured molecular 

phenotypes, such as gene expression changes. Thus, for a tumor t, the set of its 

SGAS g g = 1
m  is connected to the GIT neural network as observed input (Fig. 1a bottom part 

squares). The impact of SGAs is represented as embedding vectors eg g = 1
m , which are 

further linearly combined to produce a tumor embedding vector et through an attention 

mechanism in the encoder (Fig. 1a middle part). We explicitly represent cancer type s and its 

influence on encoding system es of the tumor because tissue type influences which genes are 

expressed in cells of specific tissue as well. Finally, the decoder module, which consists of a 

feed-forward multi-layer perceptron (MLP),25 transforms the functional impact of SGAs and 

cancer type into DEGs of the tumor (Fig. 1a top part).

2.2.2. Pre-training gene embeddings using Gene2Vec algorithm—In this study, 

we projected the discrete binary representation of SGAs perturbing a gene into a continuous 

embedding space, which we call “gene embeddings” of corresponding SGAs, using a 

“Gene2Vec” algorithm, based on the assumption of co-occurrence pattern of SGAs in each 

tumor, including mutually exclusive patterns of mutations affecting a common pathway.26 
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These gene embeddings were further updated and fine-tuned by the GIT model with the 

supervision of affected DEGs. Algorithm details available in SI (Sec. S2).

2.2.3. Encoder: multi-head self-attention mechanism—To detect the difference of 

functional impact of SGAs in a tumor, we designed a multi-head self-attention mechanism 

(Fig. 1a middle part). For all SGA-affected genes g g = 1
m  and the cancer type s of a tumor t, 

we first mapped them to corresponding gene embeddings eg g = 1
m

 and a cancer type 

embedding es from a look-up table ℰ = eg g ∈ 𝒢 ∩ es s ∈ 𝒮, where eg and es are real-valued 

vectors. From the implementation perspective, we treated cancer types in the same way as 

SGAs, except the attention weight of it is fixed to be “1”. The overall idea of producing the 

tumor embedding et is to use the weighted sum of cancer type embedding es and gene 

embeddings eg g = 1
m

 (Fig. 1b) :

et = 1 ⋅ es + ∑gαg ⋅ eg = 1 ⋅ es + α1 ⋅ e1 + … + αm ⋅ em . (1)

The attention weights αg g = 1
m

 were calculated by employing multi-head self-attention 

mechanism, using gene embeddings of SGAs eg g = 1
m

 in the tumor: 

αg g = 1
m = FunctionAttention eg g = 1

m ; W0, Θ  (Fig. 1c). See SI (Sec. S3) for mathematical 

details. Overall we have three parameters {W0, Θ, ε} to train in the multi-head attention 

module using back-propagation.27 The look-up table {eg}
g = 𝒢 was initialized with 

Gene2Vec pre-trained gene embeddings and refined by GIT here.

2.2.4. Decoder: multi-layer perceptron (MLP)—For a specific tumor t, we fed tumor 

embedding et into an MLP with one hidden layer as the decoder, using non-linear activation 

functions and fully connected layers, to produce the final predictions y for DEGs y; (Fig. 1a 

top part):

y = σ W2 ⋅ ReLU W1 ⋅ ReLU et + b1 + b2 . (2)

where ReLU(x) = max(0, x) is rectified linear unit, and σ(x) = (1+exp(−x))−1 is sigmoid 

activation function. The output of the decoder and actual values of DEGs were used to 

calculate the 𝓁2-regularized cross entropy, which was minimized during training: 

min𝒲, ℰ, Θ, bCrossEnt(y, y) + 𝓁2 𝒲, ℰ, Θ; λ2 , where 𝒲 = W l l = 0
2 , cross entropy loss defined 

as CrossEnt (y, y) = − ∑i 1 − yi log 1 − yi + yilogyi , and 𝓁p regularizer defined as 

𝓁p(𝒲; λ) = λ ⋅ ∑l W l p
, p ∈ 1, 2 .
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2.3. Training and evaluation

We utilized PyTorch (https://pytorch.org/) to train, validate and test the Gene2Vec, GIT 

(variants) and other conventional models (Lasso and MLPs; Section 3.1). The training, 

validation and test sets were split in the ratio of 0.33:0.33:0.33 and fixed across different 

models. The hyperparameters were tuned over the training and validation sets to get best F1 

scores, trained on training and validation sets, and finally applied to the test set for 

evaluation if not further mentioned below. The models were trained by updating parameters 

using backpropagation,27 specifically, using mini-batch Adam28 with default momentum 

parameters. Gene2Vec used mini-batch stochastic gradient descent (SGD) instead of Adam. 

Dropout29 and weight decay (lp-regularization) were used to prevent overfitting. We trained 

all the models 30 to 42 epochs until they fully converged. The output DEGs were 

represented as a sparse binary vector. We utilized various performance metrics including 

accuracy, precision, recall, and F1 score, where F1 is the harmonic mean of precision and 

recall. The training and test were repeated for five runs get the mean and variance of 

evaluation metrics. We designed two metrics in the present work for evaluating the 

functional similarity among genes sharing similar gene embedding: “nearest neighborhood 

(NN) accuracy” and “GO enrichment”. See SI (Sec. S4) for the definition and meaning of 

them.

3. Results

3.1. GIT statistically detects real biological signals

The task of GIT is to predict DEGs (dependent variables) using SGAs as input (independent 

variables). Our results of GIT performance on both real and shuffled data demonstrates that 

GIT is able to capture real statistical relationships between SGAs and DEGs from the noisy 

biological data (SI: Sec. S5).

As a comparison, we also trained and tested the Lasso (multivariate regression with l1-

regularization)30 and MLPs25 as baseline prediction models to predict DEGs based on 

SGAs. The Lasso model is appealing in our setting because, when predicting a DEG, it can 

filter out most of the irrelevant input variables (SGAs) and keep only the most informative 

ones, and it is a natural choice in our case where there are 19.8k possible SGAs. However, in 

comparison to MLP, it lacks the capability of portraying complex relationships between 

SGAs and DEGs. On the other hand, while conventional MLPs have sufficient power to 

capture complex relationships–particularly, the neurons in hidden layers may mimic 

signaling proteins24–they can not utilize any biological knowledge extracted from cancer 

genomics, nor do they explain the signaling process and distinguish driver SGAs. We 

employed the precision, recall, F1 score, as well as accuracy to compare GIT and traditional 

methods (Table 1: 1st to 4th, and last rows). One can conclude that GIT outperforms all 

these other conventional baseline methods for predicting DEGs in all metrics, indicating the 

specifically designed structure of GIT is able to soar the performance in the task of 

predicting DEGs from SGAs.

In order to evaluate the utility of each module (procedure) in GIT, we conducted ablation 

study by removing one module at a time: the cancer type input (“can”), the multi-head self-

Tao et al. Page 5

Pac Symp Biocomput. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pytorch.org/


attention module (“attn”), and the initialization with pre-trained gene embeddings (“init”). 

The impact of each module can be detected by comparing to the full GIT model. All the 

modules in GIT help to improve the prediction of DEGs from SGAs in terms of overall 

performance: F1 score and accuracy (Table 1: 5th to last rows).

3.2. Gene embeddings compactly represent the functional impact of SGAs

We examined whether the gene embeddings capture the functional similarity of SGAs, using 

mainly two metrics: NN accuracy and GO enrichment (Defined in SI Sec. S4). NN 
accuracy: By capturing the co-occurrence pattern of somatic alterations, the Gene2Vec pre-

trained gene embeddings improve 36% in NN accuracy over the random chance of any pair 

of the genes sharing Gene Ontology (GO) annotation15 (Table 2). The fine-tuned 

embeddings by GIT further show a one-fold increase in NN accuracy. These results indicate 

that the learned gene embeddings are consistent with the gene functions, and they map the 

discrete binary SGA representation into a meaningful and compact space. GO enrichment: 
We performed clustering analysis of SGAs in embedding space using k-means clustering, 

and calculated GO enrichment, and we varied the number of clusters (k ) to derive clusters 

with different degrees of granularity (Fig. 2a). As one can see, when the genes are randomly 

distributed in the embedding space, they get GO enrichment of 1. However, in the gene 

embedding space, the GO enrichment increases fast until the number of clusters reaches 40, 

indicating a strong correlation between the clusters in embedding space and the functions of 

the genes.

To visualize the manifold of gene embeddings, we grouped the genes into 40 clusters, and 

conducted the t-SNE31 of genes (Fig. 2b left panel). Using PANTHER GO enrichment 

analysis,32 12 out of 40 clusters are shown to be enriched in at least one biological process 

(SI Sec. S6). Most of the gene clusters are well-defined and tight located in the projected t-

SNE space. As a case study, we took a close look at one cluster (Fig. 2b right panel), which 

contains a set of functionally similar genes, such as that code a protein family of type I 

interferons (IFNs), which are responsible for immune and viral response.33

3.3. Self-attention reveals impactful SGAs on cancer cell transcriptome

While it is widely accepted that cancer is mainly caused by SGAs, but not all SGAs 

observed in a cancer cell are causative.1 Previous methods mainly concentrate on searching 

for SGAs with higher than expected frequency to differentiate candidate drivers SGAs from 

passenger SGAs. GIT provides a novel perspective to address the problem: identifying the 

SGAs that have a functional impact on cellular signaling systems and eventually lead DEGs 

as the tumor-specific candidate drivers. Here we compare the relationship of overall 

attention weights (inferred by GIT model) and the frequencies of somatic alterations (used 

as the benchmark/control group) in all the cancer types (Pan-Cancer) from our test data (Fig. 

2c). In general, the attention weights are correlated with the alteration frequencies of genes, 

e.g., common cancer drivers such as TP53 and PIK3CA are the top two SGAs selected by 

both methods.2 However, our self-attention mechanism assigns high weights to many of 

genes previously not designated as drivers, indicating these genes are potential cancer 

drivers although their roles in cancer development remain to be further studied. Table 3 lists 

top SGAs ranked according to GIT attention weights in pan-cancer and five selected cancer 
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types, where known cancer drivers from TumorPortal3 and IntOGen34 are marked as bold 

font. Apart from TP53 and PIK3CA as drivers in the pan-cancer analysis,2 we also find the 

top cancer drivers in specific cancer types consistent with our knowledge of cancer 

oncology. For example, CDH1 and GATA3 are drivers of breast invasive carcinoma 

(BRCA),35 CASP8 is known driver of head and neck squamous cell carcinoma (HNSC),36 

STK11, KRAS, KEAP1 are known drivers of lung adenocarcinoma (LUAD),37 PTEN and 

RB1 are drivers of glioblastoma (GBM),38 and FGFR3, RB1, HSP90AA1, STAG2 are 

known drivers in urothelial bladder carcinoma (BLCA).39 In contrast, the most frequently 

mutated genes (control group) are quite different from that using attention mechanism 

(experiment group), and only a few of them are known drivers (SI Sec. S7).

3.4. Personalized tumor embeddings reveal distinct survival profiles

Besides learning the specific biological function impact of SGAs on DEGs, we further 

examined the utility of tumor embeddings et in two perspectives: (1) Discovering patterns of 

tumors potentially sharing common disease mechanisms across different cancer types; (2) 

Using tumor embedding to predict patient survival.

We first used the t-SNE plot of tumor embeddings to illustrate the common disease 

mechanisms across different cancer types (Fig. 3a). When cancer type embedding es is 

included in full tumor embedding et, which has a much higher weight than any individual 

gene embedding (Fig. 1b, Eq. 1) and dominates the full tumor embedding, tumor samples 

are clustered according to cancer types. This is not surprising as it is well appreciated that 

expressions of many genes are tissue-specific.40 To examine the pure effect of SGAs on 

tumor embedding, we removed the effect of tissue by subtracting cancer type embeddings es, 

followed by clustering tumors in the stratified tumor embedding space (Fig. 3b). It is 

interesting to see that each dense area (potential tumor clusters) includes tumors from 

different tissues of origins, indicating SGAs in these tumors may reflect shared disease 

mechanisms (pathway perturbations) among tumors, warranting further investigations.

The second set of experiments was to test whether differences in tumor embeddings (thereby 

difference in disease mechanisms) are predictive of patient clinical outcomes. We conducted 

unsupervised k-means clustering using only breast cancer tumors from our test set, which 

reveals 3 three groups (Fig. 3c) with significant difference in survival profiles evaluated by 

log-rank test41 (Fig. 3d; p-value=0.017). In addition, using tumor embeddings as input 

features, we trained l1,2-regularized (elastic net)42 Cox proportional hazard models43 in a 

10-fold cross-validation (CV) experiment. This led to an informative ranked list of tumors 

according to predicted survivals/hazards evaluated by the concordance index (CI) value 

(CI=0.795), indicating that the trained model is very accurate. We further split test samples 

into two groups divided by the median of predicted survivals/hazards, which also yields 

significant separation of patients in survival profiles (Fig. 3e; p-value=5.1 × 10−8), indicating 

that our algorithm has correctly ranked the patients according to characteristics of the tumor.

As shown above, distinct SGAs may share similar embeddings if they share similar 

functional impact. Thus, two tumors may have similar tumor embeddings even though they 

do not share any SGAs, as long as the functional impact of distinct SGAs from these tumors 

are similar. Therefore, tumor embedding makes it easier to discover common disease 
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mechanisms and their impact on patient survival. To further test this, we also performed 

clustering analysis on breast cancer tumors represented in original SGA space, followed 

similar survival analysis as described in the previous paragraph (SI Sec. S8).

3.5. Tumor embeddings are predictive of drug responses of cancer cell lines

Precision oncology concentrates on using patient-specific omics data to determine optimal 

therapies for a patient. We set out to see if SGA data of cancer cells can be used to predict 

their sensitivity to anti-cancer drugs. We used the CCLE dataset,44 which performed drug 

sensitivity screening over hundreds of cancer cell lines and 24 anti-cancer drugs. The study 

collects genomic and transcriptomic data of these cell lines, but in general, the genomic data 

(except the molecularly targeted genes) from a cell line are not sufficient to predict 

sensitivity its sensitivity to different drugs.

We discretized the response of each drug following the procedure in previous research.44,45 

Since CCLE only contains a small subset of mutations in TCGA dataset (around 1,600 gene 

mutations), we retrained the GIT with this limited set of SGAs in TCGA, using default 

hyperparameters we set before. Cancer type input was removed as well, which is not 

explicitly provided in CCLE dataset. The output of tumor embeddings et was then extracted 

as feature. We formulated drug response prediction as a binary classification problem with 

l1-regularized cross entropy loss (Lasso), where the input can be raw sparse SGAs or tanh-

curved tumor embeddings tanh(et). Following previous work,44 we performed 10-fold CV 

experiment training Lasso using either inputs to test the drug response prediction task of 

four drugs with distinct targets. Lasso regression using tumor embeddings consistently 

outperforms the models trained with original SGAs as inputs (Fig. 4). Specifically, in the 

case of Sorafenib, the raw mutations just give random prediction results, while the tumor 

embedding is able to give predictable results. It should be noted that it is possible that 

certain cancer cells may host SGAs along the pathways related to FGFR, RAF, EGFR, and 

RTK, rendering them sensitive to the above drugs. Such information can be implicitly 

captured and represented by the tumor embeddings, so that the information from raw SGAs 

are captured and pooled to enhance classification accuracy.

4. Conclusion and Future Work

Despite the significant advances in cancer biology, it remains a challenge to reveal disease 

mechanisms of each individual tumor, particularly which and how SGAs in a cancer cell 

lead to the development of cancer. Here we propose the GIT model to learn the general 

impact of SGAs, in the form of gene embeddings, and to precisely portray their effects on 

the downstream DEGs with higher accuracy. With the supervision of DEGs, we can further 

assess the importance of an SGA using multi-head self-attention mechanisms in each 

individual tumor. More importantly, while the tumor embeddings are trained with predicting 

DEGs as the task, it contains information for predicting other phenotypes of cancer cells, 

such as patient survival and cancer cell drug sensitivity. The key advantage of transforming 

SGA into a gene embedding space is that it enables the detection and representation of the 

functional impact of SGAs on cellular processes, which in turn enables detection of common 

disease mechanisms of tumors even if they host different SGAs. We anticipate that GIT, or 
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other future models like it, can be applied broadly to gain mechanistic insights of how 

genomic alterations (or other perturbations) lead to specific phenotypes, thus providing a 

general tool to connect genome to phenome in different biological fields and genetic 

diseases. One should also be careful that despite the correlation of genomic alterations and 

phenotypes such as survival profiles and drug response, the model may not fully reveal the 

causalities and there may exist other confounding factors not considered.

There are a few future directions for further improving the GIT model. First of all, decades 

of biomedical research has accumulated a rich body of knowledge, e.g., Gene Ontology and 

gene regulatory networks, which may be incorporated as the prior of the model to boost the 

performance.46 Secondly, we expect that by getting a larger corpus of tumor data with 

mutations and gene expressions, we will be able to train better models to minimize potential 

overfitting or variance. Lastly, more clinically oriented investigations are warranted to 

examine, when trained with a large volume of tumor omics data, the learned embeddings of 

SGAs and tumors may be applied to predict sensitivity or resistance to anti-cancer drugs 

based SGA data that are becoming readily available in contemporary oncology practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Overall architecture of GIT. An example case and its detected drivers are shown. (b) A 

two-dimensional demo that shows how attention mechanism combines multiple gene 

embeddings of SGAs eg g = 1
m

 and cancer type embedding es into a tumor embedding vector 

et using attention weights αg g = 1
m . (c) Calculation of attention weights αg g = 1

m
 using gene 

embeddings eg g = 1
m .
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Fig. 2. 
(a) GO enrichment of vs. number of groups in k-means clustering. (b) t-SNE visualization 

of gene embeddings. The different colors represent k-means (40 clusters) clustering labels. 

An enlarged inset of a cluster is shown, which contains a set of closely related genes which 

we refer to “IFN pathway”. (c) Landscape of attention of SGAs based on attention weights 

and frequencies.
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Fig. 3. 
(a) t-SNE of full tumor embedding et. (b) t-SNE of stratified tumor embedding (et-es). (c) 
PCA of tumor embedding shows internal subtype structure of BRCA tumors. Color lablels 

the group index of k-means clustering. (d) KM estimators of the three breast cancer groups. 

(e) Cox regression using tumor embeddings.

Tao et al. Page 14

Pac Symp Biocomput. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
ROC curves and the areas under the curve (AUCs) of Lasso models trained with original 

SGAs and tumor embeddings representations on predicting responses to four drugs.
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Table 1.

Performances of GIT (variants) and baseline methods.

Methods Precision Recall F1 score Accuracy

Lasso 59.6±0.05 52.8±0.03 56.0±0.01 74.0±0.02

1 layer MLP 61.9±0.09 50.4±0.17 55.6±0.07 74.7±0.02

2 layer MLP 64.2±0.39 52.0±0.66 56.5±0.19 75.9±0.09

3 layer MLP 64.2±0.37 50.5±0.30 52.1±0.29 75.7±0.13

GIT - can 60.5±0.34 45.8±0.38 52.1±0.29 73.6±0.14

GIT - attn 67.6±0.32 55.3±0.77 60.8±0.35 77.7±0.05

GIT - init 69.8±0.28 54.1±0.37 60.9±0.16 78.3±0.06

GIT 69.5±0.09 57.1±0.18 62.7±0.08 78.7±0.01
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Table 2.

NN accuracy with respect to GO in different gene embedding spaces.

Gene embeddings NN accuracy Improvement

Random pairs 5.3±0.36 –

Gene2Vec 7.2 36%

Gene2Vec + GIT 10.7 100%
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Table 3.

Top five SGA-affected genes ranked according to attention weight.

Rank PANCAN BRCA HNSC LUAD GBM BLCA

1 TP53 TP53 TP53 STK11 TP53 TP53

2 PIK3CA PIK3CACASP8 TP53 PTEN FGFR3

3 RB1 CDH1 PIK3CAKRAS C9orf53 RB1

4 PBRM1 GATA3 CYLD CYLC2 RB1 HSP90AA1

5 PTEN MED24 RB1 KEAP1 CHIC2 STAG2
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