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SUMMARY

Genomic data can facilitate personalized treatment decisions by enabling thera-
peutic hypotheses in individual patients. Mutual exclusivity has been an empiri-
cally useful signal for identifying activating mutations that respond to single
agent targeted therapies. However, a low mutation frequency can underpower
this signal for rare variants.We develop a resampling basedmethod for the direct
pairwise comparison of conditional selection between sets of gene pairs. We
apply this method to a transcript variant of anaplastic lymphoma kinase (ALK)
in melanoma, termed ALKATI that was suggested to predict sensitivity to ALK in-
hibitors and we find that it is not mutually exclusive with key melanoma onco-
genes. Furthermore, we find that ALKATI is not likely to be sufficient for cellular
transformation or growth, and it does not predict single agent therapeutic de-
pendency. Our work strongly disfavors the role of ALKATI as a targetable onco-
genic driver that might be sensitive to single agent ALK treatment.

INTRODUCTION

In cancers, clonal selection influences tumor progression and responses to therapy (Burrell et al., 2013), but

in every patient, the process of clonal selection creates independent tumors with independent, parallel

evolutionary trajectories. These parallel evolutionary paths can be conditioned upon the occurrence of a

previous genetic event, i.e., they can be conditionally selected. Co-occurrence is when the first variant pre-

dicts the presence of a second (Mina et al., 2017; Whittaker et al., 2013). Whereas, mutual exclusivity occurs

when the presence of the first predicts the absence of the second—and is the primary focus here. Mutual

exclusivity is often viewed qualitatively or used to build large scale networks (Ciriello et al., 2012; Mina et al.,

2017; Vandin et al., 2012; Zhao et al., 2012). Here we aim to create quantitative guideposts of conditional

selection that will allow for direct comparisons of mutual exclusivity relative to known druggable oncogene

pairs by controlling for cohort size. These guideposts can be used to triage the translational actionability of

rare genomic findings.

A strong example of mutual exclusivity in cancer is seen in the evolutionarily ancient mitogen-activated pro-

tein kinase (MAPK) pathway that is present from yeast to metazoans (Widmann et al., 1999). In higher eu-

karyotes, the MAPK pathway is often canonically activated by receptor tyrosine kinases (RTK) that signal

through MAPKs to achieve cellular growth and development (Lemmon and Schlessinger, 2010; Zhang

and Liu, 2002). Because of their critical role in growth and division, most known RTK-MAPK mutational

events that drive cancer growth are mutually exclusive across patients during parallel evolution. Moreover,

many of the most impressive success stories for targeted cancer therapy in the past two decades have

centered on this one pathway. Multiple examples of mutual exclusivity have been found between ALK-

fusion, epidermal growth factor receptor (EGFR), Kristen rat sarcoma viral (KRAS), and Erb-b2 receptor tyro-

sine kinase 2 (ERBB2) genes in non-small cell lung cancer (NSCLC) (Takahashi et al., 2010; Unni et al., 2015;

Varmus et al., 2016). This has led to inhibitors of ALK, EGFR, and recently KRASG12C offering high rates of

single agent therapeutic responses (Bhullar et al., 2018; Fakih et al., 2019; Muhsin et al., 2003; Shaw et al.,

2012; Swaika et al., 2014). In thyroid cancer, BRAF mutations have been found to be mutually exclusive with

RET fusions, and both have shown high single agent response rates in clinical trials (Liang et al., 2007;

Schlumberger et al., 2014). Similarly, BRAF & NRAS are mutually exclusive in melanoma and single agent

use of vemurafenib leads to clinical responses (Edlundh-Rose et al., 2006; Guan et al., 2015; Marzese et al.,
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2014; Poynter et al., 2006; Roskoski and Sadeghi-Nejad, 2018; Sensi et al., 2006; Wells et al., 2012). There-

fore, mutually exclusive activating mutations in the RTK-MAPK pathway have shown impressive clinical

sensitivity to single agent targeted therapies (Gainor et al., 2013; Shaw et al., 2012).

There are at least two evolutionary explanations for mutual exclusivity in gain of function oncogenes in the

same pathway: 1) Variants that are sufficient to activate the pathway may be functionally redundant. In this

case there is no added benefit to a second activating mutation. 2) When activation of a single pathway

member is sufficient, further activation of that pathway (via a second activating mutation) might be harmful

to the cell i.e., the two events in the same pathway may be antagonistic because excess pathway activity is

selected against (Cisowski et al., 2016; Petti et al., 2006).

Although mutual exclusivity is often measured in cancer genomics studies, it can be challenging to inter-

pret for rare genomic findings. For instance, KRAS and EGFR are well described as mutually exclusive in the

literature, and their inhibitors have shown single agent response rates. If a newly discovered variant ap-

pears to be mutually exclusive with one or both of these genes that would give confidence that the variant

is potentially indicative of therapeutic response. However, when the variant is not mutually exclusive, the

important question becomes, how do we demonstrate a negative result? Answering this question requires

estimating the variability in effect size and significance that rarity would bring to positive control genes like

KRAS and EGFR. In the absence of such a quantitative test, it is easy to view the data qualitatively (Zhao and

Pritchard, 2016). Here we seek a direct and quantitative test to rapidly interpret the relative mutual exclu-

sivity of rare variants versus a positive control pair. Because we use positive controls that are genes in the

MAPK pathway with previously verified single agent responses to targeted therapeutics (Chapman et al.,

2011; Muhsin et al., 2003; Shaw et al., 2012; Swaika et al., 2014), our method can triage rare genomic find-

ings for potential single agent drug efficacy. If a newly discovered alteration is as mutually exclusive as a

therapeutically establishedmutually exclusive gene pair, it gives greater confidence in the potential for sin-

gle agent therapy. The decision tree in Figure S1 illustrates the advances in mutual exclusivity analysis that

are enabled by our method.

As a test case for a method that can quantitatively compare mutual exclusivity between gene pairs, we re-

examined the observation that alternative transcription initiation in ALK, termed ALKATI, is a therapeutically

actionable oncogenic target (Wiesner et al., 2015). This novel ALK transcript has a transcription initiation

site in intron 19 of ALK, just upstream of ALK’s kinase domain. Wiesner et al posited that this transcript ex-

hibits a novel mechanism of oncogenic activation by overexpressing the kinase domain of ALK. Using

in vitro transformation assays and inhibitor treatment, they hypothesize that single agent ALK-inhibitor

therapy can treat the 2-11% (Busam et al., 2016; Wiesner et al., 2015) of melanoma patients expressing

ALKATI. However, Couts et al reported crizotinib (an ALK inhibitor) sensitivity in melanoma patient derived

xenografts (PDXs) expressing EML4-ALK but not ALKATI in vitro and in vivo (Couts et al., 2017). Exome

sequencing of the melanoma PDXs expressing ALKATI revealed that 4 out of 6 of these cell lines had trans-

forming mutations in well-established melanoma oncogenes. Furthermore, out of the two ALKATI mela-

noma patients treated with ALK-inhibitors so far, one had a modest response that did not rise to the level

of an objective response (Wiesner et al., 2015) and the other did not respond (Couts et al., 2017). This con-

tradictory evidence, and the small sample size of the Couts et al. study suggest that reanalysis of the orig-

inal observation of ALKATI is important to understanding if further investigation is warranted.

Two genes are conditionally selected if their odds ratio differs significantly from 1. In this paper, we develop

a simple and user-friendly resampling method to test the relative conditional selection across two gene

pairs. Relative conditional selection tests whether a significant difference exists between the odds ratio

of two gene pairs. This allows us to quantitatively compare the conditional selection of any gene of interest

(GOI) such as ALKATI with positive control genes such as BRAF and NRAS in melanoma. In addition to quan-

tifying levels of relative conditional selection across gene pairs, our approach also detects cases where the

lack of conditional selection of a GOI with another gene may be confounded by its low prevalence in the

population. Using this method, we show that ALKATI is not as mutually exclusive with BRAF or NRAS as

BRAF and NRAS are with each other. We also show that the relatively rare prevalence of ALKATI

(�2-10%) is not a major contributing factor behind its lack of mutual exclusivity with BRAF and NRAS. More-

over, by large scale repetition of experiments performed in the Wiesner paper (Wiesner et al., 2015), we

uncovered kinase activating mutations in ALKATI that can be selected for during transformation assays.

This suggests that it is not sufficient for growth factor independent transformation. We also find that ALKATI
2 iScience 24, 103343, November 19, 2021
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cannot compensate for oncogenic signaling in melanoma cells, and that ALK kinase domain overexpres-

sion does not predict ALK inhibitor sensitivity in the cancer cell line encyclopedia (CCLE) (Barretina

et al., 2012). Finally activated ALK actually inhibits the growth of BRAFV600E melanoma cell lines. Given

the stunning advances in melanoma therapy, and the rich clinical trial landscape, we suggest that

relapse/refractory melanoma patients with ALKATI should not be given ALK inhibitors in an investigational

or off-label capacity unless no other options remain.
RESULTS

Pairwise comparisons of conditional selection allow direct comparisons between frequent

and rare events

Highly mutually exclusive gene pairs such as KRAS/EGFR and EGFR/EML4-ALK in lung cancer, and NRAS/

BRAF in melanoma predict the success of ALK, EGFR and BRAF inhibition in the clinic (Gainor et al., 2013;

Shaw et al., 2012). These mutually exclusive gene pairs are positive controls that can be compared with any

gene/alteration of interest. A direct pairwise comparison would allow us to ask whether a ‘‘BRAF/NRAS

level’’ of mutual exclusivity exists between any new GOI (such as ALKATI) and BRAF or NRAS (BRAF and

NRAS are an example of a highly mutually exclusive gene pair in melanoma, 20–24). However, the differ-

ences in sample size due to mutation frequency complicates our ability to directly compare the odds ratios

between distinct gene pairs. If the GOI is much less abundant than the positive control, how often would

the positive control have a similar odds ratio if it was only as abundant as the test gene of interest? Resam-

pling will allow us to more directly compare the mutual exclusivities between pairs of genes with unequal

abundances in cancer genomes (see STAR Methods and Data S1 for full details).

To directly illustrate this idea, we analyzed how sample size affects the odds ratios observed for a simulated

mutually exclusive positive control gene pair. We created a mock clinical cohort with two abundant but

mutually exclusive genes (odds ratio of 0.025), and then we performed resampling experiments at different

subsample sizes. As expected, decreasing the abundance of one of the genes increases the range in the

observed odds ratios (OR) at smaller sample sizes: OR of 0–0.7 for a subsample size of 5 and OR of

0–0.11 for a subsample size of 20 (Figure 1A). Therefore, the range of odds ratios that is observable in highly

mutually exclusive genes becomes noisier as sample size decreases. This means that a signal of mutual ex-

clusivity in a pair of genes can be masked if one of the genes is rare. To more directly compare gene pairs

with different abundances, we propose adjusting the frequency of themore prevalent genes to a frequency

that is matched by the gene of interest.

We refer to this as ‘‘pairwise comparisons of conditional selection’’. We aim to directly compare two gene

pairs while controlling for the differences in sample size. Given two highly prevalent, mutually exclusive

positive control genes and a rare GOI with low frequency of mutations, our method adjusts the frequency

of mutations of one of the positive control genes to match the frequency of mutations of the rare GOI. This

effectively normalizes the prevalence of rare vs common genes. To quantify relative conditional selection,

our method compares the odds ratios produced by the two positive control genes to the odds ratios pro-

duced by the GOI and one of the positive control genes (Figure 1B). This lets us test the null hypothesis that

no difference exists between the odds ratios of the two gene pairs. The higher the difference between

these two sets of odds ratios, the more certain one can be that the gene of interest is not as mutually exclu-

sive with one of the positive control genes as the two positive control genes are with each other. Details of

the pairwise comparison strategy are included in the STAR Methods, the pseudo-code (Data S1), and our

GitHub repository.

To explore the sensitivity and specificity of our resampling approach we generated gene pairs (see STAR

Methods, pseudo-code) with varying GOI frequencies, and odds ratios for the two gene pairs (Figure S2A).

As expected, when we simulated two gene pairs with similar mutual exclusivities, no significant differences

in their odds ratio distributions were detected (Figures 1C and 1D left panel). Furthermore, large differ-

ences in odds ratios required relatively few observations of a genetic event (Figures 1C and 1D right panel).

If the simulated gene pairs had a small difference in their odds ratios, whether or not a strong difference

was detected depended on the abundance of the GOI in the cohort (Figures 1D middle panel andS2B).

For example, in a cohort of 500 patients, if the two positive control genes had an odds ratio of 0.05 and

GOI and PC1 had an odds ratio of 0.2, at least 28 GOI patients were needed before a high difference in

odds ratios could be detected, i.e., this cohort requires at least 28 GOI patients before we can conclude

that the difference in odds ratios between the two gene pairs is real.
iScience 24, 103343, November 19, 2021 3



Figure 1. Pairwise comparisons of conditional selection between a GOI gene pair and a positive control gene pair

in simulated cohorts

(A) Distribution of odds ratio of twomutually exclusive genes when one of the genes is rare (left-side) and abundant (right-

side).

(B) A single simulated patient cohort is scored by our pairwise comparisons approach. In this cohort, the odds ratio of PC1

with PC2 was 0.05 and the odds ratio of GOI with both PC1 and PC2 genes was >1. The frequency of GOI was set to 5%.

The scoring threshold is the median of the PC1 and PC2 distribution. The score is the percentage of the GOI & PC1 or GOI

& PC2 distribution that is greater than this threshold. Odds ratios displayed on the plot are for the comparison between

the gene of interest and positive control (gene of interest gene pair).

(C–D) Heatmaps showing the dependence of a high score (blue) on the difference between the odds ratios of the two

gene pairs and on the abundance of the GOI. Each tile represents a single simulated cohort. A cohort size of 500

simulated patients was used. A GOI abundance of 25 patients was used in (C).

ll
OPEN ACCESS

4 iScience 24, 103343, November 19, 2021

iScience
Article



ll
OPEN ACCESS

iScience
Article
Our method is sensitive enough to detect meaningful pairwise differences in mutual exclusivity in �10/500

(2%) patients in a clinical cohort. Given that this sensitivity should be sufficient for the observed frequency of

ALKATI (observed at 2-10% frequency), we decided to re-examine the literature controversy surrounding

this putatively oncogenic alteration.

ALKATI is not as mutually exclusive as other established therapeutic targets in melanoma

The Couts paper contained a sample size of 6 ALKATI patients, but it identified NRAS and BRAF mutations

in patients that harbored the ALKATI alteration (Couts et al., 2017). Thus, the lack of mutual exclusivity of

ALKATI with the transforming melanoma oncogenes BRAF and NRAS has been suggested, but not conclu-

sively and quantitatively demonstrated with an appropriately powered analysis. Pairwise comparison of

conditional selection clearly showed that ALKATI is not as mutually exclusive with BRAF or NRAS as they

are with each other (Figures 2A–2C, see STAR Methods for description of data acquisition, sorting, and

analysis). No significant difference in mutual exclusivity was detected when BRAF NRAS was compared

to another known mutually exclusive gene pair (EGFR and KRAS in lung cancer, Figure 2D). Looking

back at our simulated patient cohorts (black cross in Figures 1C and 1D), it is clear that this observed

lack of mutual exclusivity of ALKATI is not confounded by its low abundance. If there were 12 ALKATI patients

(not 38 ALKATI patients) in our dataset, we would have been unable to make any conclusions about whether

a BRAF-NRAS level of mutual exclusivity exists in ALKATI. Thus, ALKATI is significantly less mutually exclusive

with BRAF or NRAS than they are with each other.

We also considered the possibility that the lack of mutual exclusivity of ALKATI with BRAF and NRAS was

because of the definition of the initial filter cutoffs in the original RNA-seq analysis (the exact filters are

mentioned in the STAR Methods). By systematically changing the cutoffs for all of the filters combinatori-

ally, we varied the sensitivity for ALKATI detection by orders of magnitude (Figure 3A, top). More stringent

filter sets resulted in fewer ALKATI calls, whereas less stringent filters resulted in more calls (Figure 3A, bot-

tom). Performing pairwise comparisons of conditional selection on all combinations of these filter cutoffs

never created mutual exclusivity. This filter analysis indicated that mutual exclusivity in AKLATI could not be

observed with any data driven RNA-seq definition.

This analysis shows the utility of tests for pairwise conditional selection to demonstrate quantitative differ-

ences in the degree of mutual exclusivity between a positive control gene pair and a new and potentially

oncogenic alteration. We also strongly demonstrate a lack of mutual exclusivity between ALKATI and estab-

lished MAPK pathway driver mutations.

Kinase domain expression imbalance in ALK is nearly ubiquitous in melanoma and lung

cancers

Given the conclusive lack of mutual exclusivity between ALKATI and transformingmelanoma oncogenes, we

decided to look deeper at the initial signal, i.e., the bias toward ALK expression in the kinase domain (Exons

20:29). We expected to see a distribution centered at equivalent expression between the kinase domain

and the upstream coding region (the diagonal line in Figure 3B). We posited that expression levels in exons

1-19 and 20-29 should be distributed above and below the diagonal, with ALKATI patients being strong out-

liers from this expected relationship. However, we observed a significant bias toward overexpression of the

kinase domain of ALK across all melanoma patients, p value from Kolmogorov-Smirnov test: 2.23 10�16. In

fact, almost all the skin cutaneous melanoma (SKCM, n = 340) and lung adenocarcinoma (LUAD, n = 477)

patients in the TCGA (Figures 3B and S3A) expressed higher levels of the ALK kinase domain than exons 1-

19. The ubiquity of this deviation in all patients led us to suspect that a systematic error could be at play.

Althoughmultiple interpretations of this signal exist, it is concerning that all patients have some propensity

to overexpress the kinase domain. As a control, we also examined whether an imbalance of expression to-

ward the kinase domain is a unique feature of ALK. We did not see this propensity for kinase domain

expression in EGFR in SKCM or in EGFR in LUAD, p value from KS-test:0.66 (Figure S3B). Hence, the kinase

domain expression imbalance is not a generalizable finding and raises concerns of potential systemic

biases in exon specific expression levels in ALK in the TCGA.

ALKATI is not sufficient for growth/transformation in vitro

Our computational reanalysis of ALK expression data in melanoma suggested that ALKATI is significantly less

mutually exclusive withNRAS andBRAF than they are with each other. In the originalWiesner et al. study (Wies-

ner et al., 2015), ALKATI was argued to be sufficient for transformation of Ba/F3s to growth factor independence.
iScience 24, 103343, November 19, 2021 5



Figure 2. Performing pairwise comparisons of conditional selection on ALKATI reveals a lack of mutual exclusivity

with transforming melanoma oncogenes BRAF and NRAS

(A) An illustration of the parameter space of ALKATI and the melanoma oncogenes BRAF and NRAS. The overall counts of

the original data are: cohort size of 340 patients; abundances of ALKATI, BRAF, NRAS: 38, 175, and 95. BRAF and ALKATI: 12

patients, BRAF and NRAS: 25 patients, NRAS and ALKATI: 8 patients.

(B) ALKATI is not mutually exclusive with BRAF or NRAS. BRAF and NRAS in melanoma and EGFR and KRAS in lung cancer

are mutually exclusive with each other (p value from Fisher’s exact test).

(C) Pairwise comparisons of the odds ratio distributions of ALKATI with BRAF, ALKATI with NRAS, and BRAF with NRAS. For

BRAF and NRAS, the frequency of BRAF (51%) was reduced to match the frequency of ALKATI in the dataset (11%)

according to our pairwise comparisons method.

(D) Scores from the pairwise comparisons in (C).
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When we transduced Ba/F3s with ALKATI and EML4-ALK (9 independent replicates each), we found that ALKATI

took significantly longer to grow out (two population doublings in 6.7 G 0.4 days for EML4-ALK and 10.0 G

1.0 days for ALKATI, Figure 4A). However, we also reasoned that longer outgrowth times were indicative of a

weaker transforming potential. As such, we scaled up the number of transductions to 48 independent repli-

cates by performing many parallel transductions of ALKATI, EML4-ALK, and vector. The results were striking.

Growth factor independence was observed in 100% of EML4-ALK replicate transductions, but only 37.5%

ALKATI replicate transductions, and in 16% of vector controls (Figure 4B). Viral titers were essentially
6 iScience 24, 103343, November 19, 2021



Figure 3. Changing the RNA-Seq filter cutoffs does not identify mutual exclusivity in ALKATI

(A) Top: Changing the RNA-seq filter cutoffs for RSEM (Li and Dewey, 2011), RPKM (Mortazavi et al., 2008), and count

data did not result in mutually exclusive regions of ALKATI with BRAF or NRAS. Filters used were RSEM 10-1000, counts
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Figure 3. Continued

100-1000, ex20-29/ex1-19 ratio 10-100. Only the minimum p value observed amongst all exon ratios tested is

displayed. The midpoint of the p value color gradient is 0.3. Regions that filtered for <10 ALKATI patients were not

included in the pairwise comparison analysis and are colored gray. P-values calculated using a Fisher’s exact test.

Bottom: The number of patients that are categorized as ALKATI positive decreases as the filter stringency increases.

(B) The kinase domain of ALK (ex. 20-29) is significantly overexpressed in the majority of SKCM patients (p value is from a

c2 test).
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indistinguishable across these three constructs (Figure S4A); puromycin resistance cassette transfer as indi-

cated by time to outgrowth following puromycin selection was similar as well. Thus, ALKATI exhibits only a

modest increase in transformation efficiency when large scale replication is performed.

Next, we reasoned that growth factor independence in ALKATI Ba/F3 cells was infrequent because it

required a relatively rare second genetic event. To test this hypothesis, we extracted the genomic DNA

of the 18 ALKATI Ba/F3 cell lines that achieved growth factor independence and sequenced their ALK kinase

domain. Surprisingly, 3 of the 18 ALKATI cell lines had well known transforming mutations in the ALK kinase

(F1174C, F1174V, and F1174I, Figures 4A and S4B). These point mutations are the primary cancer causing

mutations in ALK-mutated neuroblastoma and have been shown to constitutively activate the ALK kinase

(Tate et al., 2019). These mutations are also sensitive to some ALK kinase inhibitors. This gives a concrete

rationale for why ALKATI could transform Ba/F3 cells, and that those cells were sensitive to ALK inhibition

(Wiesner et al., 2015). We hypothesize that these mutations spontaneously arise in a small subset of trans-

duced Ba/F3 cells, but that IL3 withdrawal strongly selects for the growth benefit conferred by these

artifactual mutations. Although the mutations were not found in all cells, their existence in 3 independent

selections strongly suggests that the transformation results and therapeutic treatments of ALKATI can be

confounded by secondary genetic events. To confirm that these mutations in ALKATI are sufficient for trans-

formation, we added the 3 mutations to the original ALKATI plasmid via site directed mutagenesis. When

we performed new transformation experiments, ALKATI�F1174 C, V, and I mutant cells transformed Ba/F3’s in a

highly efficient manner that resembled our EML4-ALK positive control (Figure S4C). To further confirm that

these cells were ALK addicted, we treated Ba/F3 cells with crizotinib and examined their dose-response

curves and signaling state via western blots. ALKATI transformed Ba/F3 cells are sensitive to crizotinib

and brigatinib (Figures 4C and S4D). Crizotinib treatment decreases phospho-ALK and phospho-ERK in

a manner similar to EML4-ALK (Figure 4D). Together, this data suggests that while ALKATI transformed

Ba/F3 are sensitive to crizotinib, they require a second transforming event (i.e F1174 mutations) to fully

transform cells in vitro. These mutations are not seen in melanoma patients. Alongside our re-analysis of

the genomic data and the Couts et al data (Couts et al., 2017), our transformation data strongly suggested

that ALKATI is not sufficient for growth/transformation in vitro, and that ALK inhibitors will not be a good

single agent treatment strategy in ALKATI positive melanoma. Though other transformation experiments

were performed in (Couts et al., 2017), we argue that the large scale replication of the Ba/F3 results in

our lab cast significant concerns on the other transformation studies in ALKATI.

ALKATI cannot rescue melanoma cell lines

Although our Ba/F3 analysis suggests that the ALKATI alterations are not sufficient to transform tool cell lines to

growth factor independence, we decided to test the potential oncogenicity of ALKATI in a more realistic mel-

anoma cell line model. We transduced ALKATI into two BRAFV600E-harboring melanoma cell lines, and chal-

lenged them with a BRAFV600E inhibitor, vemurafenib. The experimental rationale was simple: BRAFV600E is

necessary for melanoma cell survival, and sufficient for transformation (Chapman et al., 2011; Sensi et al.,

2006). The drug vemurafenib inhibits only the mutant BRAF V600E protein as a monomer (Bollag et al.,

2010; Chapman et al., 2011; Swaika et al., 2014), whereas receptor tyrosine kinases signal through dimeric

RAF family proteins (Freeman et al., 2013). A candidate oncogenic RTK in melanoma with strong transforming

potential should be able to rescue BRAFV600E melanoma from a BRAFV600E inhibitor.

We transduced EML4-ALK, ALKATI, and vector into two different skin cancer cell lines, SKMEL28 and G361,

both of which have a transforming V600E point mutation and are sensitive to vemurafenib (Barretina et al.,

2012). When we did this, ALKATI and vector-transduced melanoma cells had statistically indistinguishable

vemurafenib dose responses (p value: 0.49 for SKMEL28 and 0.97 for G361, Figure 5A). Western blots

confirmed ALKATI constructs robustly expressed, and that both melanoma cell lines exhibited strong over-

expression of the ALKATI construct (Figures 5B and 5C). The inability of ALKATI to rescuemelanoma cell lines

is in line with the notion that ALKATI is not an oncogenic driver in melanoma.
8 iScience 24, 103343, November 19, 2021



Figure 4. ALKATI is not sufficient in melanoma and does not predict therapeutic dependency

(A) Time to growth factor independence, as measured by number of cell doublings, between ALKATI-transduced Ba/F3

cells (green), EML4ALK-transduced cells (orange), and vector-transduced cells (purple). Faded lines represent transduced

cells growing without selection (grown with IL3). Activating mutations in the kinase domain of ALK were detected after

sequencing the genomic DNA of all growth factor independent outgrowths (see Figure S4B).

(B) Proportion of infections that transformed for growth factor independence (c2 test p value for ALKATI vs EML4ALK: 2.2e-

10, ALKATI vs Vector: .038). (C) Crizotinib dose-response study for IL3 independent EML4-ALK, ALKATI, and IL3 dependent

vector-transduced Ba/F3 cells. Data are mean G95% confidence intervals (shaded region). 3, 5, and 1 independent

transductions for EML4-ALK, ALKATI, and vector control were tested. For all cell lines, 3 technical replicates were used at

each concentration, and each assay was repeated on 3 separate days.

(D) Immunoblots showing ALK-overexpression and crizotinib dependence of EML4-ALK, and ALKATI Ba/F3 cell lines (n = 2

independent transductions each). The bands represent EML4ALK (117kDa), ALKATI (67kDa), b-actin (42), and ERK1/2

(42,44 kDa). Immunoblots were repeated three times with similar results. 1ug of lysate was loaded per well. An exposure

time of 120s was used.
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We were unable to transduce SKMEL28 and G361 cells with EM4-ALK on multiple transduction attempts.

However, we decided to proceed with our vemurafenib challenge in the absence of EML4-ALK. EML4-

ALK is an established oncogenic driver in NSCLC and melanoma (Lin et al., 1998; Takahashi et al.,

2010, p. 4). We confirmed our viral titer and infectivity by simultaneously transducing and transforming

Ba/F3 to IL-3 independence, as well as infecting Hek293T and selecting for puromycin resistance. Inter-

estingly, virus packaged with the EML4-ALK oncogene readily transformed Ba/F3 cells, easily infected

Hek293T cells, and selected with puromycin, but we could not successfully select for EML4-ALK contain-

ing SKMEL28 or G361 cells (Table S1). Because this was a negative result, we tested the idea that con-

ditional selection via mutual exclusivity might be occurring. Our hypothesis is that simultaneous expres-

sion of two growth pathway activating variants in the same cell is not well tolerated, as is previously

observed (Ciriello et al., 2012; Cisowski et al., 2016; Mina et al., 2017; Petti et al., 2006). To test this,

we performed the same infections that are described above, but during the selection of the infected

cells, we performed all selections in both the presence and absence of crizotinib. Whereas vector control

and ALKATI cells formed stable cell lines in the presence and absence of crizotinib, we were only able to
iScience 24, 103343, November 19, 2021 9



Figure 5. ALKATI cannot replace known oncogenes in melanoma

(A) Dose response of ALKATI and vector-transduced SKMEL-28 and G-361 cell lines. ALKATI does not improve the dose response of SKMEL-28 (p-val: 0.49)

and G361 (p-val: 0.99) to vemurafenib. p value calculated using a one-sided paired t test test between ALKATI and vector. Error bars represent standard

deviation on 3 replicates of 3 independent transductions (9 total replicates per condition per concentration).
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Figure 5. Continued

(B) Outcome of stable overexpression of Vector control, ALKATI, and EML4-ALK on SKMEL-28 and G361 cell lines. 3 independent transductions were tested

for each condition.

(C) Immunoblots for ALKATI overexpression in melanoma. Two melanoma cell lines transduced with vector control, ALKATI
, or EML4-ALK. Two independent

tranductants are shown for EML4-ALK and ALKATI. The bands represent EML4ALK (117kDa), ALKATI (67kDa), and b-actin (42). Immunoblots were repeated

three times with similar results. 10ug of SKMEL28/G361 lysate were loaded. A crizotinib dose of 100nM was used. An exposure time of 120s was used.

(D) Comparing the vemurafenib dose response of BRAF-mutated cell lines (orange, n = 43), and BRAF-mutated cell lines that have an ALKATI-like expression

(cyan, n = 4). p value is from a one-sided multiple linear regression of vemurafenib intolerance mapped as a function of ALK RSEM, RPKM, and Exon

expression.

(E) Crizotinib sensitivity of melanoma cell lines with ALKATI-like expression (cyan, n = 4) or not (purple, n = 32). Crizotinib sensitive control cell lines (orange)

are Kelly (ALKF1174L neuroblastoma), and NCI-H228 (EML4-ALK in lung adenocarcinoma). p value is from a one-sided multiple linear regression of crizotinib

sensitivity mapped as a function of ALK RSEM, RPKM, and Exon expression.
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stably select melanoma cells expressing EML4-ALK when we selected for transductants in the presence

of the ALK inhibitor crizotinib at 100nM (Figure 5B, Table S1). This suggests that melanoma cells require

ALK inhibition in order to stably express EML4-ALK. The crizotinib dependence of the known oncogene

EML4-ALK and the crizotinib independence of ALKATI in melanoma cells alongside the inability of ALKATI

to rescue a vemurafenib challenge suggest that ALKATI does not act as a constitutively active oncogene

in melanoma cells. It also suggests that the expression of an activated ALK construct and BRAFV600E actu-

ally inhibits melanoma growth.

ALK expression imbalance does not predict transforming potential or single agent

therapeutic dependency

We further probed the transforming potential of ALKATI by searching for evidence for an ALKATI dependent

transforming potential in vitro. To do this, we analyzed BRAF-mutant cell lines (n = 43) from CCLE (Barretina

et al., 2012) for their ALK expression and dose response to BRAF-inhibitors. In this dataset, 4 of these 43 cell

lines were ALKATI-like (exceeded 2/3 filters). None of these 4 cell lines showed a substantial difference in

their sensitivity to 11 distinct BRAF inhibitors (Figures 5D and S5A). Furthermore, the degree of exon imbal-

ance in ALK expression (when treated as a continuous variable) did not predict improved survival against a

BRAF-inhibitor challenge.

Although previous experiments suggested that ALKATI may not be sufficient for oncogenesis, we still

wondered if ALKATI conferred sensitivity to ALK inhibitors in melanoma cell lines in vitro. To test this, we

analyzed melanoma cell lines (n = 32) from CCLE (Barretina et al., 2012), 4 of which were ALKATI-like (ex-

ceeded 2/3 filters). No evidence of ALK-inhibitor sensitivity was found in any of the 4-ALKATI-like cell lines

(Figures 5E and S5B). Furthermore, the degree of exon imbalance in ALK expression did not predict ALK-

inhibitor responses in these 32 cell lines (linear regression p value for crizotinib: 0.93). Hence, the degree of

observed exon imbalance is not correlated with single agent sensitivity to ALK-inhibition across 32 mela-

noma cell lines.

DISCUSSION

Conditional selection has been used to study mechanisms of oncogenic activation in a variety of contexts.

Previous research has used mutual exclusivity as an indicator of oncogenic network modules and dysregu-

lated pathway analyses, and to identify evolutionary dependencies from alteration occurrences in pan-can-

cer analyses. Importantly, mutual exclusivity is often used to prioritize rare genomic findings without

defining statistical power to detect a given effect size, or to compare to an expected effect size. To our

knowledge, no previous method accurately quantifies a negative signal for conditional selection in rare

variants. Our code base allows us to quantify a negative finding relative to how often a lack of mutual ex-

clusivity would be seen in a positive control gene pair. Our simulations show that our method for pairwise

comparisons is a quantitative and statistically robust method to identify a lack of conditional selection with

sufficient statistical power.

We applied our pairwise comparisons of conditional selection to a transcript alteration in ALKATI because of

the controversy in the literature (Couts et al., 2017; Wiesner et al., 2015). Our analysis clearly demonstrates a

lack of conditional selection for ALKATI. ALKATI is significantly less mutually exclusive than BRAF and NRAS

are with each other in melanoma. Moreover, our experiments suggest that ALKATI is not sufficient for

cellular transformation, that kinase domain imbalance does not predict inhibitor response, and that single

agent ALK inhibition is unlikely to be therapeutic in melanoma cells.
iScience 24, 103343, November 19, 2021 11



ll
OPEN ACCESS

iScience
Article
In their original paper, Wiesner et al. (Wiesner et al., 2015) performed a substantive and detailed descrip-

tion of the ALKATI event. They found enrichment of H3K4me3 and RNA Pol II near the ATI transcription initi-

ation site of tumors expressing ALKATI (Wiesner et al., 2015). Wiesner et al also confirmed that ALKATI is ex-

pressed at both ALK alleles by comparing DNA, RNA, and H3k4me3 levels. They also performed gene

expression profiling of RNA-Seq datasets showing that ALKATI-like expression is found in 2-11% of mela-

noma samples and sporadically in various other tumor types and not in normal tissue samples (Busam

et al., 2016; Wiesner et al., 2015). The breadth and depth of the analysis leads us to believe that ALKATI

is likely a true transcript variant. Moreover, although we believe our work (alongside the work of Couts

et al (Couts et al., 2017)) provides strong evidence against single agent therapy, it would be unfair to ignore

the potential for therapeutic relevance of ALKATI in contexts other than ALK inhibitor monotherapy. More-

over, from a biological perspective, it would also be unfair to rule out some sort of unknown biological role

for ALKATI that does not fit conventional definitions of driver oncogenes. However, combining Couts’ PDX

data with the questionable transformation potential of ALKATI (Couts et al., 2017), the lack of objective re-

sponses in ALKATI expressing melanomas to ALK inhibitors, and the clear the lack of mutual exclusivity of

ALKATI in melanoma casts significant doubt upon the single agent therapeutic rationale for ALKATI.

In the melanoma landscape, dramatic responses to approved and investigational immunotherapy agents

are yielding important steps forward for patient care. We have systematically shown that the original ALKATI

data should be re-evaluated in light of our data reproducing the original finding, and in light of the compel-

ling recent reports in PDX models (Couts et al., 2017; Uguen et al., 2016). Combined with the fact that the

patient data in the original manuscript did not achieve the typical clinical criteria for an objective partial

response, we strongly recommend that single agent ALK inhibitors receive no further testing in ALKATI pa-

tients when other investigational or off label options exist. Given the weight of evidence, it seems unlikely

that refractory patients will benefit from this treatment. We also suggest that pairwise tests for conditional

selection will be a useful tool to triage any rare genomic finding in themountains of cancer sequencing data

generated in late-stage patients.
Limitations of study

4 of the 43 melanoma cell lines in the CCLE (Barretina et al., 2012) matched the expression filters that are

characteristic of alternate transcription initiation. The drug sensitivity analysis showed that ALKATI-like

expression in these cell lines does not predict sensitivity to ALK-inhibitors (Figure 4E), nor does ALKATI

seem to rescue BRAF-mutated melanoma undergoing BRAF inhibition (Figure 4D). Although these results

are insightful, a more thorough analysis of the dose-response of ALKATI would require more cell lines to be

ALKATI-like. Ultimately, a more thorough analysis will become possible as CCLE continues to add more cell

lines to its repository.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-ALK CST Cat#3791; RRID: AB_1950402

Rabbit monoclonal anti-pALK CST Cat#3341; RRID: AB_331047

Rabbit monoclonal anti-pERK 1/2 CST Cat#4370; RRID: AB_2315112

Rabbit anti-ERK 1/2 CST Cat#9102; RRID: AB_330744

Rabbit monoclonal anti-b-Actin CST Cat#4970; RRID: AB_2223172

Anti-rabbit IgG CST Cat#7074; RRID:AB_2099233)

Anti-mouse IgG CST Cat#7076; RRID: AB_330924

Chemicals, peptides, and recombinant proteins

Vemurafenib Sellekchem Catalog No.S1267

Crizotinib Sellekchem Catalog No.S1068

Brigatinib Sellekchem Catalog No.S8229

Critical commercial assays

CellTiter Glo Promega G7570

QuikTiter Lentivirus Quantitation Kit (HIV p24) Cell BioLabs VPK-107

Q5 Site-directed mutagenesis kit NEB E0554S

Deposited data

https://github.com/pritchardlabatpsu/pairwisecomparisons Github Repository NA

Experimental models: Cell lines

BaF3 Cells DSMZ ACC 300

SK-MEL-28 ATCC HTB-72

G-361 ATCC CRL-1424

HEK-293T ATCC CRL-1573

Recombinant DNA

pLVX-IRES-Puro Clontech Cat#632183

mRNA Sequence ALKATI European Nucleotide Archive LN864494.1

mRNA sequence for EML4-ALK GenBank AB274722.1
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Justin Pritchard (jrp94@psu.edu).
Material availability

All unique/stable reagents generated in this study (including ALATI BaF3 cell lines) are available from the

Lead Contact with a completed Materials Transfer Agreement.

Data and code availability

Our Github repository includes all the data used and generated during our analyses (in the data and output

directories).
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The Github repository also includes all the code used to parse, analyze, and plot the data (in the code and

analysis directories).

The GitHub repository is also available as a Github page, which contains the output of the Rmarkdown an-

alyses. The pairwise comparisons page was created with the help of the r package WorkflowR (Blischak

et al., 2019).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

Cell lines used were: SK-MEL-28 (ATCC HTB-72), G-361 (ATCC CRL-1424), BaF3 (DSMZ ACC-300), HEK-

293T (ATCC CRL-1573). Prior to use, all cell lines were tested to be free of mycoplasma using a biochem-

ical-based test (Mycoalert plus, Lonza). BaF3 cell lines were cultured in RPMI while HEK-293T, Skmel-28 and

G361 cell lines were cultured in DMEM. Media was supplemented with a final concentration of 10% FBS,

and 1% Penicillin/Streptomycin/L-Glutamine. WT Ba/F3 cell lines were grown in media supplemented

with 10ng/mL IL3 (Pepro-tech). Stable transductions were verified for puromycin resistance by using kill

curve concentrations ranging from 0.25ug/mL to 2ug/mL. Cells were split when they were 70-80%

confluent. The subculture ratios used for all of our cell lines included splitting ratios of 1:5 every 2-4 days

when cells were 70-80% confluent.

METHOD DETAILS

Frequency correction in gene pairs

In these methods, frequency of an event refers to its relative frequency (empirical probability), not absolute

frequency (count).

Suppose we have a joint table from our positive controls with frequencies
Positive Control 2

Positive Control 1 Yes No

Yes p11 p10

p00
Table: A 2x2 Contingency table of the positive control 1 and positive control 2 genes. Where p11 refers to

the frequency of the population having mutations in both the positive control 1 gene and the positive con-

trol 2 gene; p10 refers to the population having a mutation in the positive control 1 gene only, and so on.

The odds ratio, defined as the strength of association between two events, is ðp11 �p00Þ=ðp10 �p01Þ for Table
above.

Also suppose we have aGOI with frequency pGOI. We would like to transform the above table to a new table

such that Positive Control 1 positive individuals appear at frequency pGOI, but where the odds ratio remains

the same. We can do this by adding or removing the appropriate fraction of Positive Control 1 positive in-

dividuals without regard to their status with respect to Positive Control 2. This results in a new table with cell

probabilities given by:

No p01
Positive Control 2

Positive Control 1 Yes No

Yes pGOI
p11

p10 +p11
pGOI

p10

p10 +p11

No ð1 � p Þ p01 ð1 � pGOIÞ p00

p00 +p01
Table: A 2x2 Contingency table of the positive control 1 and positive control 2 genes with the frequency of

mutations in the positive control 1 gene corrected to the frequency of mutations in the gene of interest.

GOI p00 +p01
16 iScience 24, 103343, November 19, 2021
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This table is derived by multiplying each row in the original table by an appropriate constant (e.g., the first

row is multiplied by the ratio between the desired fraction of Positive Control 1 positive individuals pGOI

and the observed fraction in the p10+p11 from the original table). It is easy to verify that the Table is a valid

probability distribution with cells that sum to 1, that Positive Control 1 is now at frequency pGOI, and that the

odds ratio is unchanged from the original table.
Pairwise comparisons of gene pairs

In order to estimate the typical range of odds ratios likely to be produced under the hypothesis that GOI

and PC2 are as mutually exclusive as PC1 and PC2 while controlling for the observed frequency of muta-

tions in the GOI, we can thus construct samples from the above table of size N, where N is the number

of patients in this cohort. Specifically, we construct these samples as a draw from a multinomial distribution

with N trials and probabilities given by the above table of frequencies (Table) where the expected fre-

quency of Positive Control 1 positive individuals has been set to pGOI. Independently drawing 1000 such

tables and calculating the odds ratio for each table, we calculate the percent of PC1 vs PC2 odds ratios

that have a lower odds ratio than the odds ratio for PC1 and GOI (labeled as score in Figure 1). The higher

this score, the lower the overlap is between the odds ratios of the two gene pairs. A score of >95% was set

as the threshold for rejecting the hypothesis that GOI and PC1 are as mutually exclusive as PC1 and PC2.

Section 1 of the pseudo-code (Data S1) contains a step-by-step implementation of this process.
Generating simulated cohorts at various mutual exclusivities and GOI frequencies

We generated cohorts of gene pairs to test our pairwise comparisons method and to characterize its sensi-

tivity. Suppose we would like to generate a joint table (such as Table above) from our positive controls with

frequencies p11;p10;p01;and p00. Also supposed we would like to generate a joint table with the gene of

interest and positive control 1 gene with frequencies q11;q10;q01;and q00.

Here, we outline a method to calculate the frequencies of these two gene pairs using three inputs:

- The odds ratio of the positive control genes, ORp, which can be written in terms of the frequencies in

Table:

ORp =
p11 � p00
p01 � p10 (Equation 2.1)

- The odds ratio of the gene of interest and positive control 1, ORq, which can be written in terms of its

frequencies:

ORq =
q11 � q00
q01 � q10 (Equation 2.2)

- The frequency of the gene of interest, pGOI:

pGOI = q11 +q01 (Equation 2.3)

Since we are generating valid probability distributions, the frequencies of each gene pair sum to 1. Hence,
q11+q10+q01+q00 = 1 (Equation
 2.4)
p11+p10+p01+p00 = 1 (Equation
 2.5)

For simplicity of these derivations, we assume that the frequency of patients without a mutation in either

gene is the same as the frequency of patients with a mutation in positive control 1 only:
q00 = q10 (Equation
 2.6)
p00 = p10 (Equation
 2.7)

This assumption was made to simplify the derivations in Equations 2.8, 2.9, and 2.10 below. Note that we

also tested our pairwise comparisons method using a cohort generation strategy that does not make the
iScience 24, 103343, November 19, 2021 17
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simplifying assumptions in Equations 2.6 and 2.7. i.e., p00 and q00 were pre-defined as inputs alongside

ORp, ORq, and pGOI. Adjusting the frequencies of p00 and q00 this way did not significantly change the

outcome of our simulation studies and did not change the conclusion of our simulation studies (results

not shown here but are available on our GitHub page).

Equation 2.6 can be substituted into Equation 2.2:

ORq =
q11 � q00
q01 � q10=

q11

q01
(Equation 2.8)

Similarly, Equation 2.7 can be substituted into Equation 2.1:

ORp =
p11 � p00
p01 � p10=

p11

p01
(Equation 2.9)

Equations 2.3, 2.4, 2.6, and 2.8 can be arranged as a system of linear equations and solved using Gaussian

elimination:

8>><
>>:

q11 +q01 =pGOI

q11 +q10 +q01 +q00 = 1
q10 � q00 = 0
q11 � q01 �ORq = 0

9>>=
>>;
/

2
66666666666664

1 0 1 0
1 1 1 1
0 1 0 �1
1 0 �ORq

0

��������

pGOI

1
0
0

3
77777777777775

/

2
66666666666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

��������

pGOI �ORq

1+ORq

1� pGOI

2
pGOI

1+ORq

1� pGOI

2

3
77777777777775

This way, the frequencies of the GOI vs PC1 gene pair are solved as functions of the inputs:
Gene of interest

Yes No

Positive Control 1 Yes pGOI �ORq

1+ORq

1� pGOI

2

No
pGOI

1+ORq

1� pGOI

2

Table: A 2x2 contingency table of the positive control 1 gene and the gene of interest in which each fre-

quency is a function of the input variables ORq and pGOI.

Since we assume that the data for both the gene pairs comes from the same patient cohort, the overall fre-

quency of mutations in the positive control 1 gene, termed pPC1, is the same in both the gene pairs. There-

fore, pPC1 can be rewritten as a function of the inputs pGOI and ORq:

pPC1 = p11 +p10 =q11 +q10 =
pGOI �ORq

1+ORq
+
1� pGOI

2
(Equation 2.10)

Therefore, Equations 2.5, 2.7, 2.9, and 2.10 can be arranged as a system of linear equations and solved us-

ing Gaussian elimination:

8>><
>>:

p11 +p10 =pPC1

p11 +p10 +p01 +p00 = 1
p10 � p00 = 0
p11 � p01 �ORp = 0

9>>=
>>;
/

2
6666666666666664

1 1 0 0
1 1 1 1
0 1 0 �1
1 0 �ORp

0

��������

pPC1

1
0
0

3
7777777777777775

/

2
6666666666666664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

��������

ORp 3
�
1� 2pPC1

�
1�ORp

ORp

�
pPC1 � 1

�
+pPC1

1�ORp

1� 2pPC1

1�ORp

ORp

�
pPC1 � 1

�
+pPC1

1�ORp

3
7777777777777775
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This way, the compartments of the positive control gene pair are solved:
Positive Control 2

Positive Control 1 Yes No

Yes
ORp3ð1� 2pPC1Þ

1�ORp

ORpðpPC1 � 1Þ+pPC1

1�ORp

No
1� 2pPC1 ORpðpPC1 � 1Þ+pPC1

1�ORp
Table: A 2x2 contingency table of the two positive control 1 genes in which each frequency is a function of

the input variables ORp and pPC1.

Having established a method to calculate the frequencies of the two gene pairs using the three

inputs ORp, ORq, and pGOI, we calculated these frequencies at various inputs. Each set of these input

variables generates a contingency table containing the frequencies of the positive control 1 gene and

the positive control 2 gene, and another contingency table containing frequencies of the positive con-

trol 1 gene and the gene of interest (see example output 2 in pseudo-code Supplemental information

section 2). The odds ratio of the positive control, genes ORp, was varied from 0.01 (very mutually

exclusive) to 0.1 (less mutually exclusive). The odds ratio of the gene of interest gene with the positive

control 1 gene, ORq, was varied from 0.01 (mutually exclusive) to 1 (not mutually exclusive). The fre-

quency of a mutation in the gene of interest, pGOI, in the cohort was varied from 0.005 (rare) to

0.5 (abundant). Figure S2A provides a visual illustration of how these input variables affect the simu-

lated cohorts.

Once these contingency tables with frequencies of gene pairs were generated, the previously described

pairwise comparisons method was used to correct the frequency of the positive control 1 gene. Next, sim-

ulations were performed for each of these frequency-adjusted contingency tables by drawing counts from a

multinomial distribution with central tendencies around their respective frequencies usingN trials, whereN

is the cohort size of the simulated cohort (example output 1 in the pseudo-code). We varied the cohort size

of the simulations from 100 to 1,000 patients. Finally, the percentage of the odds ratios from the GOI and

positive control 1 gene pair that are greater than the odds ratios of the pair of two positive control genes

was calculated. The higher this percentage, the more certain one can be that the gene of interest is not as

mutually exclusive with the positive control 1 gene as the two positive control genes are with each other.

supplemental information section 2 of the pseudo-code contains a step-by-step implementation of this

process.

1�ORp
Analysis of public data sets

We downloaded our level 3 TCGA data from the Broad Institute TCGA GDAC Firehose (http://gdac.

broadinstitute.org/) 2016_01_28 run. In our original ALK expression filters (Figure 2), ALKATI candidates

were identified as samples with an ALK expression level of RSEM R 100, R 500 total reads across all

ALK exons, andR 10-fold greater average expression in exons 20–29 compared to exons 1–19. When vary-

ing filters, ALKATI patients were identified as samples with an ALK expression level of RSEMR100, number

of ALK readsR500, and Exon20-29/Exon1-19 RPKM ratioR10 (Figure 3). Cell line expression and drug

sensitivity data (Figure 4) was downloaded from the cancer cell line encyclopedia (https://portals.

broadinstitute.org/ccle/data). Melanoma cell-lines were classified as ALKATI-like if they matched 2/3 ALKATI

filters.

Cell line expression and drug sensitivity data: CCLE 2019 RNA-seq gene expression data for 1019 cell lines

were downloaded from the Broad Institute CCLE website (https://portals.broadinstitute.org/ccle). We

used this data to identify ALKATI-like cell lines for their sensitivity to BRAF and ALK-inhibitors in melanoma.

For 49 melanoma cell lines, ALK expression data was extracted and ALKATI expression was detected using

two criteria: 1) ALK is expressed in the cell line with RSEM> 100, and read counts > 500, and 2) Since the ATI-

site resides in intron 19 of ALK, a 10-fold greater expression of ALK exon20-29 than exon1-19 was expected

for ALKATI-like cell lines.
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For the identification of EML4-ALK cell lines, CCLE 2019 Fusion calls for 1019 cell lines were downloaded

from CCLE. The EML4-ALK fusion calls were identified in 2 lung cancer cell lines (NCIH3122 and NCIH2228)

and a pancreas cancer cell line(SNU324). For the identification of BRAF-mutant cell lines: 2019 cancer cell

line mutant calls were downloaded from CCLE. A total of 111 BRAF mutants cell lines were identified that

were targeted by 11 BRAF inhibitors.

Plasmid generation

The sequence of ALKATI was obtained from the European Nucleotide Archive under the accession number

LN864494. The sequence of EML4-ALK was obtained from Genbank AB274722.1. The coding sequences,

cloned into a pLVX-IRES-Puro backbone, were prepared by Genscript Gene Services. Please refer to Table

S2 for the sequence of both of these plasmids.

Lentiviral transduction

Lentiviral constructs were co-transfected in HEK293T cells using calcium phosphate alongside third-gener-

ation packaging vectors that were pseudotyped with VSV-G. Viral supernatant was collected at 24 hours. All

transductions were conducted limiting MOI to achieve the lowest viral titer required to produce IL-3 inde-

pendence. After transduction with an oncogene, cell lines were selected with Puromycin to test transduc-

tion efficiency and subsequently with -IL3 to assess growth factor independence. All engineered ALK cell

lines were sequenced using sanger sequencing to confirm their identity.

In vitro transformation and drug treatment assays

We used a standard Ba/F3 transformation protocol for lentiviral transduction. Lentiviral particles were

made by transfecting HEK293T cells with the plasmid of interest and with packaging plasmids (3rd gener-

ation Lentiviral system from Addgene). Replication incompetent virus was collected using a BL2+ safety

protocol. Upon virus collection, Ba/F3 cells at 500k/mL in 4mLs were infected with an equal volume of virus.

Aminimumof three replicates were used for each infection condition. Three days after infection, the Ba/F3s

cells were spun out of virus and selected for IL3 independence and/or puromycin resistance (0.5ug/mL Pu-

romycin was used). An infection was determined to be successful Ba/F3 cells for a given construct grew out

for both IL3 independence and puromycin resistance. During selection, cell growth was quantified by doing

daily counts of live/dead cells on a daily basis. These live/dead analyses were performed by supplementing

20uLs of cell culture with 0.4% trypan blue and subsequently counting live cells using a hemocytometer.

Alternatively, live dead cells were counted using flow cytometry analysis (BD Accuri C6 Plus).

Lentiviral particle quantification

For each infection, before transducing Ba/F3s with virus, 500uL of virus was set aside and frozen at �20C.

The number of lentiviral particles were quantified using the QuikTiter Lentivirus Quantitation Kit from Cell

Biolabs (HIV P24 ELISA). All reported viral titers were within the linear range of the standard curve made

using a positive control. Transduction efficiency was verified by counting outgrowth rates using puromycin

selections across multiple infections.

Immunoblots

Cells were lysed in RIPA buffer (#9806S, CST) with 1 mM PMSF (P7626, MilliporeSigma), and Phosphatase

Inhibitor Cocktail 2 (P5726, MilliporeSigma). After quantifying total protein concentration with the BCA

assay (23225, ThermoFisher), 10 mg of each sample was boiled at 95�C for 5 min and loaded onto the

4-12% Bis-Tris Gel (NP0336, ThermoFisher). Gels were run for 1 hour and 15 min at 120 V in with NuPage

MES Buffer (NP0002, ThermoFisher). Proteins were then transferred onto polyvinylidene difluoride mem-

brane (IPVH15150, MilliporeSigma) for 1 hour at 30 V in NuPage Transfer Buffer (NP0006, ThermoFisher).

Membranes were checked for successful and adequate transfer with a Ponceau S stain (P7170, Millipore-

Sigma). Primary antibodies were diluted 1:1,000 (1 ug/mL) in blocking buffer (927-40000, Licor), and sec-

ondary antibodies were diluted to 1:10,000 (100 ng/mL) in 2.5% BSA (0332, VWR) in Tris buffered saline

tween. All antibody incubations were performed overnight at 4�C. The primary antibodies used were rabbit

antibody #9102L (CST) for ERK1/2, rabbit antibody #4370 (CST) for pERK, mouse antibody #31F12 (CST) for

ALK in its kinase domain, rabbit antibody #3341S (CST) for pALK, and rabbit antibody #13E5 (CST) for

bActin. Anti-rabbit IgG #7074S (CST) and anti-mouse IgG #7076S (CST) secondary antibodies were used

to detect the primary antibodies. Chemiluminescent signal was generated by SuperSignal West Pico

PLUS Chemiluminescence substrate (345777, ThermoFisher), and detected on a BioRad ChemiDoc
20 iScience 24, 103343, November 19, 2021
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Imaging System. Membranes were stripped (21059, ThermoFisher) for 30 min, and re-blocked for 1 hour at

room temperature.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests accompany a description of the test in the in the figure legends and the corresponding

STAR Methods Section. Data is reported as mean with standard error of the mean (SEM) or as boxplots

when noted, with boxplots designating the 25th-75th percentiles, median value, minimum value, and

maximum value.
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