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Abstract: Two-pore channels (TPCs) constitute a small family of ion channels within membranes of
intracellular acidic compartments, such as endosomes and lysosomes. They were shown to provide
transient and locally restricted Ca2+-currents, likely responsible for fusion and/or fission events
of endolysosomal membranes and thereby for intracellular vesicle trafficking. Genetic deletion of
TPCs not only affects endocytosis, recycling, and degradation of various surface receptors but also
uptake and impact of bacterial protein toxins and entry and intracellular processing of some types of
viruses. This review points to important examples of these trafficking defects on one part but mainly
focuses on the resulting impact of the TPC inactivation on receptor expression and receptor signaling.
Thus, a detailed RNA sequencing analysis using TPC1-deficient fibroblasts uncovered a multitude of
changes in the expression levels of surface receptors and their pathway-related signaling proteins.
We refer to several classes of receptors such as EGF, TGF, and insulin as well as proteins involved
in endocytosis.

Keywords: two-pore channel; endolysosomal system; intracellular trafficking; receptor endocytosis;
RNA sequence analysis

1. Introduction
1.1. Genetic Diversity and Structure

Two-pore channels (TPCs) constitute a small family of cation channels within the
membranes of endolysosomal organelles. In mice and humans, only two TPCs were identi-
fied, whereas several other species express three or even more functional tpc-genes. The
diversity of tpc-genes, exon-intron structures, transcripts, and proteins and phylogenetic
relationships was recently described [1–3]. The name “two-pore channel” suggests an ion
channel structure with two separate pores, but, in fact, the channel protein consists of two
subunits forming a homodimer. Each subunit comprises two homologous domains, and
each domain consists of six transmembrane segments. This basic structure is well known
from numerous classes of ion channels, and it is thought that TPCs form evolutionary
intermediates between one-domain TRP and four-domain voltage gated Na+ or Ca2+ chan-
nels. The first 3D architecture was determined for a TPC from Arabidopsis thaliana using
X-ray crystallography [4,5]. Later, this was followed by the 3D structures of mouse TPC1
and human TPC2 using electron cryo-microscopy [6,7]. Functional studies in combination
with these structural data indicate that the first four transmembrane segments of each
domain participate in voltage sensing, while the fifth and the sixth segments constitute the
pore region [6,7].

1.2. Activation via NAADP and Putative NAADP-Binding Proteins

Initially, TPCs were identified as the long-sought class of ion channels opened by the
second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) [8]. NAADP
is a very potent Ca2+ mobilizing messenger and was identified first in sea urchin eggs in
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1995 [9]. Although TPCs participate in NAADP-mediated Ca2+ release from small acidic
organelles, photoaffinity labeling studies failed to demonstrate a direct binding between
NAADP and TPCs [10]. Instead, labeled NAADP bound to smaller proteins that may
be part of a higher molecular complex that is associated with TPCs. This model would
also explain earlier studies suggesting ryanodine receptors (RyRs) as putative NAADP
targets by pointing to a common NAADP-binding protein that participates in different
Ca2+ release mechanisms.

Recently, several groups presented their efforts in identifying NAADP receptors
and introduced two promising candidates. Yan and Guan identified LSM12 as a putative
NAADP interactor by showing that recombinant LSM12 bound to immobilized NAADP but
not to NADP. These data were confirmed by using LSM12 knockout cells that demonstrated
an abolished interaction between NAADP and TPCs and a reduced Ca2+ signal. Two other
teams, Gunaratne with colleagues and Roggenkamp and coworkers, converged on JPT2
(Jupiter microtubule-associated homolog 2) as an NAADP binding protein [11,12]. The first
group used a novel bifunctional “clickable” NAADP photoprobe to search for NAADP-
binding proteins and identified the 23 kDa mammalian JPT2. JPT2 bound to NAADP
with very high affinity, co-immunoprecipitated with TPC1, and was required for NAADP-
induced Ca2+ release [11]. The second team isolated JPT2 by using purification studies
with Jurkat cells. However, their coprecipitation and colocalization experiments with RyRs
connects NAADP-signaling and JPT2 with this Ca2+ pathway and suggests an important
role of the RyR/JPT2-complex for the first seconds of T cell activation [12].

1.3. NAADP and PI(3,5)P2 Affect Ion Permeability and Selectivity

Besides NAADP, the phospholipid PI(3,5)P2 was described as an endogenous activator
of TPCs. A considerable number of studies characterized TPCs initially as non-selective
Ca2+ -permeable channels activated by NAADP [1,8,13–15], whereas others described
TPCs as highly-selective Na+ channels that are directly opened by PI(3,5)P2 [16–19]. For
several years, these conflicting data remained unresolved, but recent work by Grimm
and colleagues addressed this apparent contradiction [20,21]. They presented a model
for TPC2 with two endogenous activators that result in distinct ion selectivity. A high
throughput screen for membrane-permeable small molecule activators identified two
distinct TPC2 agonists. One of them evoked robust Ca2+ signals and non-selective cation
currents, whereas the other one induced only modest Ca2+ signals but a Na+ selective
current. It turned out that the two agonists mimic the actions of NAADP and PI(3,5)P2,
causing different ion permeability and selectivity of TPC2.

1.4. Function in the Endolysosomal System

Mammalian TPC1 and TPC2 are found in intracellular membranes of the endolyso-
somal system but not in the plasma membrane. Within these compartments, they show a
smooth transition from TPC1 predominantly found in early and recycling endosomes to
TPC2 mainly expressed in late endosomes and lysosomes [22–25]. TPCs contribute to the
release of Ca2+ from these vesicles into the cytoplasm and thereby to a locally and tempo-
rally restricted increase of Ca2+, likely necessary for fusion and/or fission of endolysosomal
membranes. This forms the basis for vesicle trafficking and sorting as a consequence for
endocytic, recycling, and degradation processes [26,27]. Recently, the role of TPCs for
phagocytosis was uncovered and compared with other Ca2+ channels [28]. In phagocytic
cells, the NAADP/TPC pathway activates calcineurin, which in turn dephosphorylates
and activates the GTPase dynamin-2.

TPCs also contribute to the uptake of Ca2+ in endolysosomal compartments and the
filling of endoplasmic reticulum (ER) Ca2+ stores. Data from exocytosis experiments using
mast cells suggested that TPC1 controls intracellular Ca2+ homeostasis and Ca2+ balance
between the ER and the endolysosomes [29]. Thus, TPC1 deficiency disturbs Ca2+ home-
ostasis and granular histamine content and causes an altered filling of ER and organellar
Ca2+ stores. In vivo, TPC1 knockout mice have fewer mast cells but are characterized by an
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enhanced exocytosis and mediator release due to an increased immunoglobulin-triggered
Ca2+ signal [29].

In view of the importance of TPCs for intracellular trafficking, one might expect more
severe phenotypes in existing knockout models. However, a closer inspection of these
mouse models suggests that phenotypes come to light mostly under stimulated but not
under basal conditions. This is evident in liver cells from TPC2 deficient mice; here, only
mice fed with a high cholesterol diet demonstrated an accumulation of cholesterol in late
endosomes, probably due to an impairment of endolysosomal fusion processes. Further-
more, TPC2 deficient mice were susceptible to cholesterol overload and liver damage
only under this diet [27]. Another example is the IgE-triggered exocytosis observed in
mast cells [29].

1.5. Function beyond Intracellular Trafficking

The question arises of the role of TPCs beyond involvement in endocytosis, recycling,
and degradation. There is a huge number of cell surface receptors and transporters
that are regulated via endo- or exocytosis or recycling and degradation. Furthermore,
some receptors are still signaling even after endocytosis and as long as intracellular parts
have access to the cytosol. Given the role of TPCs as general regulators of intracellular
trafficking, one might expect effects of TPCs on surface expression and receptor signaling.
These consequences should emerge in TPC-deletion studies, such as for TPC1, TPC2, and
even more prominently in TPC1/2-double knockout cell lines. In this review, we first
describe the role of TPCs for intracellular trafficking but mainly focus on the functions
beyond those aspects. In particular, we used RNA sequence analysis from wildtype and
TPC1-deficient fibroblasts to gain insight into the expression levels of surface receptors and
their pathway-related signaling proteins.

2. Uptake and Trafficking of Bacterial Protein Toxins

Bacterial protein toxins were established as a tool to uncover the specific roles of
different Ca2+ sources, i.e., classes of ion channels for determining individual endosomal
trafficking routes [30]. These toxins elicit their effects after modification of intracellular
target proteins in the host cells. They are taken up by receptor mediated endocytosis and
hijack different endosomal routes to reach their final cytosolic destination. The toxins
principally use two main routes to gain access to the cytosol: they can either be transferred
from early or late endosomes (referred to as “short trip” toxins) or are transported all the
way to the Golgi apparatus and the ER (“long trip” toxins). The translocation of the first
group from early and late endosomes into the cytosol is driven by ongoing acidification.
Diphtheria toxin (DT), the lethal factor of Anthrax toxin (LF/PA) and Pasteurella multocida
toxin (PMT), are examples for this uptake route. The second group including Cholera toxin
(CT) is retrogradely transported after endocytosis via the Golgi apparatus to the ER. To
investigate the role of TPC1 for endosomal trafficking, we applied a set of “short trip” and
“long trip” toxins as route-specific model substrates in wildtype and TPC1-deficient cells
(MEF, HeLa, and J774 cells) [25].

The application of the “short trip” toxins to appropriate cell lines resulted in a delayed
toxin uptake and reduction of target protein modification (PMT and DT). The cytotoxic
effect of LF/PA in a TPC1-knockout macrophage cell line was also delayed. The result from
the latter was confirmed by inhibition of TPC channels with tetrandrine, which decreased
the effect of LF/PA in a dose-dependent manner. CT serving as example for a “long
trip” toxin showed very little quantitative differences in cAMP accumulation in wildtype
and TPC1-deficient cells within 3 h of toxin treatment [25]. However, another study that
quantified fluorescently labeled CTxB in the Golgi apparatus found a slightly reduced
accumulation of CTxB during a chase period of 2 h in TPC1-knockout fibroblasts [2]. The
discrepancies in these observations may be caused by the variations in the observation
periods and/or the different approaches. This study also highlighted the different roles of
TPC1 and TPC2 for CT trafficking, which can be attributed to their distinct localization pat-
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terns in the endolysosomal system. In summary, the genetic inactivation of TPC1 reduced
or attenuated the uptake and the toxic impact of all “short trip” toxins entering the host
cells via early or recycling endosomes, whereas the effect of “long trip” toxins undergoing
retrograde transport from late endosomes to the ER remained largely unchanged [25].

3. Uptake and Processing of Viruses

Another excellent model for investigating the roles of TPC1 and TPC2 for vesicle
trafficking is based on endocytosis and endolysosomal processing of Ebola virus [31]. The
virus causes a highly lethal and rapidly progressing hemorrhagic fever and is responsible
for several severe outbreaks in Africa and remains a public health threat. Ebola viruses
enter their host cells by macropinocytosis and are subsequently transported through the
endolysosomal system, where viral glycoproteins are cleaved and bind to the Niemann-
Pick C1 protein [32]. The final processing steps involve membrane fusion with lysosomes
and release of the viral core into the cell cytoplasm, where replication starts. Sakurai
and colleagues found that entry and trafficking of Ebola in HeLa and MEF cells require
endosomal Ca2+ channels and identified TPCs as key players [31]. Thus, disrupting TPC
function either by gene knockout, small interfering RNAs, or by pharmacological blockade
prevented the escape of viral particles from the endosomal compartments into the cell
cytoplasm. The alkaloid tetrandrine emerged as the most potent inhibitor in this study
and was able to attenuate infection of macrophages, the primary target cells of Ebola, and
demonstrated significant therapeutic benefit in a mouse model.

TPCs were also shown to be involved in controlling the life cycle of HIV [33]. A phar-
macological inhibition or gene knockdown of TPCs attenuated the release of the HIV Tat
protein from endolysosomes and transactivation of the long terminal repeat gene promoter.
Obviously, this effect can be selectively attributed to TPCs since a knockdown of TRPML1
Ca2+ channels was without any impact [33].

More recently, there is accumulating evidence that the TPC complex is of critical
importance for the infectivity of coronaviruses (MERS and SARS). For instance, an NAADP-
mediated Ca2+ release promoted the activity of furin, a proprotein convertase necessary
for internalization, trafficking, and release of MERS-CoV into the cytoplasm [34]. Later on,
the same group demonstrated the importance of TPCs and their accessory protein JPT2 for
the life cycle of SARS-CoV-2 [11]. Viral translocation trafficking was monitored in HEK293
cells using a whole set of inhibitors and siRNAs targeting TPCs and JPTs and resulted in
a significant reduction of SARS-CoV-2 virus entry for each experimental condition that
affected function of TPC1, TPC2, or JPT2 but not TRPML1 or JPT1. These data confirm not
only contribution of TPCs for endolysosomal virus processing but also a role for JPT2 in a
TPC complex.

In summary, above mentioned studies indicate that the development of pharmacolog-
ical modulators of TPCs might be promising for the treatment of a range of viral infections.

4. Regulation of EGF-Receptor Expression and Pathway-Related Proteins

There is a huge number of transmembrane receptors whose signaling is regulated or
terminated via receptor endocytosis, recycling, and/or lysosomal degradation. Among
these, the epidermal growth factor receptor (EGFR) seems to be an ideal candidate to
study the role of TPCs during these processes [35]. Although EGFR signaling is initiated
after ligand binding at the cell surface, activated EGFRs are located within endolysoso-
mal membranes after endocytosis, and EGFR signaling is ongoing [36–38]. Furthermore,
activated receptors are internalized by clathrin dependent or independent endocytosis,
and it was shown that ligand concentrations determine the preferential trafficking route of
activated receptors [39]. At low EGF concentrations, uptake primarily occurs by clathrin
mediated endocytosis, and EGFRs are transported via early and recycling endosomes
back to the plasma membrane [40]. At higher EGF concentrations, increasing amounts of
activated EGFRs are taken up by clathrin independent endocytosis and are routed via late
endosomes to lysosomes for degradation [41]. In summary, these prerequisites form an
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ideal model to study the functions of TPCs for regulation of receptor endocytosis, recycling,
and degradation and even for investigating downstream processes.

The deletion of TPCs in MEF cell lines resulted in an increased uptake of the EGF–
EGFR complex and altered trafficking when cells were incubated with high concentrations
of EGF. TPC1/2 double knockout cells accumulated even more EGF than single knockouts.
Interestingly, the use of Rab5 as a marker of early endosomes uncovered that TPC2 and
TPC1/2 double knockouts showed numerous examples of co-localization of Rab5- and
EGF-positive vesicles, whereas wildtype and TPC1-deficient MEF cells exhibited only
minor co-localization. These observations suggest that EGFR trafficking is more delayed
in TPC2 knockout cells, which may be caused by a longer retention time of EGFR in late
endolysosomal vesicles. Those data were collected using fluorescence microscopy and
FACS-based approaches [35]. A similar effect was observed for LDL and its receptor since
TPC2 deficient MEFs demonstrated a strong accumulation of LDL positive vesicles per cell
following incubation with LDL-BodipyFL [27].

To further substantiate the role of TPCs for the EGFR network, the amount of total
and surface accessible EGFR was quantified by Western blot analysis and EGF binding
studies. For both approaches, the amount of EGFR was significantly increased in TPC single
knockout cells but was highest in TPC1/2 double knockout cells. Additional experiments
using cycloheximide as a protein synthesis inhibitor demonstrated that there were no
significant differences in EGFR degradation kinetics between all genotypes and suggested
that the higher expression levels of EGFR in TPC knockout cells cannot be attributed to an
altered degradation process [35]. A similar approach also found a time and concentration
dependent increase of EGF-positive vesicles in TPC2-deficient MEFs [27]. However, this
study quantified EGFR levels in liver samples only by quantitative RT-PCR analysis but
not at the protein level and did not find significantly increased EGFR transcripts in TPC2-
deficient tissue.

Further studies were designed to discriminate between the two major regenerative
mechanisms of EGFR availability, recycling, and de novo protein synthesis. As a result,
from regenerative binding studies and quantitative RNA analysis, only EGFR de novo
synthesis remains as the main mechanism responsible for the increased levels of surface
accessible EGFR [35].

The results from the above mentioned experiments directly lead to a central question:
what are the direct consequences of an increased EGFR expression for EGFR pathway
related proteins? Initial evidence for quantitative changes in gene expression of EGFR
pathway proteins following deletion of TPCs was obtained by an RNA sequencing anal-
ysis comparing wildtype and TPC1-deficient cells. The corresponding dataset indicated
numerous quantitative changes in the gene expression levels of EGFR pathway proteins,
whereby up- and downregulation were observed [35].

Based on these data, we propose a close link between function of TPCs and EGFR
trafficking and signaling. EGFR dimerization and activation are initiated by EGF binding;
subsequently, EGFR recruits downstream signaling complexes and triggers specific cellular
signaling cascades. An important element is the ongoing EGFR signaling in intracellular
organelles as long as the receptor-kinase domain is accessible from the cytosolic side [36,42].
During further maturation from early to late endosomes, EGFR is internalized in multivesic-
ular bodies, and receptor signaling is stopped. Finally, receptor and ligand degradation
occur in lysosomes. The deletion of TPCs causes a dysregulation of endolysosomal EGFR
trafficking, a prolonged EGFR signaling, and an ongoing activation of downstream signal-
ing pathways. Exactly this was found for phosphorylation of ERK1/2. In wildtype cells,
pERK1/2 levels rapidly dropped down to initial levels, whereas, in TPC-deleted cells, they
stayed at a high level for longer periods [35].

The question arises if further signaling pathways might be affected in the same way by
inactivation of TPCs. Since c-Jun was shown to be a major factor for Egfr gene transcription,
it is a promising candidate [43–45]. A quantification of phospho-c-Jun levels in wildtype
and TPC-deficient MEF cells revealed elevated phospho-c-Jun levels in all cells lacking
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a functional TPC gene. Remarkably, this rise was already observable in the absence of
EGF under unstimulated conditions. It is obvious that the increased JNK signaling is a
major factor that contributes to the high EGFR expression found in TPC-deficient cells. We
hypothesize that a prolonged EGFR signaling in endolysosomal signaling platforms caused
by deletion of TPCs results in increased JNK signaling, which, in turn, leads to increased
Egfr expression [35].

5. Regulation of Gene Expression via TPC1—RNA Sequencing Analysis

The massive effects of a TPC gene inactivation for the EGFR transportation network
and for EGFR signaling lead directly to the investigation of EGFR-unrelated receptors and
pathways. To achieve an unbiased approach, a detailed RNA sequencing analysis was
performed as previously described [35]. Three independent untreated samples of wildtype
and TPC1 knockout mouse embryonic fibroblast lines were included and compared. RNA
sequencing pointed to substantially changed expression patterns in TPC1 knockout com-
pared to wildtype cells. A total of 5255 genes were differentially expressed, with 2705 genes
upregulated and 2550 genes downregulated. Remarkably, 1141 genes were upregulated
and 647 were downregulated more than two-fold (Figure 1). The number of dysregulated
genes due to loss of TPC1 gives a first hint at the relevance of efficient and well-regulated
endolysosomal transport and trafficking for regulating gene expression.

Figure 1. Differential gene expression (DGE) analysis. (A). Flow chart for RNA sequencing approach.
(B). Volcano plot of RNA sequencing expression data of three independent samples (n = 3) of TPC1
knockout vs. wildtype mouse embryonic fibroblasts. Significantly up- and downregulated genes
are indicated as blue and red dots, respectively. Grey area shows genes that were not differentially
expressed. Only when p-value and false discovery rate were <0.05 gene expression change was
considered statistically significant. RNA sequencing and differential gene expression analysis were
performed as previously described [35]. Volcano plot was made using tools integrated in the Galaxy
platform [46]. Original sequencing data were deposited in the Short Read Archive at the National
Center for Biotechnology Information (NCBI) under the BioProject ID PRJNA694624.

Gene ontology (GO) enrichment analysis enables the search for over-represented
GO terms in large biological data sets, for example, differential gene expression analysis
results. Each gene product is annotated to one or more GO terms and can thereby be
classified with respect to its molecular function (e.g., receptor binding or kinase activity),
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its cellular component (localization within the cell, for example, endosome or plasma
membrane), and its biological processes (signal transduction or axon development, for
instance) [47]. By screening for enriched terms, one can gain insight into alterations
regarding all these aspects.

Gene ontology enrichment analysis using ClueGO (a Cytoscape software plugin, [48]
revealed a very heterogeneous pattern of enriched terms regarding cellular components and
molecular function. A pathway enrichment analysis using common pathway annotations
(see legend to Figure 2; [47,49–51]) for the most up- and downregulated genes gave a similar
picture. Interestingly, different pathways were not either simply up- or downregulated in
total but seemed to be dysregulated with some highly upregulated members and others
strongly downregulated (Figure 2).

Figure 2. Pathway enrichment analysis of the 350 most up- and downregulated genes using ClueGO
(Cytoscape software plugin, [48]. GO/Reactome/WikiPathways/KEGG pathway ([47,49–51]) func-
tionally grouped networks with terms indicated as nodes (Benjamini–Hochberg p value < 0.05) linked
by their kappa score level (≥0.4); only the label of the most significant term per group is shown. The
size of the node correlates with the term significance. The node color shows the proportion of genes
either upregulated (red) or downregulated (blue) associated with the term.

We also considered if changes in the expression of genes involved in cell cycle regula-
tion might indicate an inadequate synchronization of the cells in the biological replicates
but could not confirm this eventuality. Furthermore, the small differences between repli-
cates of one condition suggest that the changes in gene expression were not due to a lacking
cell cycle synchronization or other experimental bias.

Some of the most significantly enriched pathways in our analysis were linked to down-
stream signaling of internalized receptors but also to processes involved in endocytosis.
In particular, those were TGF-beta receptor signaling, MAPK signaling, regulation of IGF
transport and uptake by IGFBPs and signal transduction (Figure 2). Interestingly, not only
these classical pathways were affected but also cellular mechanisms involved in smooth
muscle contraction or endochondral ossification.
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Based on the data presented by Müller and colleagues, who described a close link be-
tween loss of TPC1 and gene expression changes in the EGFR pathway, we decided to have
a closer look at pathways characterized by an ongoing signaling of internalized receptors,
i.e., activated receptors present in “signaling endosomes”. Activated transforming growth
factor beta (TGF-β) receptor was described for a continuous signaling in endosomal com-
partments (reviewed by [52–54]). Furthermore, the TGF-beta signaling pathway showed a
highly significant enrichment in the GO analysis and takes center position in Figure 2.

6. Regulation of Genes Involved in TGF-β Receptor Signaling

The TGF-β receptor is a cell surface receptor kinase and is activated by a plethora of
secreted polypeptides of the transforming growth factor beta superfamily. Members of
the TGF-β superfamily are, among others, activins, bone morphogenetic proteins (BMPs),
Nodal, and TGF-β1, -β2, and -β3. TGF-β signaling is involved in embryonic and adult
control of proliferation, differentiation, and motility of cells or tissue. Genetic mutation,
malfunction, or dysregulation of members of this pathway are associated with chronic
inflammatory diseases, cancer, and fibrotic disorders [52,53].

Using RNA sequencing data [35], we studied transcriptional changes of TGF-ß re-
ceptor signaling pathway proteins. Expression data were transferred into a scheme high-
lighting the gene expression changes in TGF-β receptor signaling (Figure 3). Strikingly,
the expression of TGF-β receptors was altered to a different extent. While expression of
Tgfbr1 (TGF-β receptor 1) was almost halved (fold change 0.56) in TPC1-knockout MEF in
comparison to wildtype cells, Tgfbr2 (TGF-β receptor 2) was more than quadrupled (fold
change 4.31). This diverse picture was recognizable in downstream signaling proteins as
well. A closer inspection indicated that expression of most of the downstream signaling
proteins was reduced in TPC1-knockout cells. Furthermore, the reduction in expression
was more pronounced than the increase of the few transcripts that were upregulated. Only
six genes were upregulated more than two-fold, but 21 genes were downregulated more
than two-fold (fold change 0.5).

Figure 3. Differential gene expression of TGF-β receptor signaling pathway proteins in TPC1-
deficient MEF cells compared with wildtype cells. Color code indicates changes in expression. Up-
and downregulated genes are displayed in red and blue, respectively. Genes that show no significant
differential expression (q > 0.05) in RNA-seq are shown in white (fold change = 1). Figure was
adopted from an illustration and by courtesy of Cell Signaling Technology, Inc.
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7. Regulation of Genes Involved in Insulin Receptor Signaling

Thus far, we focused on receptors characterized by two features: (1) an altered expres-
sion in TPC1-deficient MEF cells and (2) an ongoing signaling in endosomal compartments
following activation at the cell membrane. In contrast, the insulin receptor was not differen-
tially expressed (0.95-fold in TPC1 knockout vs. wildtype cells, q > 0.05), and signaling in
intracellular organelles is not described. Therefore, the insulin receptor is an ideal candidate
to study the consequences of a TPC1 deletion for pathway-related proteins independent of
the receptor expression level. In total, the expression of 55 transcripts related to insulin
signaling was significantly changed in TPC1 knockout cells: 22 were up- and 33 were
downregulated (Figure 4). Downstream proteins of insulin receptor were also affected by
other receptors, particularly by receptor tyrosine kinases. This intertwining of pathways
explains that even receptors that lack endosomal signaling are affected by deletion of TPCs
and that their pathway related proteins can be differentially expressed as well.

Figure 4. Heatmap of genes involved in insulin receptor signaling. Heatmap showing significantly
differentially expressed genes (q < 0.05) in three independent samples (n = 3) of TPC1 deficient
MEF vs. wildtype cells that are involved in insulin receptor signaling (KEGG pathway 04910; [49].
Each column stands for one independent sample of the depicted genotype. Expression values are
shown as the Z-scores of the log2 transformed normalized counts for each gene. Red and blue are
assigned to higher and lower expression, respectively, according to the color key in the upper right.
Heatmap was created using tools integrated in the Galaxy platform [46]. Original sequencing data
were deposited in the Short Read Archive at the National Center for Biotechnology Information
(NCBI) under the BioProject ID PRJNA694624.

8. Regulation of Genes Involved in Endocytosis

TPCs are important regulators of intracellular trafficking. Within the endolysosomal
system, they show a differential distribution with TPC1 predominantly found in early and
recycling endosomes and TPC2 mainly expressed in late endosomes and lysosomes [22–25].
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Considering this distribution pattern, one might expect distinct effects of a TPC1 deletion
on the transcript levels of proteins linked with endocytosis. In fact, the transcript levels of
91 proteins important for endocytosis were significantly changed in TPC1 knockout MEF
cells (30 upregulated and 61 downregulated) (Figure 5). We categorized these proteins
according to their function in the various parts of the endolysosomal system and according
to their nature of endocytosis, i.e., whether they were clathrin dependent or independent.

Figure 5. Heatmap of genes involved in endocytosis. Heatmap showing significantly differentially
expressed genes (q < 0.05) in TPC1 deficient MEF vs. wildtype cells that are involved in endocytosis
(KEGG pathway 04144; [49]. Expression values are shown as Z-scores of the log2 transformed
normalized counts for each gene. Each column stands for one independent sample of the depicted
genotype (n = 3). Red and blue are assigned to a higher and a lower expression, respectively,
according to the color key in the upper right. Heatmap was created using tools integrated in the
Galaxy platform [46]. All genes listed were compared to GO terms shown on the right. Only genes
that were significantly changed were included and categorized according to the endolysosomal
compartment or to the nature of endocytosis. Same color code was used as in heatmap. Original
sequencing data were deposited in the Short Read Archive at the National Center for Biotechnology
Information (NCBI) under the BioProject ID PRJNA694624.
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Due to the dominant expression of TPC1 in early endosomes, the number of affected
genes was highest in this compartment (18 affected early endosomal vs. eight late endoso-
mal, eight recycling endosomal, and eight lysosomal proteins). In the context of clathrin-
mediated endocytosis, five proteins were changed, and for clathrin-independent endocyto-
sis, nine proteins were affected (Figure 5). The latter mechanism includes macropinocytosis,
a form of endocytosis that is used by Ebola viruses. The substantial role of TPCs for uptake
and processing of these viruses was extensively described [31].

9. Conclusions

TPCs are main regulators of intracellular trafficking. TPC1 is predominantly found
in early and recycling endosomes, and TPC2 is mainly expressed in late endosomes and
lysosomes. Therefore, genetic deletion of either TPC1 or TPC2 causes trafficking defects
at various steps such as endocytosis, phagocytosis, recycling, or lysosomal degradation.
These consequences emerge in all model systems investigated thus far: uptake of bacterial
protein toxins, macropinocytosis and processing of some classes of virus, and endocytosis,
recycling, and degradation of surface receptors in general. In this article, we present
evidence that these defects are not restricted to trafficking only but go far beyond that. Of
note, the use of cell lines in our studies restricts this general statement, but the concordant
results provide an incentive to continue the work with appropriate in vivo models.

We focused on receptor signaling and on receptor-linked pathways by investigating
the transcript levels of receptors and pathway related proteins. A detailed RNA sequencing
of TPC1 deficient MEF cells uncovered massive changes in transcript levels when compared
with wildtype cells. In particular, we observed transcriptional changes in pathway related
proteins for receptors that are characterized by an ongoing endosomal signaling but also for
receptors that are active exclusively at the plasma membrane. For the latter, we supposed
that cross-linking of pathways explained the observed alterations. In the context of EGF
receptor expression, JNK signaling was identified as a major factor that contributes to
the high EGFR expression found in TPC-deficient cells. Significant changes were also
found for clathrin dependent and independent endocytosis in TPC1 deficient cells, further
corroborating an important role for TPC in different types of endocytosis.
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