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Summary

Identification of biomarkers contributing to disease diagnosis, classification or prognosis could be 

of considerable utility. For example, primary methods to diagnose multiple sclerosis include 

magnetic resonance imaging and detection of immunologic abnormalities in cerebrospinal fluid. 

We determined if gene expression differences in blood discriminated MS subjects from 

comparator groups and identified panels of ratios that performed with varying degrees of accuracy 

depending upon complexity of comparator groups. High levels of overall accuracy were achieved 

by comparing MS to homogeneous comparator groups. Overall accuracy was compromised when 

MS was compared to a heterogeneous comparator group. Results, validated in independent 

cohorts, indicate that gene expression differences in blood accurately exclude or include a 

diagnosis of MS and suggest these approaches may provide clinically useful prediction of MS.

Introduction

A cornerstone in diagnosing clinically definite multiple sclerosis (MS) is magnetic 

resonance imaging (MRI) detection of brain lesions disseminated in time and space1–3. 

Laboratory findings include cerebrospinal fluid immunologic abnormalities4, 5. Criteria, 

including 2001 McDonald and revised 2005 McDonald classifications are employed to 
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standardize diagnosis of MS. However, few of the most common clinical features of MS are 

unique to this disease. A significant limitation in these approaches is the need for 

dissemination in time requiring detection of new lesions in follow-up scans, thus potentially 

delaying diagnosis and onset of therapies that may retard disease progression and onset of 

disability.

In a search for optimal diagnostics to permit effective triage of patients into specialty care, 

we have considered that exclusionary tests may have great utility. Since MS is relatively 

rare, the possibility of excluding from further consideration those individuals who do not 

carry specific disease markers would greatly reduce the numbers requiring further evaluation 

by specialists. An exclusionary test would also expedite referral to a specialist of those 

individuals that may require further evaluation and serve to reassure both patients and 

providers for those who do not. To be useful, an exclusionary test must have a high degree 

of accuracy so that individuals in need of further evaluation do not escape into the excluded 

pool. Patients who fall in the non-excluded pool would not have a specific diagnostic label 

attached, but would have a high likelihood that an autoimmune condition of some kind is 

present. At this point, the referring physician could reasonably make a decision regarding 

which condition is most likely and refer the patient to the appropriate specialist. By 

excluding patients who need no further evaluation, the medical system would deliver care 

efficiently to those who do. Optimization of health care delivery to improve outcomes is a 

major focus of the health care reform movement and paradigm-shifting exclusionary 

diagnostics would contribute to this goal.

With the advent of array-based technologies, the possibility that large-scale screening of 

DNA variants, differences in RNA expression, or differences in protein expression either at 

affected tissue sites or common sources (blood, plasma) could provide clinically useful 

information has attracted much interest. In general, it appears that analyses of DNA variants, 

identified thus far, either singly or combined, are limited in their ability to provide clinically 

useful prediction of disease6. In contrast, studies have demonstrated the potential utility of 

RNA or protein expression profiles to segregate subjects with a given disease from either 

healthy control subjects or subjects with other diseases7–18. Using this approach, we 

previously identified a panel of genes whose expression levels varied among different 

autoimmune diseases19–21. We hypothesized that expression profiles may provide a method 

to aid in diagnosis of autoimmune diseases, such as MS, and have performed such analyses. 

Limitations in our previous studies included relatively small numbers of genes included in 

the analysis thus reducing discriminatory power, small study size, lack of geographic 

heterogeneity, and lack of sufficient subjects with other inflammatory and non-inflammatory 

neurologic diseases and disorders in the study cohort22. These limitations have been 

addressed in the current study to include a significantly larger number of genes in the 

analysis, extended methods of analyses, and significantly larger sample cohorts drawn from 

various US and European sites.
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Results

Gene expression patterns in distinct neurologic diseases

We measured expression patterns of a common set of genes assayed using a common 

platform in control subjects and subjects with different neurologic conditions, including 

autoimmune diseases. Genes for analysis were selected from prior microarray studies. 

Expression levels of individual genes were determined by quantitative RT-PCR by 

normalization to GAPDH expression levels. We employed a heatmap to depict those genes 

differentially expressed in individual disease cohorts relative to the control cohort, P < 0.05 

(after Bonferroni correction for multiple testing) (Figure 1, red = over-expressed gene, green 

= under-expressed gene). Ratios of expression levels of individual genes in the indicated 

disease cohort relative to the control cohort were calculated and depicted within each 

colored box. Each disease exhibited an underlying unique pattern of gene expression. 

However, these profiles were sufficiently overlapping to prohibit accurate discrimination of 

one disease from another disease using the expression profile alone. For example, LLGL2, 

RANGAP1, ACTB, and POU6F1 were under-expressed in 4, 3, 4, and 4 of 5 different 

conditions, respectively. In contrast, other genes, e.g., ANAPC1 in Parkinson’s disease, 

EXT2 and FOS in TM, HRAS in NMO, were only differentially expressed in a single disease 

cohort. Overall, individual genes were either over-expressed, e.g. B2M, CD55, PMAIP1, or 

under-expressed, e.g. LLGL2, RANGAP1, ACTB, across multiple disease cohorts. Thus, each 

gene was differentially expressed in at least one disease cohort relative to the CTRL cohort. 

However, each individual disease cohort did not possess a unique expression profile 

distinguishing it from all other disease cohorts.

Discrimination of MS from homogeneous comparator groups: identification of an optimum 
panel of gene expression ratios

Healthy control subjects, subjects with MS, and subjects with other inflammatory neurologic 

disorders (OND-I), and subjects with neurologic disorders typically considered non-

inflammatory (OND-NI) were recruited from multiple U.S. and European sites (Table 1 and 

Supplementary Table 1). Demographic characteristics of the different disease groups, MS, 

OND-I, or OND-NI were matched to the CTRL cohort (Table 2). Subjects with MS included 

subjects with clinically isolated syndrome (CIS), newly diagnosed MS subjects who were 

treatment naïve and subjects with established disease (> 1 yr duration) on different therapies. 

Expression levels of test and control genes in blood were determined by quantitative reverse 

transcription polymerase chain reaction (RT-PCR) (Supplementary Table 2). We employed 

a search algorithm to identify those ratios of gene expression levels in which the greatest 

number of subjects in the test group possessed a ratio value greater than the highest ratio 

value in the comparator group. We employed a second algorithm to perform permutation 

testing of one subject group to identify the optimum set of discriminatory ratios. We 

reasoned that examination of expression levels of ratios of genes rather than individual 

genes would serve the following purposes. First, calculation of ratios normalized for 

differences in mRNA or cDNA template quantity and quality among different samples. 

Second, they obviated the need for inclusion of a ‘housekeeping’ gene in the analysis and 

the assumption that expression levels of ‘housekeeping’ genes did not vary among different 

subject populations. Third, comparisons of ratios or combinations of ratios may more 
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accurately identify cellular phenotypes that may contribute to disease. For example, a ratio 

containing one gene in the numerator that is over-expressed in the test group relative to the 

comparator group and one gene in the denominator that is under-expressed in the test group 

relative to the comparator group should produce a greater ratio value difference between 

individuals in the two groups than a single expression value. We employed a point system to 

award one point to a subject if a ratio value of the test subject was greater than the ratio 

values of all subjects in the comparator group (Supplementary Figure 1).

We applied this approach to determine how accurately it would distinguish subjects with MS 

from healthy control subjects. First, we identified ratios capable of discriminating MS 

subjects from control subjects. The single ratio with the greatest discriminatory power was 

ANAPC1/CHEK2 (Figure 2a). Fifty % of MS subjects achieved a ratio value higher than all 

the CTRL subjects and were awarded one point. Second, we eliminated those ratios that 

identified fewer than 20% of MS subjects. Third, since many ratios identified the same MS 

subjects, we performed another reduction to preserve only one ratio with this characteristic. 

A total of 8 ratios remained after this minimization process (Figure 2b). Using the point 

system, the combination of these 8 ratios positively identified 97% of MS subjects and 

eliminated 100% of CTRL subjects (Figure 2c). The score distribution was 0–6 for MS 

subjects and 0 for CTRL subjects (Figure 2d).

Discrimination of MS from homogeneous comparator groups: validation and analysis

Our analyses depended upon determination of multiple ratios, which may create Type 1 

errors. Various methods are available to correct for false discovery rates. Rather than relying 

upon these methods, which all make underlying assumptions, we performed a second 

evaluation using an independent cohort of 40 new MS subjects and 40 new CTRL subjects 

to validate results obtained from the initial training set. These subjects were recruited 

separately and the PCR analyses were performed separately. We used the same ratio values 

defined from the original CTRL and MS test set to award points to subjects in the validation 

cohort. All 40 controls were awarded a score of 0 while 4% of MS subjects received a score 

of 0. The remaining 96% of MS subjects achieved a score of 1–6 and the distribution of 

scores was similar to that observed in the training set (Figure 2e). Taken together, this 

demonstrates that results obtained in the training set can be replicated in an independent 

cohort of CTRL and MS subjects.

We applied the point system to OND-I and OND-NI subjects. In contrast to CTRL subjects, 

90% of OND-I and 59% of OND-NI subjects scored ≥ 1 (Figure 2f). We compared scores 

among subjects with CIS, with newly diagnosed MS not yet on medications, and with 

established MS on different medications. Scores did not differ significantly among these 

three groups (Figure 2g). We also compared scores within the MS group as a function of 

geographic origin. Scores also did not vary significantly among MS subjects from different 

geographic sites (Figure 2h). Thus, subjects with CIS or subjects after their initial diagnosis 

of MS had a similar mean score to subjects with established MS on therapies. However, a 

high percentage of subjects with other neurologic conditions, especially inflammatory 

neurologic conditions, also scored > 0 in this analysis. Given its extremely high specificity 
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and relatively low sensitivity, this test has greater application to exclude an individual from 

the diagnosis of MS rather than to establish a diagnosis of MS.

Further, we were able to obtain follow-up clinical information on 8 CIS subjects > 2 yr. after 

the initial consent and blood draw. Of these subjects, the 7 CIS subjects who achieved a 

score > 0 in the analysis now have documented MS. The 1 CIS subject who achieved a score 

of 0 does not have a documented case of MS.

NMO and TM are inflammatory neurologic diseases that scored positive in our analysis. 

Therefore, we determined if we could employ a similar approach to discriminate MS from 

TM and MS from NMO. We identified a series of ratios that, when combined using the 

point system, were able to discriminate TM from MS and NMO from MS with similar 

overall accuracy to the MS and CTRL comparisons (Figure 3). Thus, using our approach, it 

was possible to distinguish MS from TM and MS from NMO with a similar degree of 

accuracy as obtained for the comparison of MS to CTRL. However, since each disease 

possessed a unique signature, it was necessary to employ separate combinations of ratios to 

accurately distinguish MS from NMO and MS from TM.

Above results demonstrate it is possible to distinguish MS from either a control cohort or 

even a related inflammatory disease cohort if the disease cohort is a single disease. Next, we 

asked if we could discriminate MS from Parkinson’s disease, a disorder typically considered 

non-inflammatory. To test this hypothesis in we determined if subjects with Parkinson’s 

disease (N = 24) segregated from MS (N = 182) and from CTRL (N = 109) using the ratio 

and point system. We identified 10 ratios capable of discriminating 97% of MS subjects 

from 100% of Parkinson’s subjects and 9 ratios capable of discriminating 88% of 

Parkinson’s patients from 100% of CTRL subjects (Figure 4). We interpret these results to 

demonstrate that subjects with Parkinson’s disease express unique gene expression 

signatures in blood distinguishing them from CTRL and MS subjects.

Discrimination of MS from heterogeneous comparator groups

Next, we determined if we could distinguish MS from more heterogeneous groups of 

subjects. To do so, we combined subjects with neurologic conditions typically considered as 

inflammatory (other neurologic disorders-inflammatory, OND-I in Table S1) into one group. 

We also combined subjects with neurologic conditions typically considered non-

inflammatory (other neurologic disorders-non-inflammatory, OND-NI, OND in Table S1) 

into a second group. We produced a third group consisting of CTRL + OND-I + OND-NI 

subjects (ALL). We determined the 15 best ratios using permutation testing for each 

comparison. Overall, comparison of MS to these heterogeneous comparator groups resulted 

in a marked reduction in overall discrimination ability (Figure 5). We conclude that a binary 

comparison such is this exhibits much reduced accuracy as the heterogeneity of the 

comparator group is increased.

Discrimination of MS from OND-I: identification of optimum panels of gene expression 
ratios

For additional analysis, we combined OND-I into one group of non-MS inflammatory 

neurologic disorders and investigated the ability of our approach to discriminate this 
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combination of diseases from MS. We relaxed conditions somewhat to identify ratios with 

the ability to detect 0 or 1 non-MS subjects. Our best results were obtained with 10 ratios 

(Figure 6a). The combination of which identified 86% of MS subjects with a score > 0 and 

only 8% of OND-I subjects with a score > 0 (Figure 6b). Scores ranged from 0–7 for MS 

subjects and 0–1 for OND-I subjects (Figure 6c).

Discrimination of MS from OND-I: Validation and analysis

We performed additional analyses with 40 new MS subjects and 40 new OND-I subjects (20 

NMO and 20 TM) not included in the training set. In the validation set, 88% of MS subjects 

achieved a score ≥ 1 and 12% of OND-I subjects achieved a score of 1 (Figure 6d), which 

was similar to the score distribution observed in the training set. We determined mean scores 

among subjects with CIS, subjects with newly diagnosed MS prior to onset of therapies, and 

subjects with established MS on therapies using the 10 ratios identified above. Mean scores 

were significantly higher in the CIS and MS-naïve groups than in the MS group with 

established disease (Figure 6e). We also determined mean scores based upon geographic 

origins of MS subjects. Subjects from Nashville and Europe had mean scores significantly 

greater than U.S. subjects from locations other than Nashville (Figure 6f). These results are 

consistent with results comparing CIS, MS-naïve, and MS-established. The majority of 

subjects from U.S. sites outside Nashville had established MS and were on therapies (76 of 

80 subjects) while all European subjects were either CIS or newly diagnosed MS subjects 

not yet on therapies (N=101). The Nashville site also provided more samples with 

established disease (N=37) compared to CIS or treatment naïve MS (N=16) (P < 0.0001, 

Chi-squared test for independence among three geographic locations). The distribution of 

scores in the CIS and newly diagnosed MS group was also higher than that found in the 

established MS group. Greater than 50% of subjects with established MS achieved scores of 

0 or 1 while 48% of CIS and newly diagnosed MS subjects achieved scores ≥ 3 (Figure 6g). 

Thus, subjects with CIS, newly diagnosed MS, and established MS from different 

geographic sites can be distinguished from subjects with OND-I with reasonable accuracy 

based upon gene expression profiles in whole blood.

Discrimination of MS from OND-NI: identification of optimum panels of gene expression 
ratios

Next, we compared gene expression differences between MS and OND-NI subjects, which 

included Parkinson’s disease, essential tremors, migraines, and strokes. We employed the 

same search strategy used to compare MS and OND-I subjects and identified 10 expression 

ratios to construct the point system. ABOBEC3F, CSF3R, and ANAPC1 were each in the 

numerators of two ratios and TAF11 was in the denominator of two ratios. Each ratio alone 

detected > 10% of MS subjects relative to OND-NI subjects (Figure 7a). Combining ratios 

using the point system improved overall ability to discriminate MS subjects from OND-NI 

subjects (Figure 7b). Using the point system, 79% of MS subjects achieved a score ≥ 1 and 

91% of OND-NI subjects achieved a score of 0, 9% achieved a score of 1 (Figure 7c).

Discrimination of MS from OND-NI: Validation and analysis

We performed additional analyses with 40 new MS subjects and 40 new OND-NI subjects 

not included in the training set as outlined above. In the validation set, 88% of MS subjects 
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achieved a score ≥ 1 (Figure 7d), which was a similar frequency to that observed in the 

training set, and 90% of OND-I subjects achieved a score of 0, 10% achieved a score of 1. 

As above, we determined mean scores of subjects with CIS, newly diagnosed MS and 

established MS and these were not statistically different among the three MS groups (Figure 

7e). Similarly, mean scores of MS subjects from different geographic sites were not 

statistically different (Figure 7f). Using the point system, ~80% of MS subjects achieved a 

score ≥ 1 and 9% of OND-NI subjects achieved a score = 1 in the test set. These results 

demonstrate that expression in whole blood of a different set of gene ratios discriminated 

subjects with MS from subjects with OND-NI with reasonable accuracy.

All comparisons in these analyses were binary. Therefore, exclusion of a specific disorder 

by the analysis may be more accurate than inclusion of a specific disorder (see flow chart, 

Supplemental Figure 2). Thus, a score of 0 in the MS versus CTRL test decreased the 

probability that a subject had MS. A second analysis comparing MS to OND-I and MS to 

OND-NI would be interpreted similarly. Scores of 0 decreased the probability of MS and 

favored the probability of OND-I or OND-NI, respectively. Finally, specific inflammatory 

neurologic disorders, NMO or TM, were distinguished from MS with high degrees of 

accuracy. Thus, results from this single platform can be analyzed in a tiered approach to 

provide meaningful disease classification.

Discussion

Although our focus was on MS and other inflammatory and non-inflammatory neurologic 

disorders, our results support the notion that this approach could be applicable to an array of 

diseases. First, discrimination between MS and healthy controls or subjects with individual 

diseases can be achieved with a relatively high degree of accuracy. However, subjects with 

OND-I and OND-NI also scored positive in MS-CTRL comparisons. As such, this single 

comparison has greater utility as an exclusionary test rather than a test of MS inclusion. 

Second, it is possible to discriminate MS from groups of diseases, such as inflammatory or 

non-inflammatory neurologic diseases, and validate results in independent cohorts, although 

overall accuracy is somewhat compromised. Third, discrimination of MS from a diverse 

comparator group including CTRL, OND-I, and OND-NI causes a further reduction in 

overall accuracy. Nevertheless, a score > 0 in this analysis is highly predictive of the 

presence of MS. Fourth, it is possible to identify small numbers of ratios with high degrees 

of discriminatory power whose accuracy can be validated in independent cohorts analyzed 

separately.

One interpretation of our results is that many individual diseases express unique but 

overlapping gene expression signatures in whole blood. Given the attention paid to analyses 

of autoimmune diseases, it is not surprising that inflammatory neurologic diseases such as 

NMO and TM also express unique gene expression signatures. Perhaps somewhat surprising 

is that Parkinson’s disease, a disorder typically considered non-inflammatory, also possesses 

a unique gene expression signature distinguishing it from both CTRL and MS. Implications 

may be that the immune system can sense specific neurologic damage caused by Parkinson’s 

via responses to cytokine mediators, adhesion molecules, neurotransmitters, or other 

mediators read by immune cells. Alternatively, genetic risk factors associated with 
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Parkinson’s disease may contribute to altered gene expression signatures by either direct or 

indirect mechanisms.

Mechanisms underlying gene expression differences among study groups or relationships to 

MS disease mechanism are not altogether clear. However, defects in DNA damage repair, 

cellular responses to DNA damage, and regulation of cell cycle progression and arrest are 

common properties of lymphocytes in certain autoimmune diseases, including MS, and 

ANAPC1, CHEK2, CDKN1B, ACTB, FOSL1, LLGL2, and NRAS encode proteins playing 

key roles in these fundamental cellular processes 23–27. These genes are highly represented 

in the ratios used to distinguish MS from comparator groups. Genes, such as ADAMTSL4, 

B2M, IL11RA, TXK and POU6F1, encode proteins playing key functions in regulating cells 

of both innate and adaptive arms of the immune system 28, 29. As such, alterations in 

expression of these genes may contribute to pathogenesis of MS or may represent an altered 

response by the immune system to MS pathogenesis.

Limitations to our study include selection of patients with pre-existing diagnoses of CIS and 

MS, as this may not completely represent patients in the general population in whom these 

tests may be performed. Our follow-up analysis of CIS patients supports the idea that initial 

scores > 0 will correlate with progression to MS. Future longitudinal studies are planned to 

better evaluate utility of these tests in this setting. Further, our binary analysis is also 

predicated on the fact that MS is best represented by a single set of gene expression ratios 

and this may not be the case. Additional analyses, such as analyses of gene expression ratios 

in multi-dimensional space, will address this possibility. We identified several different 

combinations of gene expression ratios, which performed equivalently in their ability to 

discriminate among subject groups. In conclusion, these minimally invasive and relatively 

inexpensive tests may have utility to either exclude the diagnosis of MS or to contribute to 

establishing a diagnosis of MS.

Materials and methods

Patients

Blood samples in PAXgene tubes were obtained from patients with a) clinically isolated 

syndrome (CIS), b) an initial diagnosis of MS before onset of therapy, and c) established 

relapsing-remitting MS on medication. Blood samples were also obtained from healthy 

control subjects (CTRL) and subjects with different inflammatory (OND-I) or non-

inflammatory (OND-NI) neurologic conditions. MS samples were obtained from a total of 9 

different sites in the U.S. and Europe. Samples from subjects with OND-I and OND-NI were 

obtained from 7 sites in the U.S. CTRL samples were obtained from 3 U.S. sites. Inclusion 

criteria for MS and other neurologic conditions were diagnosis by a neurologist using 

established methods and ability to provide informed consent, thus providing an un-biased 

study cohort. Age, race and gender were not statistically different among the different study 

groups. Time of the blood draw, e.g. morning/afternoon clinics, was also not statistically 

different among the different study groups. Relevant institutional review board approval 

from all participating sites was obtained.
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Procedures

Total RNA, purified using Qiagen’s isolation kits by standard protocols, was reverse-

transcribed using SuperScript III (Invitrogen). A TaqMan Low Density Array (TLDA) was 

designed to analyze expression levels of 44 genes previously identified from our microarray 

analysis and of 4 “housekeeping” genes in 300 ng cDNA per sample. Patient diagnosis was 

blinded for all experimental procedures. Relative expression levels were determined directly 

from the observed threshold cycle (CT), the cycle number at which fluorescence generated 

within reactions crosses an assigned threshold reflecting the point where sufficient 

amplicons have accumulated to be statistically significant above baseline. Linear expression 

values were determined using the formula, 2(40-CT).

Identification of discriminatory gene expression ratios

A computational algorithm was designed to identify the most discriminatory combinations 

of ratios22. All possible gene expression ratios were computed (e.g. ACTR1A/BRCA1, 

TAF11/ACTR1A, etc). To analyze individual results, we used  to denote the ith ratio 

for the jth control and let  denote the ith ratio for the kth MS patient. Here, j = 1, …, 

Ncontrol and k = 1, …, NMS, where Ncontrol equals the total number of controls and NMS 

equals the total number of MS patients in the data set. The second largest member of each 

data set of ratios was calculated first by { }, and designated 

. This was then applied to the MS data set { }. We used Ci to 

designate the number of MS set of ratios larger than  such that 0 ≤ Ci ≤ NMS. This 

process was repeated for each possible ratio. The ratio that produced the largest Ci was 

selected as the discriminator of the two sets. This process was repeated using all possible 

ratios. Although more than one optimal ratio could be identified for each number of 

components queried, we have presented only one discriminator for each combination. Ratios 

were included only if > 20% of subjects within the MS group had expression values greater 

than all subjects in the CTRL group. A scoring system was developed to combine multiple 

ratios. To do so, subjects were assigned one point for each ratio in which their expression 

value was higher than the highest expression value within the CTRL subject group. By this 

approach, it was also possible to relax search criteria by setting cutoffs to the second highest 

expression ratio, third highest expression ratio, etc., of the comparator subject group. Using 

these relaxed criteria, an individual was awarded one point if the value of their expression 

ratio was higher than the second or third, etc., highest expression value of individuals in the 

comparator group, respectively. These combined ratios established a score discriminating 

the MS group from comparator groups.

Search algorithm for best ratios

Let D denote the set of 44 gene-expression levels associated with the disease group and C 

denote the set of gene-expression levels associated with the control group. For example, 

when D is the set of MS patients, then D is a set of 182 44-tuples; if C is associated with the 

Controls, then C is a set of 51 44-tuples. The algorithm that searches for the “best” set of 

gene ratios is the following:
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• 80% of the control group was randomly selected and compared to the disease group 

in the following manner. Gene-expression level ratios were formed for elements in 

D and C. For each ratio, the number of elements in the disease group that were 

larger than the largest ratio in the control group was computed. The top 500 ratios 

that separate elements in D and C were saved. This calculation was repeated 200 

times resulting in a set of 200 subsets of ratios (each subset having 500 ratios).

• The 500 subsets were processed to identify the smallest number of ratio, R = {r1, 

r2, …, rn}, that produced the maximum of separation of D and C. Associated with 

each of the ratios in R, there were threshold values, T = {t1, t2, …, tn}, which 

corresponded to the highest value in the control group for each of the ratios in R.

• For each member of the disease group D, the ratios in R were computed, {α1, α2, 

…, αn}. If αi ≥ ti, then we assigned the ratio a 1; otherwise, it was assigned a 0. In 

this way, we generated an n-tuple of 1’s and 0’s for each member of D. For 

example, if n = 6, then a typical 6-tuple would be {1,1,0,0,1,0}. This meant that 

this individual in the disease group would have 3 ratios that exceeded the 

corresponding ratios in the control group.

• Lastly, the percentage of members in the disease group that had nonzero n-tuples 

was calculated. The larger the percentage, the better the separation of D and C.

Statistical analysis

The Welch’s corrected T-test not assuming equal variances was used to calculate P values in 

two-way comparisons. The Chi-squared test for independence was used to calculate P values 

in three-way comparisons. The Bonferroni method was employed to correct for multiple 

testing 30.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Gene expression profiles across multiple autoimmune diseases. Expression levels of 44 

target genes were determined by quantitative RT-PCR and normalized to expression of 

GAPDH. Expression levels of 31 genes are shown; expression levels of the remainder were 

not statistically different between CTRL and any disease cohort. Genes are identified that 

showed statistically significant [P < 0.05 after Bonferroni’s correction] increased [green 

boxes] or decreased [red boxes] expression in individual disease cohorts relative to CTRL 

subjects. Numerical expression ratios [disease group average/CTRL average] are displayed 

within the colored boxes.
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Figure 2. 
Discrimination between MS and CTRL subjects with an 8 ratio scoring system. (a) 

Performance of the single ratio, ANAPC1/CHEK2 to discriminate MS and CTRL subjects. 

(b) Genes making up 8 unique discriminatory ratios. P values compare expression levels of 

ratios between MS and CTRL subjects. (c) Increased sensitivity with increasing numbers of 

ratios. (d) Score distributions among subjects using 8 ratios. (e) Validation of results by 

analyzing 40 new MS subjects and 40 new CTRL subjects. (f) Score distribution between 

OND-I and OND-NI subjects. (g) Mean scores ± std. dev. among subjects with CIS, initial 

diagnosis of MS, and established MS. P value is not significant among groups. (h) Mean 

scores ± std. dev. among MS subjects from different geographic locations. P value is not 

significant among groups.
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Figure 3. 
Discrimination of MS subjects from subjects with inflammatory neurologic diseases, TM or 

NMO. Most discriminatory gene expression ratios were identified that segregate MS 

subjects from TM and NMO subjects (CTRL is included for reference). The point system 

was applied to combine ratio performance into a single discriminator.
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Figure 4. 
Discrimination of subjects with Parkinson’s disease from MS and CTRL. Most 

discriminatory gene expression ratios were identified that segregate Parkinson’s disease 

subjects from MS subjects and CTRL subjects. Using the point system, we determined the 

% of Parkinson’s subjects with a score > 0, Y-axis, relative to the number of ratios, X-axis, 

for the different comparator groups.
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Figure 5. 
Discrimination of MS subjects from heterogeneous comparator groups. We identified the 

top 15 gene expression ratios with the greatest ability to discriminate MS from OND-I, 

OND-NI, or ALL (OND-I, OND-NI, and CTRL). Using the point system, we determined 

the % of MS subjects with a score > 0, Y-axis, relative to the number of ratios, X-axis, for 

the different comparator groups [CTRL is included for reference].
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Figure 6. 
Discrimination between MS and OND-I subjects using 10 gene expression ratios. (a) Genes 

making up 10 unique discriminatory ratios. P values compare individual ratio values 

between MS and OND-I subjects. (b) Increasing number of ratios increases sensitivity or 

ability to discriminate between MS and OND-I subjects. (c) The score distribution in MS 

and OND-I subjects using 10 ratios. (d) Validation of results by analyzing 40 new MS 

subjects and 40 new OND-I subjects (20 TM + 20 NMO). (e) Mean scores ± std. dev. 

among subjects with CIS, initial diagnosis of MS and established MS. P is not significant for 

CIS versus MS naïve, 0.03 for CIS versus established MS, and < 0.0001 for MS naïve 

versus established MS. (f) Mean scores ± std. dev. among subjects based upon geographic 

sites. P is not significant for Nashville versus Europe, < 0.0001 for Nashville versus U.S. 

non-Nashville, and < 0.0001 for Europe versus U.S. non-Nashville. (g) Score distributions 

between [CIS and MS-naïve] and established MS.
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Figure 7. 
Discrimination between MS and OND-NI subjects using 10 gene expression ratios. (a) 

Identification of genes making up the 10 unique discriminatory ratios. P values compare 

individual ratio values between MS and OND-NI subjects. (b) Increasing the number of 

gene expression ratio increases the ability to discriminate between MS and OND-NI 

subjects. (c) Score distribution using 10 ratios in the training set. (d) Validation of results by 

analyzing 40 new MS subjects and 40 new OND-NI subjects. (e) Mean scores ± std. dev. 

among subjects with CIS, initial diagnosis of MS and established MS. P values were not 

significant among any of the comparisons. (f) Mean scores ± std. dev. among subjects based 

upon geographic sites. P values were not significant for any of the comparisons.
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Table 1

Characteristics of Subjects

Sites

Nashville U.S.* Europe**

MULTIPLE SCLEROSIS (total) 84 81 80

 CIS 14 10

 Treatment naïve 30 4 55

 Established disease (on meds) 40 77 15

OND-I (total) 1 85

 Acute disseminated encephalomyelitis 4

 Bell’s Palsy 3

 CNS lupus 2

 Guillaine Barre 4

 Myasthenia Gravis 3

 Neuromyelitis optica 27

 Optic neuritis 1 1

 Transverse myelitis 41

OND-NI (total) 1 128

 Alzheimer’s 6

 Cerebral ataxia 2

 Cerebral bleed 2

 Cervical radiculopathy 6

 Drug-induced movement disorder 1

 Dystonia 1

 Epilepsy 1 4

 Essential tremor 9

 Huntington’s disease 1

 Hydrocephalus 1

 Median Neuropathy 2

 Meningioma 1

 Migraine 30

 Parkinson’s 3 0

 Peripheral Neuropathy 1

 Pseudotumor 3

 Restless Leg Syndrome 1

 Seizures 6

 Spasmodic torticollis 1

 Stroke 18

 Tourette’s Syndrome 1
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Sites

Nashville U.S.* Europe**

 Transient Ischemia 1

CONTROLS 48 61

*
six additional sites in U.S.: MA, MD, NY, SC, AZ, TX, CA, samples from sites in MS, MD, NY, AZ, and CA were obtained through the 

Accelerated Cure Project.

**
Denmark, Netherlands
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