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Abstract

There is a growing need to develop novel therapeutics for targeted treatment of cancer. The

prerequisite to success is the knowledge about which types of molecular alterations are pre-

dominantly driving tumorigenesis. To shed light onto this subject, we have utilized the larg-

est database of human cancer mutations–TCGA PanCanAtlas, multiple established

algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv,

DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML) and developed four novel

computational pipelines: SNADRIF (Single Nucleotide Alteration DRIver Finder), GECNAV

(Gene Expression-based Copy Number Alteration Validator), ANDRIF (ANeuploidy DRIver

Finder) and PALDRIC (PAtient-Level DRIver Classifier). A unified workflow integrating all

these pipelines, algorithms and datasets at cohort and patient levels was created. We have

found that there are on average 12 driver events per tumour, of which 0.6 are single nucleo-

tide alterations (SNAs) in oncogenes, 1.5 are amplifications of oncogenes, 1.2 are SNAs in

tumour suppressors, 2.1 are deletions of tumour suppressors, 1.5 are driver chromosome

losses, 1 is a driver chromosome gain, 2 are driver chromosome arm losses, and 1.5 are

driver chromosome arm gains. The average number of driver events per tumour increases

with age (from 7 to 15) and cancer stage (from 10 to 15) and varies strongly between cancer

types (from 1 to 24). Patients with 1 and 7 driver events per tumour are the most frequent,

and there are very few patients with more than 40 events. In tumours having only one driver

event, this event is most often an SNA in an oncogene. However, with increasing number of

driver events per tumour, the contribution of SNAs decreases, whereas the contribution of

copy-number alterations and aneuploidy events increases.

Author summary

By analysing genomic and transcriptomic data from 10000 cancer patients through our

custom-built computational pipelines and previously established third-party algorithms,

we have found that half of all driver events in a patient’s tumour appear to be gains and

losses of chromosomal arms and whole chromosomes. We therefore suggest that future

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009996 January 14, 2022 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Vyatkin AD, Otnyukov DV, Leonov SV,

Belikov AV (2022) Comprehensive patient-level

classification and quantification of driver events in

TCGA PanCanAtlas cohorts. PLoS Genet 18(1):

e1009996. https://doi.org/10.1371/journal.

pgen.1009996

Editor: David J. Kwiatkowski, Brigham and

Women’s Hospital, UNITED STATES

Received: April 24, 2021

Accepted: December 14, 2021

Published: January 14, 2022

Copyright: © 2022 Vyatkin et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The authors confirm

that all data underlying the findings are fully

available without restriction. All scripts and

descriptions for our pipelines are available as

packages and separate files at the following Github

repositories: https://github.com/belikov-av/

SNADRIF https://github.com/belikov-av/ANDRIF

https://github.com/belikov-av/GECNAV https://

github.com/belikov-av/PALDRIC These packages

contain scripts to automatically download all

required source data from TCGA. The versions of

these packages used to generate data and figures

https://orcid.org/0000-0002-3425-723X
https://orcid.org/0000-0002-4261-1024
https://doi.org/10.1371/journal.pgen.1009996
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009996&domain=pdf&date_stamp=2022-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009996&domain=pdf&date_stamp=2022-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009996&domain=pdf&date_stamp=2022-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009996&domain=pdf&date_stamp=2022-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009996&domain=pdf&date_stamp=2022-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1009996&domain=pdf&date_stamp=2022-01-14
https://doi.org/10.1371/journal.pgen.1009996
https://doi.org/10.1371/journal.pgen.1009996
http://creativecommons.org/licenses/by/4.0/
https://github.com/belikov-av/SNADRIF
https://github.com/belikov-av/SNADRIF
https://github.com/belikov-av/ANDRIF
https://github.com/belikov-av/GECNAV
https://github.com/belikov-av/PALDRIC
https://github.com/belikov-av/PALDRIC


therapeutics development efforts should be focused on targeting aneuploidy. We have also

found that approximately a third of driver events in a patient are whole gene amplifica-

tions and deletions. Thus, therapies aimed at copy-number alterations also appear very

promising. On the other hand, drugs aiming at point mutations are predicted to be less

successful, as these alterations are responsible for just a couple of drivers per tumour. One

notable exception are patients having only one driver event in their tumours, as this event

is almost always a single nucleotide alteration in an oncogene.

Introduction

Driver events are the molecular and cellular events that drive cancer progression, often called

driver mutations [1]. The knowledge about the spectrum and quantity of driver events in indi-

vidual patients and groups of patients is crucial to inform design and selection of targeted ther-

apeutics. Historically, most attention has been devoted to point mutations or single nucleotide

alterations (SNAs), as most driver prediction algorithms work only with this class of driver

events. As the average numbers of driver SNAs per tumour in various cancer types have been

estimated before and shown to vary within 1–10 range, with the average across all cancer types

of 4 [2], this defined the current thinking that the number of driver events per tumour is rela-

tively low.

However, SNA drivers represent only the tip of the iceberg, and are likely not the most cru-

cial contribution to cancer progression. SNAs are very well tolerated by cancer cells [2]. It is

known that cancer cells contain large numbers of deletions and amplifications (often called

copy number alterations, or CNAs), translocations, inversions, full chromosome and chromo-

somal arm gains and losses (aneuploidy), as well as epigenetic modifications [3–5], but the

driver potential of these alterations has been left almost unexplored due to the scarcity of

driver prediction algorithms for these classes of events. Here, we set the goal to predict, classify

and quantify as many different classes of driver events as possible, using clear and straightfor-

ward principles, and developed custom computational pipelines for this purpose.

Another shortcoming of the majority of existing driver prediction algorithms is that they

work at the cohort level, i.e. they predict driver mutations for large groups of patients, usually

having a particular cancer type. This does not allow to look at the composition of driver events

in individual patients. We wrote specific scripts to convert cohort-level predictions into

patient-level events, which also allowed seamless integration of the results from various third-

party algorithms, including 2020plus [6], CHASMplus [7], CompositeDriver [8], dNdScv [2],

DriverNet [9], HotMAPS [10], OncodriveCLUSTL [11], and OncodriveFML [12]. This is use-

ful, as each individual driver prediction algorithm has its own strengths and shortcomings,

and combining results from multiple algorithms allows to obtain more complete and balanced

picture, ensuring that less driver mutations have been missed. Having patient-level data is also

convenient for analysing driver event composition in various demographic and clinical groups

(e.g. patients grouped by age, sex or cancer stage) without the need to rerun the driver predic-

tion algorithms on subgroups of patients, which would otherwise not only consume additional

time and resources but, most importantly, reduce the predictive power. Patient-level data also

allow to study heterogeneity of cancer patient cohorts, e.g. by using distribution histograms.

In addition to these existing driver prediction algorithms, we decided to create our own,

using clear and simple rules to have an internal reference standard. We called this algorithm

SNADRIF–SNA DRIver Finder. It is a Python 3.7 software package that predicts cancer driver

genes from the TCGA PanCanAtlas SNA data and classifies them into oncogenes and tumour
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suppressors. Driver prediction is based on calculating the ratio of nonsynonymous SNAs to

silent SNAs [2], whereas driver classification is based on calculating the ratio of hyperactivat-

ing SNAs to inactivating SNAs [13]. Bootstrapping is used to calculate statistical significance

and Benjamini–Hochberg procedure is used to keep false discovery rate under 5%.

Copy-number alterations (CNA) usually involve large chunks of DNA containing tens or

hundreds of genes, which makes CNA data not very useful for uncovering individual driver

genes. Nevertheless, it is an important source of information about amplifications and dele-

tions of driver genes predicted from SNA data. However, due to CNA data coarseness, we

wanted to clarify the actual copy number status of individual genes using mRNA and miRNA

expression data available at TCGA PanCanAtlas. For this purpose, we created another Python

3.7 software package called GECNAV—Gene Expression-based CNA Validator. CNA valida-

tion is based on comparing the CNA status of a given gene in a given patient to expression of

this gene in this patient relative to the median expression of this gene across all patients.

Aneuploidy–chromosome arm and full chromosome gains and losses–makes a substantial

contribution to the number of driver alterations per tumour, however, there are very few exist-

ing algorithms to differentiate driver aneuploidies from passenger ones, and their mechanisms

of operation are not always transparent. Therefore, like with SNADRIF, we built our own pipe-

line with clear and simple rules called ANDRIF—ANeuploidy DRIver Finder. It is a Python

3.7 software package that predicts driver chromosomal arm or full chromosome gains or losses

from the TCGA PanCanAtlas aneuploidy data. Driver prediction is based on calculating the

average alteration status for each arm or chromosome in each cancer type. Bootstrapping is

used to obtain the realistic distribution of the average alteration statuses under the null hypoth-

esis. Benjamini–Hochberg procedure is performed to keep the false discovery rate under 5%.

Finally, we needed an algorithm to integrate all data on driver alterations from different

algorithms—our own and third-party. We called this algorithm PALDRIC—PAtient-Level

DRIver Classifier. It is a Python 3.7 software package that translates cohort-level lists of driver

genes or mutations to the patient level, classifies driver events according to the molecular

causes and functional consequences, and presents comprehensive statistics on various kinds of

driver events in various demographic and clinical groups of patients. PALDRIC allows to

natively combine outputs of various third-party algorithms to investigate optimal combina-

tions. It is important to note that, as PALDRIC is not a de novo driver discovery tool, it is not

capable of discriminating between driver and passenger missense mutations within a driver

gene while translating cohort-level driver gene predictions of third-party algorithms to indi-

vidual patients. However, if the third-party driver prediction algorithm (such as CHASMplus

or HotMAPS) used as an input to PALDRIC works not at the gene level but at the more granu-

lar mutation level and thus is able to distinguish driver missense mutations from passenger

missense mutations, PALDRIC will match these predictions to individual patients also at the

mutation level, so the discrimination between driver missense mutations and passenger mis-

sense mutations will be preserved.

Our overall workflow can be seen in Fig 1.

Results

To get two different perspectives on the number and composition of driver events, we per-

formed two different analyses. In the first one, we used the combination of results from SNA-

DRIF, several third-party algorithms - 2020plus, CHASMplus, CompositeDriver, HotMAPS,

OncodriveFML, and a consensus driver gene list from 26 algorithms [8], each of them applied

to the whole TCGA PanCanAtlas dataset. We also used a list of COSMIC Cancer Gene Census

Tier 1 genes affected by somatic SNAs and CNAs, as it represents the current gold standard of
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verified cancer drivers [14]. To minimize false positives, we used only genes that were pre-

dicted as drivers by at least two of our sources, including CGC and the list from Bailey et al.

[8]. Benchmarking (see S1 Files) showed that such combinatory approach allows to identify

more high-confidence driver genes than CGC or Bailey et al. lists contain (244 vs 182 vs 164,

Fig 2A) and to recover more CGC genes (62%) than any individual algorithm or even Bailey

et al list (Fig 2B). The overlap of three sources recovered fewer CGC genes (45%, Fig 2B),

therefore we concluded that the overlap of two sources is optimal. SNADRIF sensitivity was

comparable to CompositeDriver (Fig 2B) and its specificity was 98% (Fig 2C). SNADRIF con-

tributed 16 driver genes (6.5%) to the overall consensus, i.e. it validated 16 genes that were

found only in one other source, including two genes (MYCL and TBL1XR1) that were present

only in CGC and not predicted by any third-party algorithm (Table 1). Unfortunately, applica-

tion of driver gene lists discovered through pancancer analysis equally to every cancer type

results in unrealistically high numbers of driver events per patient, which is to be expected as

this approach ignores tissue specificity of driver genes. Therefore, we present this analysis only

as S2 Files.

In the second analysis we used the combination of results from 2020plus, CHASMplus,

CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML, the

consensus list from [8] and a list of Cancer Gene Census Tier 1 genes affected by somatic

SNAs and CNAs, applied separately to each cancer cohort of TCGA PanCanAtlas. Applying

algorithms to individual cohorts allows to discover cancer type-specific drivers and avoid con-

tamination by false positives, i.e. driver genes discovered during pancancer analysis that do

not in reality play any role in a given cancer type. On the other hand, much fewer patients are

available for cohort-specific analysis, and this decreases statistical power to discover new driver

genes. Of note, our SNADRIF algorithm works best for pancancer analysis and struggles with

Fig 1. Workflow. Actual names of the files generated and used in the workflow are shown.

https://doi.org/10.1371/journal.pgen.1009996.g001
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Fig 2. Benchmarking of driver prediction algorithms. (A) Number of driver genes predicted by each algorithm applied to pancancer dataset. CGC–COSMIC Cancer

Gene Census Tier 1 genes affected by somatic SNAs and CNAs; Overlap 2 and Overlap 3 –genes predicted by at least 2 or 3 of the listed algorithms, respectively. (B)

Sensitivity of algorithms applied to pancancer dataset, estimated as the percentage of genes from positive control lists identified as drivers. Positive control lists include

CGC (blue), Overlap 2 (orange) and Overlap 3 (yellow), see legend for (A). (C) Specificity of algorithms applied to pancancer dataset, estimated as the percentage of

genes outside positive control lists identified as passengers. Positive control lists include CGC (blue), Overlap 2 (orange) and Overlap 3 (yellow), see legend for (A). (D)

Number of driver gene-cohort pairs predicted by each algorithm applied individually to each cancer type (cohort). CGC—COSMIC Cancer Gene Census Tier 1 gene-

cohort pairs affected by somatic SNAs and CNAs; Overlap 2 and Overlap 3 –gene-cohort pairs predicted by at least 2 or 3 of the listed algorithms, respectively. (E)

Sensitivity of algorithms applied individually to each cancer type (cohort), estimated as the percentage of gene-cohort pairs from positive control lists identified as

drivers. Positive control lists include CGC (blue), Overlap 2 (orange) and Overlap 3 (yellow), see legend for (D). (F) Specificity of algorithms applied individually to each

cancer type (cohort), estimated as the percentage of gene-cohort pairs outside positive control lists identified as passengers. Positive control lists include CGC (blue),

Overlap 2 (orange) and Overlap 3 (yellow), see legend for (D).

https://doi.org/10.1371/journal.pgen.1009996.g002
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small cohorts, due to scarcity of point mutations. However, when a combination of driver pre-

diction algorithms is used, there are lower chances of missing an important driver gene even

in a cohort-specific analysis, as algorithms based on differing principles complement each

other. To minimize false positives, we used only genes that were predicted as drivers in the

same cancer type by at least two of our sources, including CGC and the list from Bailey et al

[8]. CGC attribution of driver genes to various cancer types is not very precise or comprehen-

sive, therefore benchmarking of cohort-specific algorithms on CGC likely underestimates

their true performance. Anyhow, benchmarking (see S1 Files) showed that our combinatory

approach allows to recover more CGC gene-cohort pairs (32%) than any individual algorithm

or even Bailey et al list (Fig 2E). Similarly to pancan analysis, the overlap of three sources

recovered fewer CGC gene-cohort pairs (23%, Fig 2E), therefore we chose the overlap of two

sources as optimal. Benchmarking also showed that our combinatory approach allows to iden-

tify more high-confidence driver gene-cohort pairs than are present on the Bailey et al. list

(705 vs 537, Fig 2D). The results of this analysis would be presented in the following para-

graphs, whereas the underlying data and additional graphs could be found in S3 Files.

We have also set out to compare our novel aneuploidy driver prediction algorithm

(ANDRIF) with an established CNA analysis algorithm that, in addition to focal CNAs, is also

able to identify significant arm-level alterations (GISTIC2 [15]). We quantified the number of

arms with driver gains and losses for each TCGA cohort, as well as the number of TCGA

cohorts with driver gains and losses for each arm, as predicted by GISTIC2 and ANDRIF (see

S4 Files). It can be seen that, despite very different pipelines, the results for driver arm losses

(Fig 3B and 3D) are quite similar. On the other hand, GISTIC2 appears to underestimate the

number of driver arm gains, compared to ANDRIF (Fig 3A and 3B). To resolve this discrep-

ancy, we manually compared the results for each cohort-arm pair between the two algorithms.

In almost all cases, either both algorithms agreed on the sign of the change (amplification or

deletion) and the significance, or the result of GISTIC2 was not significant (see S4 Files). For

example, GISTIC2 assigns significance to 2p gain in UCEC with 0.17 amplification frequency

but surprisingly does not assign significance to 2p gain in UCS with 0.43 amplification fre-

quency. We then compared predictions of GISTIC2, ANDRIF and actual experimental

Table 1. Driver genes uniquely predicted by SNADRIF and one other source.

Gene Entrez Gene ID Also predicted by

AMD1 262 HotMAPS

BMPR1A 657 2020plus

CMTR2 55783 OncodriveFML

ELL2 22936 HotMAPS

HNRNPDL 9987 2020plus

LYRM4 57128 OncodriveFML

METTL14 57721 HotMAPS

MYCL 4610 CGC

PPP3R1 5534 HotMAPS

PTMA 5757 Bailey et al, 2018

RPL22 6146 Bailey et al, 2018

SAMHD1 25939 HotMAPS

TBL1XR1 79718 CGC

TDG 6996 HotMAPS

TNNI3K 51086 HotMAPS

TTK 7272 HotMAPS

https://doi.org/10.1371/journal.pgen.1009996.t001
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evidence. For example, gains at 6p have been associated with advanced or metastatic disease,

poor prognosis, venous invasion in bladder, colorectal, ovarian and hepatocellular carcinomas

[16]. Moreover, copy number gains of 6p DNA have been described in a series of patients who

presented initially with follicle centre lymphoma, which subsequently transformed to diffuse

large B cell lymphoma [16]. Indeed, ANDRIF reveals gains of 6p as significant in all of the

mentioned cancer types—BLCA, COAD, READ, OV, LIHC and DLBC, whereas GISTIC2

shows significant 6p gain only in LIHC, and even shows significant losses of 6p in BLCA and

OV. Gain of 10p is an important alteration in basal breast cancer [17]. GISTIC2 does not show

10p arm amplification as significant in BRCA, whereas ANDRIF does. 18p gain is characteris-

tic for lung squamous cell carcinomas [18]. Similarly, GISTIC2 does not show 18p arm ampli-

fication as significant in LUSC, whereas ANDRIF does. 20q amplification was shown to be

causative in prostate cancer initiation and development [19]. Likewise, while ANDRIF shows

20q arm amplification as significant in PRAD, GISTIC2 does not. Finally, we have rerun

Fig 3. Comparison of ANDRIF with GISTIC2. (A) Number of chromosomal arms with driver arm gains for each TCGA cohort (B) Number of chromosomal arms

with driver arm losses for each TCGA cohort (C) Number of TCGA cohorts with driver arm gains for each chromosomal arm (D) Number of TCGA cohorts with

driver arm losses for each chromosomal arm.

https://doi.org/10.1371/journal.pgen.1009996.g003
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PALDRIC with the input from GISTIC2 instead of ANDRIF. Although there are slightly less

aneuploidy events overall, their distribution is very similar to the one observed with ANDRIF

data (see S4 Files).

Fig 4 shows the average number of driver events of different classes in males and females. It

could be seen that half of all driver events are chromosome- and arm-level gains and losses.

Moreover, a third of all driver events are amplifications of oncogenes and deletions of tumour

suppressors. Only one sixth of all driver events are SNAs. Although the overall difference

between males and females in the average number of driver events is not significant (P = 0.462,

two-tailed heteroscedastic t-test, see S5 Files), there are significant differences in particular

types of driver events. Males have significantly less SNAs in oncogenes (P = 3.62�10−15) and in

tumour suppressors (P = 1.06�10−16), but significantly more amplifications of oncogenes

(P = 1.97�10−6), simultaneous occurrences of SNAs in one allele and deletions of the other

allele in tumour suppressors (P = 1.57�10−5), driver chromosome losses (P = 0.01) and driver

chromosome gains (P = 3.5�10−10). High number of SNAs in females might be at least partially

explained by the contribution from UCEC cohort.

Fig 5 demonstrates an increase in the number of driver events with age in males and

females. It can be seen that in female patients the number of driver events increases dramati-

cally from the earliest age until approximately 50 y.o., i.e. the age of menopause. After this, the

Fig 4. Driver event distribution by patient’s gender. Two-tailed heteroscedastic t-test was performed. p-values indicate a significant increase in the average number of

driver events of a given type compared to the opposite gender. n.s.—difference not significant.

https://doi.org/10.1371/journal.pgen.1009996.g004
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growth of the number of driver events slows down. In males the picture is different. There is a

high number of driver events in the earliest age group, due to the frequent occurrence of testic-

ular cancer (TGCT) in this age group and a relatively high number of driver events in this can-

cer type. The next age group has much lower number of drivers (P = 0.041, one-tailed

heteroscedastic t-test, see S5 Files), and like in females, their number increases with age, but

until an older age, approximately 70 y.o., when their growth slows down. Surprisingly, the

number of SNAs in oncogenes does not increase with age, at least since 30 y.o.

Fig 6 demonstrates that in females, the number of driver events increases dramatically from

Stage I to Stage II (P = 9�10−15, two-tailed heteroscedastic t-test, see S5 Files), after which stays

more or less constant. It is interesting that this increase is due to CNAs and aneuploidy events

but not due to point mutations. The number of SNAs actually decreases. In males, the increase

Fig 5. Driver event distribution by patient’s age. Colour coding as in Fig 4. One-tailed heteroscedastic t-test was performed. p-values indicate a significant difference

in the average number of driver events between indicated age groups. n.s.—difference not significant.

https://doi.org/10.1371/journal.pgen.1009996.g005
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in driver events with progression from Stage I to Stage IV is more gradual and chaotic. As in

females, there is a prominent increase from Stage I to Stage II (P = 4�10−5) but, for unclear rea-

son, there appears to be less driver events in Stage III than in Stage II tumours (P = 0.003).

However, Stage IV tumours have more events than Stage II (P = 3.3�10−9) and Stage III

(P = 4.9�10−17) tumours. Unlike in females, the increase is mediated also by SNAs, in addition

to CNAs and aneuploidy events. In males, there are no significant changes in the number of

driver chromosome losses between stages. This complicated picture might be explained by

unequal representation of patients with different cancer stages amongst cancer types. Indeed, a

closer look at the data (see S3 Files) shows that there are twice as many PRAD patients with

Stage III than Stage II cancer, and because PRAD patients typically have a lower than average

number of driver events, this leads to the counterintuitive result of Stage III tumours having

less driver events than Stage II tumours in the pooled analysis of male patients. Likewise, there

Fig 6. Driver event distribution by cancer stage. Colour coding as in Fig 4. Two-tailed heteroscedastic t-test was performed. p-values indicate a significant difference

in the average number of driver events of a given type between the indicated stages. n.s.—difference not significant.

https://doi.org/10.1371/journal.pgen.1009996.g006
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are six times as many UCEC patients with Stage I than Stage II cancer (see S3 Files), and

because UCEC patients typically have a higher than average number of driver SNAs, this leads

to the counterintuitive result of Stage II tumours having less SNA driver events than Stage I

tumours in the pooled analysis of female patients. Given that the analysis of driver events by

cancer stage was substantially confounded by the heterogeneity of different cancer types, we

additionally calculated these distributions separately for each cancer type (see S3 Files).

In Fig 7 we aimed to show how different classes of driver events increase proportionally to

the total number of driver events in a patient. It is striking that the number of SNAs in onco-

genes does not increase, considering that if a tumour has only one driver event it is almost cer-

tain to be an SNA in an oncogene. There are very few patients with more than 30 driver

events, therefore the results for those groups become unreliable.

Fig 8 shows the average number of driver events of different classes in different cancer

cohorts. It can be immediately seen that there is a dramatic difference in the number and

Fig 7. Driver event distribution by total number of driver events per patient. Colour coding as in Fig 4.

https://doi.org/10.1371/journal.pgen.1009996.g007
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Fig 8. Driver event distribution by cancer type. Colour coding as in Fig 4.

https://doi.org/10.1371/journal.pgen.1009996.g008
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distribution of driver events per patient between cancer types. Some cancer types (ACC,

CHOL, KICH, KIRP, MESO, PCPG, SARC, TGCT) are dominated by aneuploidy events,

whereas in others aneuploidy events contribute half or less drivers. In ACC, KICH, KIRP and

TGCT, the absolute majority of driver events are chromosome gains and losses. ACC, CHOL,

KICH, KIRC, MESO and PCPG have almost no driver alterations in oncogenes. Additionally,

BRCA, ESCA, GBM, HNSC, KIRP, SARC and TGCT have almost no SNAs in oncogenes,

whereas THCA and THYM have no amplifications of oncogenes. Moreover, TGCT, THCA,

THYM and UVM have almost no driver alterations in tumour suppressors, whereas KICH

and PCPG are missing only SNAs in tumour suppressors. Tumour suppressors in DLBC and

UCEC and oncogenes in DLBC, LGG, PAAD, THCA, THYM and UVM are predominantly

affected by SNAs, which is not seen in other cancer types.

Fig 9 shows the actual distributions of driver event quantities amongst patients of all cancer

types combined. It can be seen that these distributions have a sharp peak at one driver event

per tumour, which is the dominant peak in females, and a smoother peak at 7 events, which is

the dominant peak in males. THCA is the major contributor to the one-driver-event peak, but

also PRAD and THYM. There are almost no patients with more than 40 driver events per

tumour.

Fig 9. Patient distribution by total number of driver events per patient.

https://doi.org/10.1371/journal.pgen.1009996.g009
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Discussion

Our results show that half of all driver events are chromosome- and arm-level gains and losses,

a third are amplifications of oncogenes and deletions of tumour suppressors and only one

sixth are SNAs. Hopefully, this finding will help to shift the current perception that there are

very few driver events per tumour and they are mostly SNAs to the greater appreciation of

copy-number alterations and especially aneuploidy events. This may stimulate efforts in devel-

opment of novel therapeutics targeting these types of driver alterations.

It is interesting to speculate why the number of driver events steadily increases in women

until 50 y.o. and in men until 70 y.o. As 50 y.o. is the average age of menopause whereas males

are fertile until much older ages, it is logical to suggest that driver accumulation is somehow

promoted by high levels of sex hormones. If we concur with the theory that driver events accu-

mulate in stem cells in large part due to errors in DNA replication and chromosome segrega-

tion [20], and combine it with the knowledge that sex hormones increase the rate of stem cell

division [21–23], the link becomes clear. It is known that individuals with higher levels of sex

hormones have higher rates of cancer [24].

In tumours with one driver event, this event is almost always an SNA in an oncogene, and with

increasing number of total driver events the number of CNAs and aneuploidy events increases

dramatically, whereas the number of SNAs in tumour suppressors increases only slightly. Most

strikingly, the number of SNAs in oncogenes does not increase at all. Thus, it is tempting to sug-

gest that a hyperactivating SNA in an oncogene is the seed which initiates cancer and enables later

appearance of CNAs and aneuploidy events, the latter two driving the progression of cancer.

However, it cannot be excluded that in tumours having more than one driver event the initiating

event is CNA or aneuploidy, as these are cross-sectional and not longitudinal data.

Our results on the number and composition of driver events amongst various cancer types

and individual patients pose several interesting questions. First, why there is such a great dif-

ference in the number and composition of driver events between cancer types? Why only one

driver event is sufficient to initiate thyroid cancer but two dozens are observed in bladder car-

cinomas? Why some cancer types are dominated by aneuploidy drivers and others by SNA

drivers? Why some cancers have no alterations in oncogenes whereas others have none in

tumour suppressors? Are these differences explained by different tissue microenvironments to

which these tumours have to adapt? Why then for some patients within the same cancer type

one driver event is sufficient to develop a detectable tumour whereas the others are not diag-

nosed until dozens of events are accumulated?

One possible explanation is that in patients with low number of predicted driver events

some actually important drivers have not been discovered due to technical reasons, from

sequencing to bioinformatic analysis. Some of them might even be epigenetic [25], a class of

drivers we have not analysed in this study. Another possible explanation is that in patients

with high numbers of predicted drivers some of those drivers are actually false positives due to

imperfections of driver prediction algorithms. Although both of these explanations are likely

true to some degree, their contribution does not seem to be so large as to dramatically affect

the results. The most probable explanation is the inherent stochasticity of carcinogenesis pro-

cesses [26,27] combined with unequal strength of different driver events [28]. For example,

patients having tumours with only one driver event were unlucky that this event happened (by

chance) in one of the most crucial genes such as BRAF. On the other hand, other patients did

not develop a detectable tumour until they have accumulated 30 events because those events

involved only weak drivers. It would be interesting to develop a bioinformatic approach to

determine the strength of driver genes, e.g. based on how often a given gene is found amongst

a few sufficient ones.
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Overall, our study brought some clarity to the distributions of driver events of various clas-

ses in various demographic and clinical groups of cancer patients and highlighted the impor-

tance of aneuploidy events and copy-number alterations. Many crucial questions, such as the

reason behind the dramatic variability in the number and composition of driver events

between cancer types and patients, remain to be answered.

Methods

Source files and initial filtering

TCGA PanCanAtlas data were used. Files “Analyte level annotations - merged_sample_

quality_annotations.tsv”, “ABSOLUTE purity/ploidy file - TCGA_mastercalls.abs_tables_

JSedit.fixed.txt“, “Aneuploidy scores and arm calls file - PANCAN_ArmCallsAnd

AneuploidyScore_092817.txt”, “Public mutation annotation file - mc3.v0.2.8.PUBLIC.maf.gz”,

“gzipped ISAR-corrected GISTIC2.0 all_thresholded.by_genes file - ISAR_GISTIC.all_

thresholded.by_genes.txt”, “RNA batch corrected matrix - EBPlusPlusAdjustPANCAN_

IlluminaHiSeq_RNASeqV2.geneExp.tsv”, “miRNA batch corrected matrix - pancanMiRs_

EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16.csv”, were down-

loaded from https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin.

Using TCGA barcodes (see https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_

Barcode/ and https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-

codes), all samples except primary tumours (barcoded 01, 03, 09) were removed from all files.

Based on the information in the column “Do_not_use” in the file “Analyte level annotations—

merged_sample_quality_annotations.tsv”, all samples with “True” value were removed from

all files. All samples with “Cancer DNA fraction”<0.5 or unknown or with “Subclonal genome

fraction” >0.5 or unknown in the file “TCGA_mastercalls.abs_tables_JSedit.fixed.txt”were

removed from the file “PANCAN_ArmCallsAndAneuploidyScore_092817.txt”. Moreover, all

samples without “PASS” value in the column “FILTER” were removed from the file “mc3.

v0.2.8.PUBLIC.maf.gz” and zeros in the column “Entrez_Gene_Id” were replaced with actual

Entrez gene IDs, determined from the corresponding ENSEMBL gene IDs in the column

“Gene” and external database ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/

Homo_sapiens.gene_info.gz. Filtered files were saved as “Primary_whitelisted_arms.tsv”,

“mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv”, “ISAR_GISTIC.all_thresholded.

by_genes_primary_whitelisted.tsv”,”EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNA-

SeqV2-v2.geneExp_primary_whitelisted.tsv”, “pancanMiRs_EBadjOnProtocolPlatform-

WithoutRepsWithUnCorrectMiRs_08_04_16_primary_whitelisted.tsv”.

RNA filtering of CNAs

Using the file “EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2-v2.geneExp_primar-

y_whitelisted.tsv”, the median expression level for each gene across patients was determined. If

the expression for a given gene in a given patient was below 0.05x median value, it was

encoded as “-2”, if between 0.05x and 0.75x median value, it was encoded as “-1”, if between

1.25x and 1.75x median value, it was encoded as “1”, if above 1.75x median value, it was

encoded as “2”, otherwise it was encoded as “0”. The file was saved as “EBPlusPlusAdjustPAN-

CAN_IlluminaHiSeq_RNASeqV2-v2.geneExp_primary_whitelisted_median.tsv.” The same

operations were performed with the file “pancanMiRs_EBadjOnProtocolPlatformWithou-

tRepsWithUnCorrectMiRs_08_04_16_primary_whitelisted.tsv”, which was saved as “pancan-

MiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_whi-

telisted_median.tsv”
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Next, the file “ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” was pro-

cessed according to the following rules: if the gene CNA status in a given patient was not zero and

had the same sign as the gene expression status in the same patient (file “EBPlusPlusAdjustPAN-

CAN_IlluminaHiSeq_RNASeqV2-v2.geneExp_primary_whitelisted_median.tsv” or “pancan-

MiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs_08_04_16_primary_white-

listed_median.tsv” for miRNA genes), then the CNA status value was replaced with the gene

expression status value, otherwise it was replaced by zero. If the corresponding expression status

for a given gene was not found then its CNA status was not changed. The resulting file was saved

as “ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted_RNAfiltered.tsv”

We named this algorithm GECNAV (Gene Expression-based CNA Validator) and created

a Github repository: https://github.com/belikov-av/GECNAV. The package used to generate

data in this article is available as S6 Files.

Aneuploidy driver prediction

Using the file “Primary_whitelisted_arms.tsv”, the average alteration status of each chromo-

somal arm was calculated for each cancer type and saved as a matrix file “Arm_averages.tsv”.

By drawing statuses randomly with replacement (bootstrapping) from any cell of “Primary_-

whitelisted_arms.tsv”, for each cancer type the number of statuses corresponding to the num-

ber of patients in that cancer type were generated and their average was calculated. The

procedure was repeated 10000 times, the median for each cancer type was calculated and the

results were saved as a matrix file “Bootstrapped_arm_averages.tsv”.

P-value for each arm alteration status was calculated for each cancer type. To do this, first

the alteration status for a given cancer type and a given arm in “Arm_averages.tsv” was com-

pared to the median bootstrapped arm alteration status for this cancer type in “Bootstrappe-

d_arm_averages.tsv”. If the status in “Arm_averages.tsv” was higher than zero and the median

in “Bootstrapped_arm_averages.tsv”, the number of statuses for this cancer type in “Bootstrap-

ped_arm_averages.tsv” that are higher than the status in “Arm_averages.tsv” was counted and

divided by 5000. If the status in “Arm_averages.tsv” was lower than zero and the median in

“Bootstrapped_arm_averages.tsv”, the number of statuses for this cancer type in “Bootstrappe-

d_arm_averages.tsv” that are lower than the status in “Arm_averages.tsv” was counted and

divided by 5000, and marked with minus to indicate arm loss. Other values were ignored (cells

left empty). The results were saved as a matrix file “Arm_Pvalues_cohorts.tsv”.

For each cancer type, Benjamini–Hochberg procedure with FDR = 5% was applied to P-val-

ues in “Arm_Pvalues_cohorts.tsv” and passing P-values were encoded as “DAG” (Driver arm

gain) or “DAL” (Driver arm loss) if marked with minus. The other cells were made empty and

the results were saved as a matrix file “Arm_drivers_FDR5_cohorts.tsv”.

Alterations were classified according to the following rules: if the arm status in a given

patient (file “Primary_whitelisted_arms.tsv”) was “-1” and the average alteration status of a

given arm in the same cancer type (file “Arm_drivers_FDR5_cohorts.tsv”) was “DAL”, then

the alteration in the patient was classified as “DAL”. If the arm status in a given patient was “1”

and the average alteration status of a given arm in the same cancer type was “DAG”, then the

alteration in the patient was classified as “DAG”. In all other cases an empty cell was written.

The total number of DALs and DAGs was calculated, patients with zero drivers were removed,

and the results were saved as a matrix file “Arm_drivers_FDR5.tsv”.

Using the file “Primary_whitelisted_arms.tsv”, the values for the whole chromosomes were

calculated using the following rules: if both p- and q-arm statuses were “1” then the chromo-

some status was written as “1”; if both p- and q-arm statuses were “-1” then the chromosome

status was written as “-1”; if at least one arm status was not known (empty cell) then the
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chromosome status was written as empty cell; in all other cases the chromosome status was

written as “0”. For one-arm chromosomes (13, 14, 15, 21, 22), their status equals the status of

the arm. The resulting file was saved as “Primary_whitelisted_chromosomes.tsv”.

The same procedures as described above for chromosomal arms were repeated for the

whole chromosomes, with the resulting file “Chromosome_drivers_FDR5.tsv”. Chromosome

drivers were considered to override arm drivers, so if a chromosome had “DCL” (Driver chro-

mosome loss) or “DCG” (Driver chromosome gain), no alterations were counted on the arm

level, to prevent triple counting of the same event.

We named this algorithm ANDRIF (ANeuploidy DRIver Finder) and created a Github

repository: https://github.com/belikov-av/ANDRIF. The package used to generate data in this

article is available as S7 Files.

SNA driver prediction

Using the file “mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.tsv” all SNAs were classified

according to the column “Variant_Classification”. “Frame_Shift_Del”, “Frame_Shift_Ins”, “Non-

sense_Mutation”, “Nonstop_Mutation” and “Translation_Start_Site” were considered potentially

inactivating; “De_novo_Start_InFrame”, “In_Frame_Del”, “In_Frame_Ins” and “Missense_Muta-

tion” were considered potentially hyperactivating; “De_novo_Start_OutOfFrame” and “Silent”

were considered passengers; the rest were considered unclear. The classification results were

saved as the file “SNA_classification_patients.tsv”, with columns “Tumor_Sample_Barcode”,

“Hugo_Symbol”, “Entrez_Gene_Id”, “Gene”, “Number of hyperactivating SNAs”, “Number of

inactivating SNAs”, “Number of SNAs with unclear role”, “Number of passenger SNAs”.

Using this file, the sum of all alterations in all patients was calculated for each gene. Genes

containing only SNAs with unclear role (likely, noncoding genes) were removed, also from

“SNA_classification_patients.tsv”. Next, the Nonsynonymous SNA Enrichment Index (NSEI)

was calculated for each gene as

NSEI ¼
Number of hyperactivating SNAsþ Number of inactivating SNAsþ 1

Number of passenger SNAsþ 1

and the Hyperactivating to Inactivating SNA Ratio (HISR) was calculated for each gene as

HISR ¼
Number of hyperactivating SNAsþ 1

Number of inactivating SNAsþ 1

Genes for which the sum of hyperactivating, inactivating and passenger SNAs was less than 10

were removed to ensure sufficient precision of NSEI and HISR calculation, and the results

were saved as “SNA_classification_genes_NSEI_HISR.tsv”.

Using the file “SNA_classification_patients.tsv”, the gene-patient matrix “SNA_matrix.tsv”

was constructed, encoding the “Number of hyperactivating SNAs”, “Number of inactivating

SNAs”, “Number of SNAs with unclear role” and “Number of passenger SNAs” as one number

separated by dots (e.g. “2.0.1.1”). If data for a given gene were absent in a given patient, it was

encoded as “0.0.0.0”. By drawing statuses randomly with replacement (bootstrapping) from

any cell of “SNA_matrix.tsv” 10000 times for each patient, the matrix file “SNA_matrix_boot-

strapped.tsv” was created. The sums of statuses in “SNA_matrix_bootstrapped.tsv” were calcu-

lated for each iteration separately, and then the corresponding NSEI and HISR indices were

calculated and the results were saved as “SNA_bootstrapped_NSEI_HISR.tsv”. Null hypothesis

P-values were calculated for each iteration as the number of NSEI values higher than a given

iteration’s NSEI value and divided by 10000. The histogram of bootstrapped p-values was plot-

ted to check for the uniformity of the null hypothesis p-value distribution.
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P-value for each gene was calculated as the number of NSEI values in “SNA_bootstrap-

ped_NSEI_HISR.tsv” more extreme than its NSEI value in “SNA_classification_genes_NSEI_-

HISR.tsv” and divided by 10000. The results were saved as

“SNA_classification_genes_NSEI_HISR_Pvalues.tsv”. Benjamini–Hochberg procedure with

FDR(Q) = 5% was applied to P-values in “SNA_classification_genes_NSEI_HISR_Pvalues.

tsv”, and genes that pass were saved as “SNA_driver_gene_list_FDR5.tsv”.

We named this algorithm SNADRIF (SNA DRIver Finder) and created a Github repository:

https://github.com/belikov-av/SNADRIF. The package used to generate data in this article is

available as S8 Files.

Driver prediction algorithms sources and benchmarking

Lists of driver genes and mutations predicted by various algorithms (Table 2) applied to Pan-

CanAtlas data were downloaded from https://gdc.cancer.gov/about-data/publications/pancan-

driver (2020plus, CompositeDriver, DriverNet, HotMAPS, OncodriveFML), https://

karchinlab.github.io/CHASMplus (CHASMplus), as well as received by personal communica-

tion from Francisco Martı́nez-Jiménez, Institute for Research in Biomedicine, Barcelona, fran-

cisco.martinez@irbbarcelona.org (dNdScv, OncodriveCLUSTL, OncodriveFML). All genes

Table 2. Driver prediction algorithms.

Name Ref. Repository Level Principles

20/20plus [6] https://github.com/KarchinLab/

2020plus

gene Machine learning, trained on Cancer Genome Landscapes (20/20

rule); Nonsynonymous/Synonymous, clustering, conservation (uses

UCSC’s 46-way vertebrate alignment and SNVBox), impact (uses

VEST), network (uses BioGrid), expression, chromatin, replication

(uses MutSigCV)

ANDRIF This

paper

https://github.com/belikov-av/

ANDRIF

Chromosomal arm,

chromosome

Recurrence

CHASMplus [7] https://github.com/KarchinLab/

CHASMplus

mutation Machine learning, trained on TCGA; clustering (uses HotMAPS 1D),

conservation (uses UCSC Multiz-100-way and SNV box), network

(uses Interactome Insider)

CompositeDriver [8] https://github.com/mil2041/

CompositeDriver

gene Recurrence, impact (uses FunSeq2)

dNdScv [2] https://github.com/im3sanger/

dndscv

gene Nonsynonymous/Synonymous

DriverNet [9] https://github.com/shahcompbio/

drivernet

https://bioconductor.org/packages/

release/bioc/html/DriverNet.html

gene Network (uses MGSA and a human functional protein interaction

network), impact (uses gene expression outliers)

HotMAPS [10] https://github.com/karchinlab/

HotMAPS

mutation 3D clustering (uses Protein Data Bank and ModPipe)

OncodriveCLUSTL [11] http://bbglab.irbbarcelona.org/

oncodriveclustl/analysis

https://bitbucket.org/bbglab/

oncodriveclustl/src/master/

gene Clustering

OncodriveFML [12] http://bbglab.irbbarcelona.org/

oncodrivefml/analysis

https://bitbucket.org/bbglab/

oncodrivefml/src/master/

gene Recurrence, Impact (uses CADD and RNAsnp)

SNADRIF This

paper

https://github.com/belikov-av/

SNADRIF

gene Nonsynonymous/Synonymous

Bailey et al, 2018 [8] https://www.cell.com/cell/fulltext/

S0092-8674(18)30237-X

gene Consensus driver gene list from 26 algorithms applied to PanCanAtlas

data

COSMIC Cancer Gene

Census

[14] https://cancer.sanger.ac.uk/cosmic/

census?tier=1

gene Manually curated list of cancer driver genes, current “gold standard”

https://doi.org/10.1371/journal.pgen.1009996.t002
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and mutations with q-value > 0.05 were removed. Additionally, a consensus driver gene list

from 26 algorithms applied to PanCanAtlas data [8] was downloaded from https://www.cell.

com/cell/fulltext/S0092-8674(18)30237-X and a COSMIC Cancer Gene Census (CGC) Tier 1

gene list [14] was downloaded from https://cancer.sanger.ac.uk/cosmic/census?tier=1. Only

genes affected by somatic SNAs and CNAs present in the TCGA cancer types were used for

further analyses from the CGC list. Cancer type names in the CGC list were manually con-

verted to the closest possible TCGA cancer type abbreviation. Entrez Gene IDs were identified

for each gene using HUGO Symbol and external database ftp://ftp.ncbi.nih.gov/gene/DATA/

GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz.

The sensitivity of algorithms was assessed as the percentage of genes in a positive control

list that were predicted as drivers by an algorithm, because Sensitivity = True positives/(True

positives + False negatives). The specificity of algorithms was assessed as the percentage of all

genes not in a positive control list that were not predicted as drivers by an algorithm, because

Specificity = True negatives/(True negatives + False positives). Three positive control lists

were used–CGC Tier 1 genes affected by somatic SNAs or CNAs in TCGA cancer types, a

list of genes identified by at least two of all our sources (including CGC and Bailey), and a list

of genes identified by at least three of all our sources (including CGC and Bailey). Sensitivity

was assessed separately for algorithms applied to individual cancer types as the percentage of

gene-cohort pairs in a positive control list that were matched by gene-cohort pairs predicted

by an algorithm. Specificity was assessed separately for algorithms applied to individual cancer

types as the percentage of all gene-cohort pairs not in a positive control list that were not

matched by gene-cohort pairs predicted by an algorithm. Benchmarking data are available as

S1 Files.

The GISTIC2 results for TCGA cohorts were obtained from http://firebrowse.org. GISTIC2

data are available as S4 Files.

Conversion of population-level data to patient-level data

For lists of driver genes, all entries from the file “mc3.v0.2.8.PUBLIC_primary_whitelisted_En-

trez.tsv” were removed except those that satisfied the following conditions simultaneously:

“Entrez Gene ID” matches the one in the driver list; cancer type (identified by matching

“Tumor_Sample_Barcode” with “bcr_patient_barcode” and “acronym” in “clinical_

PANCAN_patient_with_followup.tsv”) matches “cohort” in the driver list or the driver list is

for pancancer analysis; “Variant_Classification” column contains one of the following values:

“De_novo_Start_InFrame”, “Frame_Shift_Del”, “Frame_Shift_Ins”, “In_Frame_Del”,

“In_Frame_Ins”, “Missense_Mutation”, “Nonsense_Mutation”, “Nonstop_Mutation”,

“Translation_Start_Site”.

For lists of driver mutations, the procedures were the same, except that Ensembl Transcript

ID and nucleotide/amino acid substitution were used for matching instead of Entrez Gene ID.

These data (only columns “TCGA Barcode”, “HUGO Symbol”, “Entrez Gene ID”) were saved

as “AlgorithmName_output_SNA.tsv“.

Additionally, all entries from the file “ISAR_GISTIC.all_thresholded.by_genes_primary_

whitelisted.tsv” were removed except those that satisfied the following conditions simulta-

neously: “Locus ID” matches “Entrez Gene ID” in the driver list; cancer type (identified by

matching Tumor Sample Barcode with “bcr_patient_barcode” and “acronym” in “clinical_

PANCAN_patient_with_followup.tsv”) matches “cohort” in the driver list or the driver list is

for pancancer analysis; CNA values are “2”, “1”, “-1” or “-2”. These data were converted from

the matrix to a list format (with columns “TCGA Barcode”, “HUGO Symbol”, “Entrez Gene

ID”) and saved as “AlgorithmName_output_CNA.tsv“.
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Finally, the files “AlgorithmName_output_SNA.tsv” and “AlgorithmName_output_CNA.

tsv” were combined, duplicate TCGA Barcode-Entrez Gene ID pairs were removed, and the

results saved as “AlgorithmName_output.tsv”.

Driver event classification and analysis

The file “Clinical with Follow-up—clinical_PANCAN_patient_with_followup.tsv” was down-

loaded from https://gdc.cancer.gov/node/905/. All patients with “icd_o_3_histology” different

from XXXX/3 (primary malignant neoplasm) were removed, as well as all patients not simulta-

neously present in the following three files: “mc3.v0.2.8.PUBLIC_primary_whitelisted_Entrez.

tsv”, “ISAR_GISTIC.all_thresholded.by_genes_primary_whitelisted.tsv” and “Primary_white-

listed_arms.tsv”. The resulting file was saved as “clinical_PANCAN_patient_with_followup_-

primary_whitelisted.tsv”.

Several chosen “AlgorithmName_output.tsv” files were combined and all TCGA Barcode-

Entrez Gene ID pairs not present in at least two output files were removed. Entries with TCGA

Barcodes not present in “clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”

were removed as well. Matching “Number of hyperactivating SNAs” and “Number of inacti-

vating SNAs” for each TCGA Barcode-Entrez Gene ID pair were taken from the “SNA_classi-

fication_patients.tsv” file, in case of no match zeros were written. Matching HISR value was

taken from “SNA_classification_genes_NSEI_HISR.tsv” for each Entrez Gene ID, in case of

no match empty cell was left. Matching CNA status was taken from “ISAR_GISTIC.all_thre-

sholded.by_genes_primary_whitelisted_RNAfiltered.tsv” for each TCGA Barcode-Entrez

Gene ID pair, in case of no match zero was written.

Each TCGA Barcode-Entrez Gene ID pair was classified according to the Table 3.

Results of this classification were saved as “AnalysisName_genes_level2.tsv”.

Using this file, the number of driver events of each type was counted for each patient. Infor-

mation on the number of driver chromosome and arm losses and gains for each patient was

taken from the files “Chromosome_drivers_FDR5.tsv” and “Arm_drivers_FDR5.tsv”. All

patients not present in the files “AnalysisName_genes_level2.tsv”, “Chromosome_drivers_

FDR5.tsv” and “Arm_drivers_FDR5.tsv”, but present in the file “clinical_PANCAN_patient_

with_followup_primary_whitelisted.tsv”, were added with zero values for the numbers of

driver events. Information on the cancer type (“acronym”), gender (“gender”), age (“age_at_

initial_pathologic_diagnosis”) and tumor stage (“pathologic_stage”, if no data then “clinical_

stage”, if no data then “pathologic_T”, if no data then “clinical_T”) was taken from the file

“clinical_PANCAN_patient_with_followup_primary_whitelisted.tsv”. The results were saved

as “AnalysisName_patients.tsv”.

Using the file “AnalysisName_patients.tsv”, the number of patients with each integer total

number of driver events from 0 to 100 was counted for males and females separately, and

Table 3. Driver event classification rules.

Driver type Number of nonsynonymous SNAs Number of inactivating SNAs HISR CNA status Count as . . . driver event(s)

SNA-based oncogene �1 0 >5 0 1

CNA-based oncogene 0 0 >5 1 or 2 1

Mixed oncogene �1 0 >5 1 or 2 1

SNA-based tumour suppressor �1 �0 �5 0 1

CNA-based tumour suppressor 0 0 �5 -1 or -2 1

Mixed tumour suppressor �1 �0 �5 -1 or -2 1

Passenger 0 0 0 0

Low-probability driver All the rest 0

https://doi.org/10.1371/journal.pgen.1009996.t003
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histograms were plotted for each file. Using the same file “AnalysisName_patients.tsv”, the

average number of various types of driver events was calculated for each cancer type, tumour

stage, age group, as well as for patients with each integer total number of driver events from 1

to 100. Analyses were performed for total population and for males and females separately,

and cumulative histograms were plotted for each file.

We named this algorithm PALDRIC (PAtient-Level DRIver Classifier) and created a

Github repository: https://github.com/belikov-av/PALDRIC. The package used to generate

data in this article is available as S9 Files. The outputs of the algorithm are available as S2 Files

for pancancer analysis and as S3 Files for cohort analysis.
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(ZIP)

S8 Files. SNADRIF package.
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