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ABSTRACT
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second most common 
cause of cancer-related deaths worldwide. As immune response failure is the main factor in the 
occurrence and poor prognosis of HCC, our study aimed to develop an immune-associated 
molecular occurrence and prognosis predictor (IMOPP) of HCC. To that end, we discovered 
a 4-gene immune-associated gene signature: C–C motif chemokine ligand 14 (CCL14), kallikrein 
B1 (KLKB1), vasoactive intestinal peptide receptor 1 (VIPR1), and cluster of differentiation 4 (CD4). 
When tested on three cohorts as an immune-associated molecular occurrence predictor (IMOP), it 
had high sensitivity, specificity, and area under the receiver operating characteristics curve. When 
tested as an immune-associated molecular prognosis predictor (IMPP), it stratified the HCC 
prognosis for overall survival (Kaplan–Meier analysis, log rank P = 0.0016; Cox regression, 
HR = 1.832, 95% CI = 1.173–2.859, P = 0.008) and disease-free survival (Kaplan-Meier analysis, 
log rank P = 0.0227). IMPP also significantly correlated with the clinicopathological characteristics 
of HCC; integrating it with clinicopathological characteristics improved the accuracy of 
a nomogram for overall survival prediction (C-index: 0.7097 vs. 0.6631). In HCC tumor micro
enviroments, the proportion of CD8+ T cells significantly differed between IMOP-stratified groups. 
We conclude that IMOPP can potentially predict the occurrence of HCC in high-risk populations 
and improve prognostic accuracy by providing new biomarkers for risk stratification. In addition, 
we believe that the IMOP mechanism may be related to its effect on the proportion of CD8+ 

T cells in tumor-infiltrating lymphocytes.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most 
common cancer and the second most common 
cause of global cancer-related deaths [1]. 
Approximately 782,500 new HCC cases and 
745,500 deaths occurred worldwide during 2012, 
with China alone accounting for roughly 50% of 
the total number of cases and deaths [2]. More 
worriesome is the incidence and mortality of 
HCC, which have been increasing internationally 
in recent decades [2,3]. However, molecular 
mechanisms involved in the development of 
HCC remain ambiguous, and therapeutic methods 
are limited largely to surgical resection and liver 
transplantation. Diagnostic delays, high recurrence 
rates, and high metastatic rates contribute to 
a 5-year survival rate of less than 30% in HCC 
patients who undergo surgical resection [4]. As 
early HCC diagnosis and the identification of 
HCC patients with poor prognosis are critical to 
improving survival, investigating the biomarkers 
for HCC occurrence and prognosis is of consider
able importance.

Serum alpha fetal protein (AFP) has been used 
extensively for decades as a molecular predictor 
for the diagnosis of HCC. However, its suitability 
for HCC surveillance is reportedly low [5]. In 
recent years, several molecular predictors for the 
occurrence and prognosis of HCC have been pro
posed [6,7]. Unfortunately, these molecular pre
dictors are not always suitable for evaluating the 
occurrence and prognosis of HCC [6,7].

Immune response, an important factor in main
taining internal homeostasis, reportedly plays 
a role in immune surveillance and prevention of 
infections. Immune-associated genetic dysfunction 
is the key cause of cancer development and occur
rence [8,9]. Ahmad et al. found that Toll-like 
eceptor 4 can suppress antitumor response and 
trigger the development of ultraviolt B–induced 
skin cancer [10]; Nicoud et al. [11] discovered 
that histamine H4 receptor can upregulate the 
proportion of cluster of differentiation (CD)4+ 

CD25+ FoxP3+ regulatory T cells and promote an 
immunosuppressive milieu. Immune-associated 
predictors have been shown to accurately predict 
the occurrence or prognosis of ovarian cancer and 
colorectal cancer [12–14]. For example, a study on 

Ewing sarcoma [15] reported that a gene signature 
consisting of 11 immune-associated genes corre
lates with patient prognosis and can be used as 
a reliable prognostic biomarker. However, there 
are few studies applying immune-associated signa
tures to the prediction of HCC occurrence and 
prognosis.

In the current study, we hypothesized that 
immune-associated genes play an important role in 
HCC development. We aimed to develop an 
immune-associated molecular occurrence and prog
nosis predictor (IMOPP) for HCC and evaluate its 
potential mechanisms. In order to accomplish our 
goals, we first analyzed data from the Gene 
Expression Omnibus (GEO) database on 445 
patients with HCC to identify differentially 
expressed immune-associated genes for HCC. We 
then developed and validated an immune- 
associated molecular occurrence predictor (IMOP) 
by using three cohorts that had been established by 
two independent GEO datasets, and we evaluated the 
IMOP using areas under the receiver operating char
acteristic (ROC) curve (AUC). At the same time, we 
developed an immune-associated molecular prog
nosis predictor (IMPP), which we evaluated by 
using survival analysis. In addition, we constructed 
a nomogram by combining the IMPP with clinico
pathological characteristics to increase the accuracy 
of prognostic predictions. Finally, we used 
a CIBERSORT algorithm to determine the potential 
mechanism of IMOP in the development of HCC.

Methods and materials

Study design

In this retrospective study of data from two GEO 
databases, we aimed to develop an IMOPP that 
can identify patients at high risk of HCC occur
rence and those with poor HCC prognosis. First, 
we reanalyzed the GSE14520 database utilizing the 
GPL3921 platform (GSE14520-GPL3921) and 
identified immune-associated genes by means of 
cluster analysis and Kaplan–Meier analysis. 
Second, an IMOP was developed and validated 
by analyzing AUC in a training cohort, validation 
cohort, and low-AFP cohort. Third, an IMPP was 
developed using an HCC cohort, and IMPP effi
ciency was evaluated by Kaplan–Meier analysis, 
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Cox regression, Harrell’s concordance index 
(C-index), and a calibration plot. Finally, we used 
the CIBERSORT algorithm to quantify tumor- 
infiltrating immune cells in tumor microenviron
ments and discover the potential mechanism of 
the HCC IMOP.

Patients and cohorts

For the HCC IMOP, we used data collected from 
a total of 878 patients in two GEO databases. To 
develop the IMOP, we established a training 
cohort using all 445 tissues in the GSE14520- 
GPL3921 dataset (https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi?acc=GSE14520). To validate the 
IMOP, we established a validation cohort using all 
433 tissues in the GSE36376 dataset (https://www. 
ncbi .n lm.nih .gov/geo/query/acc .cg i ?acc=  
GSE36376). To establish the low-AFP cohort, we 
chose 220 adjacent tissues and 118 HCC tissues 
with AFP levels lower than 300 ng/mL from the 
GSE14520-GPL3921 dataset. Detailed clinical 
information and informed consent had been sepa
rately provided to and reported by Roesssler 
S et al. [16,17] and Lim HY [18].

Owing to insufficient survival information, we 
developed the IMPP by choosing 221 HCC tissues 
from the GSE14520-GPL3921 dataset to establish 
an HCC cohort (Supplementary Table 1). The 
endpoints were HCC overall survival (defined as 
the time from surgery to death) and HCC disease- 
free survival (defined as the time from surgery to 
any recurrence, distant metastasis, or death from 
any cause) as described by Roesssler and collea
gues [16,17].

Identification of differentially expressed 
immune-associated genes

In order to identify differentially expressed genes 
associated with the pathogenesis of HCC, we 
downloaded the GSE14520-GPL3921 microarray 
expression profile and reanalyzed it using ‘limma’ 
package in the R programming environment 
(v2.15.3) [19]. Then, the top 250 of those genes 
with P values < 0.001 were chosen for further Gene 
Ontology (GO) analysis using the DAVID website 
(https://david.ncifcrf.gov/) [20]; we then focused 

on the pathways associated with immune response 
(P value < 0.05).

Development and validation of the IMOPP

Machine learning is a type of artificial intelligence 
that is widely used for the diagnosis and prognosis 
of disease [6]. In the present study, we used hier
archical clustering to develop and validate an 
IMOP. We first extracted immune-associated 
gene expression data from the training cohort, 
validation cohort, and low-AFP cohort. Then, 
hierarchical clustering (based on the Manhattan 
distance and the clustering methods of Ward. D) 
was conducted using ‘pheatmap’ package in the 
R programming environment (v3.2.2).

We used the HCC cohort to develop an IMPP, 
employing the same strategy as that used for IMOP. 
Generally, all patients were categorized into two 
groups: the normal immunity group (containing 
patients with relatively more adjacent tissues or bet
ter prognosis) and the immunodeficient group (con
taining patients with relatively fewer adjacent tissues 
or poorer prognosis).

Evaluation of tumor-infiltrating immune cells in 
tumor microenvironment

CIBERSORT algorithm is an analytical tool that uses 
gene expression data to evaluate specific cell types 
within a mixed cell population [21]. To estimate the 
composition of tumor-infiltrating immune cells in 
HCC and quantify the relative levels of distinct 
immune cell types, we utilized the CIBERSORT plat
form (https://cibersort.stanford.edu/). The analysis 
was performed using an arrangement of 100 default 
statistical parameters. At a threshold of P < 0.05, 
results of the inferred fractions of tumor- 
infiltrating immune cells produced by CIBERSORT 
were considered accurate. When the average 
relative percent of tumor-infiltrating immune cells 
exceeded 0.01 for any group, a comparison was 
performed between the normal immunity group 
and the immunodeficient group.

Statistical analysis

In the R programming environment, ROC curves 
were plotted with the ‘pROC’ package, and cluster 
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analysis was performed using the ‘GOplot’ pack
age. The chi-square test was used for analyzing the 
correlation between two groups, Kaplan–Meier 
method was used to compare overall survival and 
disease-free survival between different groups, and 
the log-rank test was used to estimate the signifi
cance of differences in survival rates. Survival 
curves were plotted with Graphpad prism 5.0 soft
ware (GraphPad Software Inc., San Diego, CA, 
USA). Cox regression was utilized to analyze over
all survival and disease-free survival, and results 
were reported as hazard ratios (HR) with 95% 
confidence intervals (CI). A nomogram combining 
the risk score model with clinicopathological char
acteristics was constructed using the ‘rms’ package 
[22]. Discrimination by the prognostic models was 
measured and compared using Harrell’s concor
dance index (C-index) and a calibration plot. 
Statistical analyses were performed using SPSS 
Statistics software (v19.0; SPSS Inc., IL, USA). All 
statistical tests were two-tailed, and P ≤ 0.05 was 
considered statistically significant.

Results

Considering the harm caused by HCC and the 
important role that immune response plays in 
HCC development, our aims were to develop an 
IMOPP for HCC and to evaluate its potential 
mechanisms. To that end, this study identified an 
immune-associated gene signature consisting of 
four genes: C–C motif chemokine ligand 14 
(CCL14), kallikrein B1 (KLKB1), vasoactive intest
inal peptide receptor 1 (VIPR1) and CD4. We 
found that when tested as an IMOP on three 
cohorts, the predictor had high sensitivity, specifi
city, and AUC. When tested as an IMPP, the 
predictor could stratify the HCC prognosis for 
overall survival (based on Kaplan–Meier analysis 
and Cox regression) and disease-free survival 
(based on Kaplan–Meier analysis). A nomogram 
that integrated IMPP with clinicopathological 
characteristics showed improved accuracy in over
all survival prediction compared to a nomogram 
that used only clinicopathological characteristics. 
In addition, IMPP results also significantly corre
lated with the clinicopathological characteristics of 
HCC. In HCC tumor microenvironments, the 

difference in number of CD8+ T cells was signifi
cant among IMOP-stratified groups.

Identification of a differentially expressed 
immune-associated gene signature for HCC

To gain a global understanding of the pathogenesis 
of HCC, the GSE14520-GPL3921 microarray 
expression profile was used to discover genes that 
were differentially expressed between HCC tissue 
and adjacent tissues. The preliminary results 
showed that expression levels significantly differed 
among 3720 genes (adjusted P value < 0.0001, 
Figure 1(a)). The top 250 of those genes were 
used for further Gene Ontology (GO) analysis. 
According to their attributes and biological func
tions (Figure 1(b)), these differentially expressed 
genes were classified as: i) cell cycle (e.g., GO: 
0007049, GO: 0022402, GO: 0000278), ii) immune 
response (e.g., GO: 0050778, GO: 0048548, 
GO:002684), and iii) oxidation reduction (e.g., 
GO:0055114).

Owing to the importance of their function, spe
cial attention was paid to pathways associated with 
immune response. Twenty-one genes associated 
with immune response were involved with the 
immune activation response and acute inflamma
tion response (Figure 1(c)).

Immune-associated genes can influence HCC 
overall and disease-free survival. Kaplan–Meier 
analysis revealed that CCL14 was significantly 
associated with HCC disease-free survival 
(Figure 1(d)) and that CCL14 and KLKB1 were 
significantly associated with overall survival 
(Figure 1(e)). In order to maximize the predictive 
power of these immune-associated genes, we 
extended the survival analysis P value threshold 
to 0.1 and thereafter identified four genes for use 
as an IMOPP of HCC: CCL14, KLKB1, VIPR1, 
and CD4.

Development and validation of an IMOP for HCC

Clustering, which is widely used for data mining, 
feature extraction, disease diagnosis and prognos
tic evaluation, is a fundamental data analysis 
method in machine learning [23,24]. In order to 
develop a robust molecular occurrence predictor 
for HCC, we used a hierarchical clustering 
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algorithm. Results showed that the sensitive and 
specificity of IMOP in the training cohort were 
97.78% and 95.02%, respectively (Figure 2(a), 
Table 1); the AUC was 0.9639 (Figure 2(b)). For 
the validation cohort, the sensitive and specificity 
were 95.44% and 95.85%, respectively 
(Supplementary Figure 1a, Table 1); the AUC 

was 0.9564 (Figure 2(b)). For the low-AFP cohort, 
the sensitive and specificity were 94.92% and 
95.91%, respectively (Supplementary Figure 1b, 
Table 1); the AUC was 0.9541 (Figure 2(b)). 
High sensitivity, specificity, and AUC can indicate 
the superiority of a predictor. These results prove 
that the IMOP possessed significant capability for 
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distinguishing between HCC tissue and adjacent 
tissues.

Development and evaluation of an IMPP for HCC

In the correlation analysis between IMPP and 
overall survival or disease-free survival in HCC 
patients, we first used hierarchical clustering to 
divide HCC patients from the GSE14520- 
GPL3921 dataset into two groups: the immunode
ficient group and the normal immunity group 
(Figure 3(a)). For prognostic estimation, we 
found that the IMPP was significantly associated 
with HCC overall survival (log rank P = 0.0016; 
Figure 3(b)) and disease-free survival (log rank 
P = 0.0227; Figure 3(c)).

In order to eliminate the influence of clinico
pathological characteristics on HCC overall survi
val and disease-free survival, we performed Cox 
regression analysis on the two IMPP-stratified 
groups. After eliminating the influence of clinico
pathological characteristics, we found that IMPP 
was significantly associated with HCC overall sur
vival (HR = 1.832, 95% CI = 1.173–2.859, 

P = 0.008; Table 2) but not associated with disease- 
free survival (P = 0.145; Table 2).

To develop a quantitative method for predicting 
overall survival in HCC patients, we created 
a nomogram that integrated IMPP with clinico
pathological characteristics (Figure 3(d)). 
Subsequently, we utilized C-index and calibration 
plots to evaluate the nomogram. C-index analysis 
revealed that the net benefit was higher for the 
nomogram that integrated IMPP with clinicopatho
logical characteristics (C-index = 0.7097) than for 
the nomogram that was constructed using only clin
icopathological characteristics (C-index = 0.6631). 
Similarly, the calibration plot (Figure 3(e)) showed 
that the nomogram that integrated IMPP with clin
icopathological characteristics performed well when 
compared to the performance of an ideal model.

HCC prognosis is closely related to clinico
pathological characteristics such as AFP level, 
tumor-node-metastasis (TNM) stages, and 
Barcelona Clinic Liver Cancer (BCLC) stages. For 
the correlation analysis between IMPP and the 
clinicopathological characteristics of HCC, we 
evaluated differences between the immunodefi
cient group and the normal immunity group 
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Table 1. Sensitivity and specificity of the immune-associated molecular occurrence predictor in the training cohort, validation cohort, 
and low-AFP cohort.

Clinical 
diagnosis

Training cohort Validating cohort Low-AFP cohort

HCC 
tissues

adjacent normal 
tissues Percent

HCC 
tissues

adjacent normal 
tissues Percent

HCC 
tissues

adjacent normal 
tissues Percent

HCC tissues 220 5 97.78% 230 11 95.44% 112 6 94.92%
adjacent 

tissues
11 210 95.02% 8 185 95.85% 9 211 95.91%
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using the chi-square test. Our findings showed 
that IMPP significantly correlated with TNM 
stage, BCLC stage, Cancer of the Liver Italian 
Program (CLIP) stage, AFP level, multinodular 
presentation, and HCC patient age (Table 3).

Analysis of differences in proportion of CD8+ 

T cells between the HCC IMOP–stratified 
immunodeficient and normal immunity groups
We used the CIBERSORT algorithm to evaluate the 
relationship between HCC IMOP and tumor- 
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infiltrating immune cells [21]. As shown in Figure 4 
(a), the composition of immunity cells (22 cell types) 
varied significantly among samples; furthermore, 
a large proportion of the cells were CD8+ T cells, 
CD4+ memory resting T cells, follicular helper 
T cells, gamma delta T cells, activated natural killer 
cells, M1 macrophages, M2 macrophages, and 

resting dendritic cells. Mean proportional values 
for cell types that had a proportion greater than 
0.01 in at least one group were compared between 
immunodeficient and normal immunity groups. The 
results showed that the memory B cell, CD8+ T cell, 
M1 macrophage, and M2 macrophage ratios were 
significantly higher in the normal immunity group 

Table 2. Univariate and multivariate Cox regression analyses of disease-free survival and overall survival between HCC patient 
groups stratified by the immune-associated molecular prognosis predictor.

Characteristics

Univaries analysis Multivaries analysis

Hazard ratio 
(95% CI) P Value

Hazard ratio 
(95% CI) P Value

Disease-free survival
Group (immunodeficient group or normal immunity group) 1.537(1.074–2.200) 0.019 - 0.145
Gender (male or female) 1.480(1.071–2.047) 0.018 1.387(1.001–1.921) 0.049
MTS (≤5 cm or >5 cm) 0.832(0.692–1.001) 0.051 - 0.880
Cirrhosis (no or yes) - 0.053 - 0.122
TNM stage (I-II stage or III stage) 0.668(0.547–0.816) 0.000 - 0.746
BCLC stage (0-A stage or B-C stage) 0.609(0.500–0.741) 0.000 0.627(0.514–0.764) 0.000
CLIP stage (0–1 stage or 2–5 stage) 0.699(0.573–0.854) 0.000 - 0.754
Overall survival
Group (immunodeficient group or normal immunity group) 2.029(1.316–3.129) 0.001 1.832(1.173–2.859) 0.008
MTS (≤5 cm or >5 cm) 0.707(0.570–0.877) 0.002 - 0.588
MN (no or yes) - 0.056 1.729(1.241–2.410) 0.001
Cirrhosis (no or yes) 0.464(0.230–0.935) 0.032 - 0.052
TNM stage (I-II stage or III stage) 0.535(0.428–0.671) 0.000 - 0.119
BCLC stage (0-A stage or B-C stage) 0.533(0.426–0.666) 0.000 0.540(0.380–0.767) 0.001
CLIP stage (0–1 stage or 2–5 stage) 0.561(0.449–0.701) 0.000 0.628(0.444–0.889) 0.009

MTS, Main tumor size; MN, Multinodular; BCLC, Barcelona Clinic liver cancer; CLIP, Cancer of the Liver Italian Program. 

Table 3. Correlation analysis between immune-associated molecular prognosis predictor and the clinicopathological characteristics 
of HCC patients.
Characteristics immunodeficient group normal immunity group Χ2 P Value

Gender Male 90(85.6) 101(105.4) 3.073 0.080
Femal 9(13.4) 21(16.6)

Age(years) ≤60 87(81.1) 94(99.9) 4.324 0.038�

>60 12(17.9) 28(22.1)
HBV virtal status AVR-CC 27(24.8) 29(31.2) 0.463 0.496

CC 67(69.2) 89(86.8)
ALT ≤50 U/L 53(58.2) 77(71.8) 2.071 0.150

>50 U/L 46(40.8) 45(50.2)
AFP ≤300 ng/ml 40(53.0) 78(65.0) 12.707 <0.001�

>300 ng/ml 58(45.0) 42(55.0)
Main tumor size ≤5 cm 61(63.0) 79(77.0) 0.317 0.573

>5 cm 38(36.0) 42(44.0)
Multinodular no 73(78.8) 103(97.2) 3.851 0.050�

yes 26(20.2) 19(24.8)
Cirrhosis no 5(8.9) 13(11.1) 3.348 0.067

yes 94(90.1) 109(102.9)
TNM stage I-II stage 68(76.1) 102(93.9) 6.930 0.008�

III stage 30(21.9) 19(27.1)
BCLC stage 0-A stage 68(75.2) 100(92.8) 5.327 0.021�

B-C stage 30(22.8) 21(28.2)
CLIP stage 0–1 stage 69(76.5) 102(94.5) 6.104 0.013�

2–5 stage 29(21.5) 19(26.5)

NA, not available; HBV, Hepatitis B Virus; AVR-CC, active viral replication chronic carrier; CC, chronic carrier; ALT, alanine aminotransferase; AFP, 
Alpha Fetal Protein; BCLC, Barcelona Clinic liver cancer; CLIP,Cancer of the Liver Italian Program. 

� There are statistically significant between the two groups. 
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than in the immunodeficiency group (P = 6.58E-4, 
P = 3.65E-10, P = 3.43E-4, and P = 3.03E-12, respec
tively; Figure 4(b)). In contrast, the CD4+ naive 
T cell, regulatory T cell, activated natural killer cell, 
M0 macrophage, resting dendritic cell, activated 
dendritic cell, and resting mast cell ratios were sig
nificantly lower in the normal immunity group than 
in the immunodeficient group (P = 2.21E-8, 
P = 3.42E-2, P = 6.91E-3, P = 5.18E-24, P = 1.80E- 
3, P = 3.27E-5, and P = 4.58E-4, respectively; Figure 4 
(b)). These results indicated that the activation and 

inhibition of various immune cells in tumor micro
environments occurred simultaneously.

CD8+ T cells can affect the development of 
HCC [25,26]. Thus, we compared the CD8+ 

T-cell markers between immunodeficient and nor
mal immunity groups. The results (Figure 4(c)) 
showed that the levels of general T-cell markers 
(CD2 and CD3E) and specific CD8+ T-cells mar
kers (CD8A and CD8B) were significantly lower in 
the immunodeficient group than in the normal 
immunity group.

Figure 4. The proportion of CD8+ T cells significantly differed between the HCC IMOP–stratified immunodeficient and normal 
immunity groups. (a) Stacked bar chart showing the relative distribution immune cells (22 cell types) in each sample. (b) Box plot 
illustrates relative percent of tumor-infiltrating immune cells between the HCC IMOP–stratified immunodeficient and normal 
immunity groups. (c) Violin plot shows differential expression of CD8+ T-cell markers between the HCC IMOP–stratified immuno
deficient and normal immunity groups.
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Discussion
Effective methods are needed for predicting HCC 
occurrence and prognosis in patients. To address 
this issue, we identified a potential signature invol
ving four immune-associated genes that were dif
ferentially expressed between HCC tissue and 
normal tissues and therefore could be valuable 
for predicting HCC occurrence and prognosis. 
Subsequently, we found that the IMOP possessed 
significant capability for distinguishing between 
HCC tissue and adjacent tissues in the training 
cohort, validation cohort, and low-AFP cohort. 
Meanwhile, the IMPP also showed excellent dis
criminatory ability in HCC patients with poor 
prognosis. To develop a quantitative method for 
predicting the overall survival of HCC patients, we 
combined clinicopathological characteristics with 
IMPP to construct a nomogram and then con
firmed its performance using C-index and 
a calibration curve. With regard to the mechanism 
of IMOP, we found that the difference in propr
tion of CD8+ T cells was significant among IMOP- 
stratified groups.

Liver biopsy and pathological diagnosis continue 
to be the ‘gold standard’ for evaluating chronic hepa
titis and fibrosis and for diagnosing HCC [27]. 
However, liver biopsy and pathological diagnosis 
have some disadvantages [27,28]. High-risk patients 
are usually diagnosed with HCC at the intermediate– 
advanced stage [29]. In tumors, molecular changes 
often preceed morphological changes [30]. Thus, 
molecular predictors may be one of the most effec
tive methods for monitoring HCC.

The role of immune response in the occurrence 
and development of HCC is well recognized [31– 
33]. Among HCC patients infected by hepatitis 
B virus (HBV) or hepatitis C virus, immune sup
pression owing to viral infection and viral gene 
integration are possible mechanisms associated 
with the occurrence of HCC [34–36]. The abnor
mal expression of various characteristic tumor sur
face antigens can inhibit antitumor immunity, 
thereby affecting HCC development and HCC 
treatment [37,38]. The present study found that 
in HCC patients, CCL14 was significantly asso
ciated with overall survival and disease-free survi
val, and KLKB1 was significantly associated with 
overall survival. Our results concur with those of 

other studies. In one HCC study, researchers 
found that CCL14 can serve as a novel HCC 
tumor suppressor by regulating cell cycles and 
promoting apoptosis [39]. Another study on 
epithelial ovarian cancer revealed that CCL14 
upregulation is associated with a favorable prog
nosis [40].The differentially expressed immune- 
associated genes may play important roles in the 
development of tumor. In order to maximize the 
predictive power of differentially expressed 
immune-associated genes, we ensured that the 
four genes (CCL14, KLKB1, VIPR1, and CD4) 
chosen for development as an IMOPP for HCC 
had P values of less than 0.1 for overall or disease- 
free survival.

Serological tests performed alone or in combi
nation (e.g., AFP, des-gamma-carboxy prothrom
bin, and AFP-L3) are the main methods for 
detecting HCC. However, AFP (at a cutoff of 
20 ng/mL) has a sensitivity of 40–65% and 14– 
40% for clinically diagnosed HCC and preclinical 
HCC, respectively [41]. In addition, the sensitivity 
and specificity of des-gamma-carboxy prothrom
bin for clinically diagnosing HCC are only 28–89% 
and 87–96%, respectively – values which are simi
lar to those for AFP-L3 [41]. Molecular predictors 
display superior stratification capability. For exam
ple, Lin et al. found that one miRNA classifier had 
high sensitivity (range 70.4–85.7%) and specificity 
(80.0–91.1%) [6]. In this study, our IMOP had 
95% sensitivity and specificity in the training and 
validation cohorts. That is, our IMOP had higher 
sensitivity and specificity than do AFP [41,42] and 
other molecular predictors [6]. Moreover, the sen
sitivity and specificity of the IMOP reach approxi
mately 95% in the low-AFP cohort. These results 
show that IMOP has robust capability for distin
guishing HCC tissue from adjacent tissue.

Partial hepatectomy is regarded as a standard 
curative treatment for HCC, but the prognosis for 
HCC patients who undergo hepatectomy varies 
even among early-stage HCC patients [43,44]. 
Therefore, it is important to stratify HCC patients 
according to pathological parameters, protein bio
markers, mRNA expression levels, and genomic 
DNA abnormalities [45–47]. In the analysis of 
prognostic ability, we found that IMPP could 
effectively be used to divide HCC patients into 
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two groups – the immunodeficient group and the 
normal immunity group – the latter of which was 
significantly associated with HCC overall survival 
and disease-free survival. Even after eliminating 
the influence of clinicopathological characteristics, 
IMPP was significantly associated with overall sur
vival. An analysis using C-index and a calibration 
plot with well-fitted calibration curves showed that 
a nomogram that integrated IMPP with clinico
pathological characteristics had higher accuracy in 
overall survival prediction (C-index: 0.7097 vs. 
0.6631) provided a greater net benefit than than 
did a nomogram that used only clinicopathological 
characteristics. In the correlation analysis of IMPP 
and clinicopathological characteristics, results 
showed significant differences in TNM stage, 
BCLC stage, CLIP stage, AFP level, and ages 
between the two groups of HCC patients. To 
some extent, IMPP demonstrated its ability to 
stratify HCC patients with poor prognosis.

The genes associated with immune response are 
involved in positive regulation of the immune 
system process, such asT-cell activation and 
T-cell differentiation. We speculated that a strong 
immune-associated molecular predictor presence 
is significantly associated with tumor-infiltrating 
immune cells. CIBERSORT analysis revealed that 
the normal immunity group had a higher propor
tion of CD8+ T cells and higher expression levels 
of CD8+ T-cell markers than did the immunodefi
cient group. As the most predominant tumor- 
infiltrating lymphocyte, CD8+ T cell is ascribed 
the role of cytotoxic killer cell in cancer immuno
biology, and infiltration of CD8+ T cell has been 
regarded as a marker of superior prognosis [48]. In 
a recent meta-analysis of 3509 patients from 21 
observational studies, high levels of intratumoral 
CD8+ T cells were positively correlated with over
all survival and disease-free survival [49]. Our 
experimental results confirmed these results. 
Regarding cause, most mechanisms of the molecu
lar predictor are obscure in terms of number of 
CD8+ T cells affected. In future studies, we plan to 
explore the mechanism by which IMOP influences 
the occurrence of HCC.

There were some limitations in our study. First, 
we retrospectively studied genetic and clinical data 
from two independent cohorts in the GEO database; 
the patients were enrolled in East Asia and had 

different ethnic and environmental backgrounds. 
Second, our IMOPP may be limited to HBV- 
related HCC because the majority of patients in 
our study were HBV-positive. Owing to these lim
itations, it will be necessary to validate our predictor 
in prospective cohorts with different etiological 
backgrounds and different ethnic characteristics.

Conclusions

In summary, we developed and validated an 
IMOPP that can potentially predict the occurrence 
of HCC in high-risk populations and provide new 
biomarkers for risk stratification and accurate 
prognostication. In addition, we found that the 
IMOP mechanism may involve inducing changes 
in the number of CD8+ T cells. Early diagnosis and 
accurate stratification of HCC patients help clin
icians personalize clinical treatment. Thus, we 
believe that in spite of its limitations, our HCC 
IMOPP is important because it allows for indivi
dualized treatment recommendations.

Highlights

(1) We identified a 4-gene signature for HCC: 
CCL14, KLKB1, VIPR1 and CD4.

(2) IMOPP potentially predicts HCC occur
rence and improves prognostic accuracy.

(3) IMOP may affect the proportion of CD8+ 

T cells in tumor-infiltrating lymphocytes.
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