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Abstract 

Background:  The interpretation of results from transcriptome profiling experiments 
via RNA sequencing (RNA-seq) can be a complex task, where the essential information 
is distributed among different tabular and list formats—normalized expression values, 
results from differential expression analysis, and results from functional enrichment 
analyses. A number of tools and databases are widely used for the purpose of identifi-
cation of relevant functional patterns, yet often their contextualization within the data 
and results at hand is not straightforward, especially if these analytic components are 
not combined together efficiently.

Results:  We developed the GeneTonic software package, which serves as a com-
prehensive toolkit for streamlining the interpretation of functional enrichment analy-
ses, by fully leveraging the information of expression values in a differential expression 
context. GeneTonic is implemented in R and Shiny, leveraging packages that enable 
HTML-based interactive visualizations for executing drilldown tasks seamlessly, viewing 
the data at a level of increased detail. GeneTonic is integrated with the core classes 
of existing Bioconductor workflows, and can accept the output of many widely used 
tools for pathway analysis, making this approach applicable to a wide range of use 
cases. Users can effectively navigate interlinked components (otherwise available as 
flat text or spreadsheet tables), bookmark features of interest during the exploration 
sessions, and obtain at the end a tailored HTML report, thus combining the benefits of 
both interactivity and reproducibility.

Conclusion:  GeneTonic is distributed as an R package in the Bioconductor project 
(https://​bioco​nduct​or.​org/​packa​ges/​GeneT​onic/) under the MIT license. Offering both 
bird’s-eye views of the components of transcriptome data analysis and the detailed 
inspection of single genes, individual signatures, and their relationships, GeneTonic 
aims at simplifying the process of interpretation of complex and compelling RNA-seq 
datasets for many researchers with different expertise profiles.

Keywords:  RNA-Seq, Functional enrichment analysis, Data interpretation, Interactive 
data analysis, Data visualization, Transcriptomics, R, Bioconductor, Shiny, Reproducible 
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Background
In modern life and clinical sciences, RNA-sequencing (RNA-seq) is an essential tool 
for studying gene expression and its regulation [1]. High-throughput sequencing 
technologies generate readouts for a large number of molecular entities simultane-
ously, posing challenges to proper hypothesis generation and data interpretation [2]. 
Among the typical bioinformatic workflows, differential expression (DE) analysis is 
often employed to identify the genes showing evidence for statistically significant 
changes, thus being candidate effectors for regulation across the sampled experimen-
tal conditions [3].

Most studies where these techniques are being adopted result in a list containing tens 
to thousands of gene candidates, with their associated effect size and significance level—
often reported as log2 fold change (log2FC) and adjusted p-values, respectively. Putting 
these results into biological context by leveraging existing knowledge is essential for 
facilitating the interpretation of data at a systemic level, and enabling novel discoveries 
[4].

Commonly used knowledge bases for the purpose of functional enrichment analysis 
include Gene Ontology (GO) [5, 6], KEGG [7, 8], REACTOME [9], and MSigDB [10, 
11], where the genes are organized either in simple lists (gene sets, or signatures), or as 
pathways by accounting for the interactions occurring among the respective members; 
throughout this manuscript, we will use these terms interchangeably. The analysis at the 
functional level not only aims to reduce the complexity of high dimensional molecular 
data (grouping thousands of genes and proteins to just several hundreds of coherent 
entities), but also increasing the explanatory power of the underlying observed mecha-
nisms [12].

A large variety of computational methods and software have been designed for func-
tional enrichment analysis [13], and despite their different implementations, they can 
still be grouped in three main categories, as identified by Khatri [12]: (1) Over-Repre-
sentation Analysis (ORA), contrasting only the set of DE genes against a background 
of expressed genes; (2) Functional Class Scoring (FCS), including e.g. Gene Set Enrich-
ment Analysis (GSEA, [14]) and its different flavors, incorporating a feature-(gene-)
level score/statistic, later aggregated at the pathway level to avoid the choice of a binary 
threshold; (3) Pathway Topology (PT) based approaches, which utilize the additional 
information of graph/network structure describing the interactions [15]. The most 
widely adopted approaches in this context are ORA and FCS methods, owing to their 
ease of applicability, fast runtime, and relevance of resulting gene set rankings, as shown 
in a recent benchmarking effort [16].

Visualization techniques are widely used to make sense of enrichment analysis results, 
where gene sets might also be highly redundant, thus making the prioritization and 
interpretation of interesting candidates more challenging [17, 18]. Numerous tools and 
applications aim to simplify the interpretation step by adopting a diverse range of meth-
ods and visual summaries, and these include BiNGO [19], ClueGO [20, 21], GOrilla 
[22], REVIGO [23], GOplot [24], AgriGO [25], NaviGO [26], WebGestalt [27], CirGO 
[28], AEGIS [29], FunSet [30], hypeR [31], KeggExp [32], Metascape [33], pathfindR [34], 
ShinyGO [35], ViSEAGO [36], STRING [37], GSOAP [38], GOMCL [39], and netGO 
[40].
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Aggregating and summarizing the identified categories is an efficient way to capture 
and distill the main underlying biological aspects, exploiting visual methods that can 
efficiently encode the essential information of a table. Among the commonly used visu-
alization methods, many apply different ways of grouping and displaying similar genes 
or gene sets together, including graph-like representations, clustered heatmaps (either 
genes by samples, or genesets by samples), or wordclouds. Good visualizations enable 
discovering underlying trends in the data in an unbiased fashion, and are essential com-
ponents for the proper communication of results in interdisciplinary projects [18, 41].

Datasets and gene set collections increase constantly in their size and complexity, con-
stituting a major barrier for the interpretability of transcriptomic data and their enrich-
ment results, to the point that a potential bottleneck for omics data is the so-called 
tertiary analysis, opposed to mapping and quantification (primary analysis) and statisti-
cal testing (secondary analysis) [42]. Efficient platforms that enable advanced workflows 
for a wide range of users can play a big role in providing the required level of interactiv-
ity, while guaranteeing the adherence to gold standard methods and to best practices for 
reproducible analyses [43–45].

The different atomic elements for a typical RNA-seq analysis (expression table, results 
from differential expression, functional enrichment results) can stem from different 
pipeline outputs, yet they need to be combined together, e.g. in a report created fol-
lowing the rules of literate programming [46]. By providing accessible summaries with 
proper data visualization and interpretation methods, in formats that facilitate dynamic 
shareable outputs, such frameworks can greatly reduce the time to generate novel 
hypotheses and insight. Often, this task is not straightforward to carry out, as different 
software solutions or environments might be chosen, resulting in different file formats, 
thus increasing the difficulty for practitioners to explore all relevant aspects of the data 
at hand, even if common sets of gene and pathway identifiers are adopted.

A number of solutions have been developed in diverse languages (mostly R, Python, 
Java) to address the challenges listed above, but no software package provides a compre-
hensive framework for assisting the proper interpretation of RNA-seq data; interested 
readers can find a comparative overview of the features of the above mentioned tools in 
Additional file 1: Table S1.

Here we present GeneTonic, an R/Bioconductor package aiming to streamline the 
identification of relevant functional patterns, as well as their contextualization in the 
data and results at hand, by combining in a seamless way all the pieces of informa-
tion relevant for a transcriptomic analysis. The GeneTonic package is composed by 
a Shiny web application, with a variety of standalone functions to perform the analysis 
both interactively as well as in a programmatic way. GeneTonic requires as input the 
results generated by each analytic step (quantification, DE testing, functional enrich-
ment), which are usually shared as separate tables or spreadsheets by bioinformaticians 
and core facility service providers, in formats that are suitable to standardization.
GeneTonic makes it easy to generate visualizations, starting from bird’s eye perspec-

tive summaries (gene-geneset graphs, enrichment maps, also linked to interactive tables 
in the web application), as well as getting in-depth dedicated summaries for each gen-
eset of interest. User actions enable further insight and deliver additional information 
(e.g. gene info boxes, geneset summaries, and signature heatmaps), with drilldown tasks 
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activated by simple mouse clicks. While simple operations within the call to the Gene-
Tonic() main function makes the result set more interpretable, our package also sup-
ports built-in RMarkdown reporting as a foundation for computational reproducibility, 
to conclude an interactive exploration session [47, 48]. We carefully designed the user 
interface, enabling the required tasks in a straightforward way, as a result of an open 
and continuous dialogue with researchers adopting this tool in its early development. 
Users can learn-by-doing the functionality of GeneTonic via guided tours, creating a 
common ground for experimentalists and analysts to explore transcriptomic data at the 
desired depth and efficiently generate novel insights [49].
GeneTonic connects together a number of R/Bioconductor packages, implementing 

the current best practices in RNA-seq data analysis, and facilitates the communication 
between experts of different disciplines. Harmonizing the output of the many analysis 
steps, possibly performed also with a variety of approaches, GeneTonic is a powerful 
tool for digesting and enjoying any RNA-seq dataset: the interactivity is a compelling 
means to empower end users for the exploration of many features of interest, and by 
providing a report with full code snippets, we support analyses that are reproducible 
and easily extendable. The GeneTonic package is available at https://​bioco​nduct​or.​org/​
packa​ges/​GeneT​onic/, and a public instance is available for demonstration purposes at 
http://​shiny.​imbei.​uni-​mainz.​de:​3838/​GeneT​onic.

Implementation
General design of GeneTonic

The GeneTonic package is written in the R programming language, leveraging many 
existing packages currently available in the Bioconductor project, which constitute the 
foundation for a broad spectrum of analytic workflows in computational biology and 
bioinformatics [50, 51], and the Shiny framework for interactivity [52]. The typical use 
case for GeneTonic expects researchers to run the web application locally, providing 
the atomic components of a typical RNA-seq analysis workflow (Fig. 1, top section).
GeneTonic is designed to be used after the main steps of DE and functional enrich-

ment analyses have already been completed. While this might seem a limiting factor, we 
wanted to acknowledge that a plethora of validated methods for performing functional 
analyses at the pathway level exist, and similarly, well established statistical methods for 
DE are available [1, 16]. Our focus was rather on providing a standardized interface (via 
so-called shaker functions) to automatically handle the outputs of the different tools 
which most users might be familiar with, so that GeneTonic retains a wide applicabil-
ity with respect to the upstream analysis workflows—this is illustrated in the use cases 
of Additional file 2 and Additional file 3, which include comprehensive reports cover-
ing exploratory data analysis, differential expression analysis, and functional enrich-
ment analysis for two exemplary datasets [53, 54], documented in the repository https://​
github.​com/​feder​icoma​rini/​GeneT​onic_​suppl​ement.

The required input components are stored as in the DESeq2 workflow [55], using 
classes descending from the versatile SummarizedExperiment container, de facto 
the adopted standard for interoperability in the Bioconductor ecosystem [50]. Tabu-
lar information can be provided as simple data frame objects, either imported from 
textual output of the different tools, or converted internally by the shaker functions 

https://bioconductor.org/packages/GeneTonic/
https://bioconductor.org/packages/GeneTonic/
http://shiny.imbei.uni-mainz.de:3838/GeneTonic
https://github.com/federicomarini/GeneTonic_supplement
https://github.com/federicomarini/GeneTonic_supplement
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of GeneTonic. We encourage users to adopt stable feature identifiers, such as 
ENSEMBL or Gencode [56, 57], and enable the automated conversion to HGNC gene 
symbols via annotation tables.

Most of the implemented functionality can be accessed by a single call to the main 
GeneTonic() function, with the different visualizations and summaries directly 
available from the dedicated sections of the web application. These functions are also 
exported for usage in scripted analyses such as RMarkdown HTML reports, making it 
easy to automate tasks while still creating interactive widgets that can be explored in 
depth offline (Fig. 1, bottom section).

The user interface (shown in Fig. 2) is structured with the layout provided by the 
bs4Dash package [58], which implements Bootstrap 4 over the infrastructure of 
shinydashboard [59]. The main features include a sidebar menu (Fig. 2A) to navi-
gate the different sections of the app, a header and a collapsible control panel to pro-
vide widgets which define the general behavior of the main panel, displayed in the 
dashboard body (Fig. 2C).

To instruct users on how to efficiently leverage the exploration components, we 
enhance the content provided in the use case vignette with guided tours of the inter-
face (Fig. 2B), implemented via the rintrojs package [60]. This learning-by-doing 
paradigm invites the user to perform the actions that reflect typical usages in each 
module, and can be seen as a dynamic extension of the static documentation format.

Fig. 1  Overview of the GeneTonic workflow. Four elements are required to optimally use the functionality 
of GeneTonic (top section): dds, a DESeqDataSet, with the information related to the expression 
values; res_de, a DESeqResults object, storing the results of the differential expression analysis; 
res_enrich, a data frame with the result from the enrichment analysis; annotation_obj, a data frame 
containing different sets of matched identifiers for the features of interest. These can be combined into a 
GeneTonicList object (middle section), which can be directly fed to GeneTonic and its functions, 
enabling (bottom section) interactive exploration and a variety of visualizations on the geneset enrichment 
results, both exploited to generate an integrated HTML report of the provided data
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Collapsible and tab-based elements allowed us to build a rich user interface, yet 
without adding too much visual clutter, which would hamper the usability of the anal-
ysis sessions—and by that reduce the ability to extract relevant insight.

All the required elements for running GeneTonic are provided at the beginning 
of the execution, meaning that the navigation throughout the different modules can 
take place with the usual iteration cycles that build up a full in-depth exploration. As 
this process can become time-consuming, we implemented a dedicated bookmarking 
system to temporarily store the genes and gene sets of interest, either by clicking on 
the dedicated button or with a keystroke (defaulting to the left control key). A sum-
mary for these selected features is automatically rendered in the Bookmarks section, 

Fig. 2  Screenshot of the Gene-Geneset panel in the GeneTonic application. The main navigation of the 
app is performed via the sidebar menu (A), while the options common to the different panels are available 
in the control bar (toggled with the cogs icon, close to the B circle). The main area of the Gene-Geneset 
panel (C) contains an interactive bipartite graph connecting genesets to their respective components, color 
coded according to the type and the expression changes. Upon clicking on any node, a Geneset Box (D) or a 
Gene Box (E) can be automatically generated for facilitating further exploration. The backbone of the graph 
above (F) represents a compact summary of the bipartite projections, and a table displays the most highly 
connected nodes (G), as potential hubs with regulatory roles in multiple genesets
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where the user can generate a full report on the provided input parameters, focusing 
on the aspects picked up during the live session (Fig.  1, bottom). It is then easy to 
reconstruct and reproduce the analytic rationale, and share the rendered outputs with 
cooperation partners, or simply store them for the purpose of careful documentation.

Typical usage workflow

The typical session with GeneTonic can start once the required inputs are provided to 
the main function, as illustrated in Fig. 1.

In order to use GeneTonic, the following inputs are required: (1) dds, a DESeq-
DataSet, the main component in the DESeq2 framework, storing the information 
related to the expression matrix; (2) res_de, encoded as DESeqResults for contain-
ing the results of the differential expression analysis; (3) res_enrich, i.e. the result 
from the enrichment analysis, likely converted through one of the shaker functions 
for preprocessing (or manually, if feeding this from a tool currently not supported), 
structured as a data frame with a minimal set of required variables (pathway identi-
fier, description, significance level, and affected genes); (4) annotation_obj, the 
gene annotation data frame, i.e. a table with at least two columns, gene_id for a set 
of unambiguous identifiers (e.g. ENSEMBL ids), and gene_name, containing a human-
readable set of names, e.g. HGNC-based gene symbols.

Conveniently, a single named list containing these inputs (Fig. 1, middle section) can 
be provided as an alternative format, with many functions of GeneTonic accepting a 
gtl parameter (standing for “GeneTonicList”). This simplifies the creation of con-
text-dependent serialized objects that can be easily shared by data analysts to experi-
mental collaborators. More details on the format of the components to be provided to 
the GeneTonic() main function can be found in the dedicated sections (“Data pro-
cessing”) of the use cases in Additional file 2 and Additional file 3.

In its current version, GeneTonic can directly handle the output of different tools, 
selected for being among the most commonly used in pathway analysis, including 
topGO [61], clusterProfiler [62], DAVID [63], Enrichr [64], g:Profiler [65, 66], and 
fgsea [67]—these are showcased in the code included in Additional file 2 and Addi-
tional file  3. We plan to extend the compatibility of GeneTonic with the output of 
newly developed tools, or alternatively welcome contributions on the project homepage 
on GitHub (https://​github.​com/​feder​icoma​rini/​GeneT​onic).

All the components of the GeneTonic() application can be seamlessly used by lev-
eraging sets of shared gene identifiers across the different input objects. This makes 
it possible to compute aggregate scores for each gene set, e.g. averaging the log2 fold 
change of all the affected members of the gene set, or computing a Z-score based on the 
standardized sum of the number of genes regulated in either direction. As gene sets can-
not take into account the topological information of a pathway, this is a valid surrogate 
means to summarize the effect between conditions at the functional level, and can be 
visually encoded in the outputs of the GeneTonic dedicated routines.

The process of data exploration and interpretation is iterative by its own nature. 
GeneTonic supports this by employing a variety of visual summaries (gene-gene-
set bipartite graphs, enrichment maps, geneset volcano plots, and more in the dedi-
cated app sections—Fig. 2 and Additional file 4: Fig. S1). We also offer methods to 

https://github.com/federicomarini/GeneTonic
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efficiently extract the most meaningful affected biological themes, e.g. by grouping 
similar categories and selecting a representative pathway for each subset, in order 
to simplify the redundancy often found in functional enrichment results. Whenever 
possible, we provide additional information boxes for genes and genesets (Fig. 2D, E) 
to facilitate drilldown tasks and better understand the whole data components of the 
project. A number of automatically generated action buttons link directly to exter-
nal databases, such as AmiGO [6], NCBI [68], GeneCards [69], GTEx [70], enabling 
more in-depth analysis of particular genesets or genes, without the need to type all 
the entries of interest.

While the main way of using the functionality of GeneTonic is probably via its 
web application, we designed all the underlying functions to be able to handle stand-
ard objects and classes adopted by the current Bioconductor workflows, and there-
fore their output can be also incorporated in information-rich HTML reports and 
existing scripted analyses without additional effort. Indeed, the report itself created 
via the happy_hour() function is an exemplary RMarkdown document, which 
users can edit and extend as they see fit. Literate programming approaches were ini-
tially conceived by the seminal work of Knuth [46] and have been currently refined 
in the knitr framework [71] and in the Jupyter notebook system [72]. These tech-
niques constitute a powerful toolkit to ensure the reproducibility of computational 
analyses [43, 45, 73]. The creation of such an HTML document is also intended as 
the recommended concluding step of a typical usage session for GeneTonic.

In case additional or bespoke visual representations of the input objects (e.g. MA 
plot for the DE results, customized heatmaps, ...) should be created, the iSEE Bio-
conductor package [74] can be used for this purpose. We provide a specific export 
function, combining the provided inputs into a SummarizedExperiment object 
that can be readily further explored in an instance of iSEE, by properly accessing 
the assays, colData, and rowData slots.

Results
In this section, we will illustrate the functionality of GeneTonic, showcasing the 
results for the analysis of a human RNA-seq dataset of macrophage immune stimula-
tion, published in [53]. The data is made available via the macrophage Bioconduc-
tor package, which contains the files output from the Salmon quantification (version 
0.12.0—[75]), against the Gencode v29 human reference. Expression values, summa-
rized at the gene level, are available from 6 individual donors, in 4 different condi-
tions. We will focus on the comparison between Interferon gamma treated samples 
versus naive samples—this scenario is also shown in the demonstration instance 
available at http://​shiny.​imbei.​uni-​mainz.​de:​3838/​GeneT​onic.

A comprehensive report on the processing for this dataset and its usage with 
GeneTonic is included in Additional file 2. Additional file 3 showcases the usage of 
GeneTonic on the findings of the work of [54] (A20-deficiency in mouse microglia 
cells), describing also an alternate entry point for running GeneTonic with objects 
from the edgeR workflow for differential expression [76].

http://shiny.imbei.uni-mainz.de:3838/GeneTonic
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Augmenting functional enrichment results with expression data

The majority of functions in GeneTonic requires only a minimal set of information on 
the pathways enrichment results, i.e. a gene set identifier, its description, and a measure 
of significance for the enrichment, often specified as a p value. Nevertheless, it is often 
beneficial to combine additional knowledge, if provided by the method used to perform 
the enrichment test; this might include the number of genes annotated to each pathway 
and the related subset detected as differentially expressed, but more importantly it can 
incorporate the full set of expression values in the original dataset.

One way to do so is via the get_aggrscores() function, which computes the over-
all pathway Z-score and an aggregated score (such as the mean or the median), which 
summarize at the gene set level the effect (log2FC) of the differentially expressed genes 
annotated as its members. In detail, the gene set Z-score attempts to determine the 
“direction” of change, and is computed as zgs =

(DEup−DEdown)√
(DEup+DEdown)

 , where DEup and DEdown 

are the number of up-regulated and down-regulated DE genes annotated to the geneset 
gs, respectively (Fig. 3A, B).

Alternatively, a sample-level gene set score can be computed, in an approach similar to 
the implementation of GSVA [77]. First, a variance stabilizing transformation is applied 
to the expression matrix, returning values that show a higher degree of homoscedastic-
ity, thus more amenable to downstream processing and visualization. For each gene, the 
values are Z-standardized by subtracting the row-wise mean and dividing by the row-
wise standard deviation. Finally, for each pathway, we take the subset of the Z values 

Fig. 3  Graphical summaries of enrichment results. A A geneset volcano plot (gs_volcano()), with the 
-log10 p value depicted against the geneset Z-score, with a subset of representative affected functions, 
generated from the output of the gs_fuzzyclustering() function. The size of the points maps 
the information of the geneset size. B An enhanced visual summary for the enrichment results, displaying 
the contributions of the single genes to each gene set (with the directionality as log2FC), created with 
enhance_table(). C A heatmap for the matrix of sample-wise geneset Z-scores for the same subset 
used in the other subpanels, generated with gs_scoresheat() on the output of gs_scores(). D A 
multidimensional scaling plot for genesets, colored by their Z-score, representing the set similarity. This can 
be generated with the gs_mds() function
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corresponding to its members, and its average is computed and returned as pathway 
score. We define Zij as the Z-score for gene i in sample j as Zij =

Tij−T̄i

sdi
 , whereas Tij is the 

correspondent entry in the transformed expression values matrix, T̄i and sdi are the 
mean and standard deviation for the gene i, respectively. The entry GSkj for pathway k in 
sample j is thus defined as GSkj = 1

|Pk |
∑

i∈Pk Zij , where Pk is the set of DE genes for path-
way k (Fig. 3C).

This extra information about the status of activation/repression for each pathway can 
be efficiently encoded as aesthetic elements in plots (e.g. the color of a node in a graph, 
with the geneset Z-score), or directly displayed as a heatmap of the pathway score matrix 
to compare the activity among the samples.

Exploring the interplay of pathways and genes, interactively

The relationships among pathways and their member genes, or just between different 
pathways, can quickly become hard to manage when using simple textual or tabular for-
mats. This can be due to the growing size of existing annotations, whereas the increase 
in detail can also lead to an increase in redundancy, thus making the task of extracting 
the key biological messages harder.

A number of visualization techniques have been adopted in the last years to simplify 
this basic yet essential operation [18], and a common way to represent this complex 
interplay is by using graphs. Unipartite graphs are an efficient way to depict the degree of 
similarity among genesets, where genesets themselves are the nodes, and edges encode 
for information such as the degree of similarity/overlap between the two nodes [78]—
see Additional file 4: Fig. S1. Bipartite graphs (as in Fig. 2) can be naturally adopted to 
include both genes and genesets as the main node types, with unweighted edges rep-
resenting in this case the binary membership status for one gene with respect to one 
geneset [79].
GeneTonic builds upon these foundations and implements the possibility to interact 

with the nodes upon hovering with the mouse (or clicking on them). The graph objects 
are generated dynamically, including the desired number of genesets; by default, the top 
most significant hits in the enrichment results are selected. Interactivity is provided by 
the visNetwork package [80], that wraps the vis.js library bindings, building on the 
htmlwidgets framework. Depending on the type of node selected in the main user 
interface, an information box is populated (Fig. 2D, E).

If selecting a pathway (displayed as a yellow box), the info box will contain details on 
the geneset (if detected as a Gene Ontology term), and a signature heatmap is displayed, 
with the variance stabilizing transformed expression data encoded as color to give a fine-
grained view of the behavior for all its set members; this is particularly useful to con-
nect the existing biological background with lists of features where no information on 
the topology is provided, enabling to detect subgroups of correlated expression patterns. 
Another useful representation can be obtained by coupling a volcano plot (for represent-
ing differential expression) with the annotated labels of the members of a geneset; this is 
implemented in the signature_volcano() function, and displayed in the same info 
box (Additional file 4: Fig. S1).

Genes are displayed in the graph as ellipses, colored using a divergent palette to 
encode for the effect size as log2 fold change; when a gene is selected, a plot for the 
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corresponding expression values is shown, split by experimental variables, and the DE 
results for the selected gene, together with automatically generated links to external 
databases opening up in new tabs, to simplify the subsequent exploration steps.

The content available in the Gene-Geneset tab is an excellent starting point to get an 
overview on the provided data. While navigating the interactive graph, it might occur 
that the user encounters genes or genesets of particular interest; by simply clicking on 
the Bookmark button in the header section (or alternatively, pressing the left control 
key) while the node is selected, these elements are stored throughout the session and 
collected in the Bookmarks panel, where one can generate a dedicated report on these 
entities.
GeneTonic enables the extraction of a graph backbone, wrapping the efficient imple-

mentation of the backbone package [81] to highlight the salient edges of the bipartite 
projections for each type of features included, as a way to summarize information con-
tained in large networks (Fig. 2F, G).

Additional insight can be extracted by drilling down the interactive Enrichment Map 
[62, 78], either by focusing on the selected nodes (checking out signature heatmaps or 
bookmarking the genesets for inserting them into the report), or also by running a vari-
ety of community detection algorithms on the graph object returned by the enrich-
ment_map() function (Additional file  4: Fig. S1C). Together with the community 
membership information, it is then possible to obtain a more compact summary for the 
functional enrichment results, where the most representative genesets for each sub-
partition of the graph are selected and returned in tabular format. This network-based 
approach can be exploited to detect the handful of overarching themes, which might 
give a more immediate snapshot than the many, often redundant, categories, commonly 
returned by pathway enrichment algorithms (Additional file 4: Fig. S1E-F-G).

Summarizing the enrichment results

GeneTonic provides numerous ways to summarize the enrichment results, often lev-
eraging the effectiveness of visual representations to extract insights. The Overview and 
GSViz panels serve this purpose, showcasing different views on the dataset at hand, with 
the main controls provided in the right sidebar.

The geneset volcano plot (Fig. 3A) displays all genesets from the res_enrich object 
and labels the most relevant (or any subset of interest). We use one of the aggregated 
scores (geneset Z-score, or average log2 fold change) to determine the horizontal posi-
tion in the plot. To avoid clutter, it is also possible to reduce the terms based on an 
overlap threshold, retaining only the most representative ones, and provide this more 
compact summary to the following visualization routines.

The enhanced table (Fig. 3B) summarizes the top genesets by displaying the log2FC of 
each set’s components along a line (one for each set). On top of the static version, this is 
provided also as an interactive widget, where tooltips activated with the mouse deliver 
extra information on each dot, representing a single gene.

The complex relationships among genesets and their behavior across samples are just 
two aspects one can inspect in depth with the implemented methods. Among these, 
users can generate a genesets-by-sample heatmap, showing the standardized expression 
values of the members (via the gs_scoresheat() function, Fig. 3C), or alternatively a 
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summary heatmap (with gs_summary_heat(), Additional file 3), which aims to dis-
play the redundancy between different sets, while encoding the values of the expression 
changes. A multi-dimensional scaling (MDS) plot (Fig. 3D) delivers a 2d visualization of 
the distance among genesets, based on a similarity measure, e.g. their overlap or other 
criteria, such as their semantic similarity. In a similar fashion, a dendrogram for gen-
esets enables the possibility to use node color, node size, and branch color to encode 
relevant features, with the tree structure mirroring the distance matrix based on a simi-
larity measure. GeneTonic simplifies the creation of simple summaries for the enrich-
ment, where the essential columns are encoded as graphical parameters of the points, 
extendable to the case of comparing the same genesets in more than one scenario (e.g. 
if it is possible to extract more than one contrast from the expression matrix). Switching 
to polar coordinates, this can be captured in spider plots for one or more res_enrich 
objects (see Additional file 3 for more examples of usage).

These visual summaries constitute appealing alternatives to the commonly reported 
tabular formats, which often fail to provide an overall view for the affected functional 
landscape.

Wrapping up the session

The Bookmarks panel offers the possibility to review and inspect the shortlisted features 
of interest, where both genes (on the left side of the interface) and genesets (right side) 
can be exported to text files.

A more comprehensive report, with dynamically generated content based on the user 
selections, is compiled when starting the happy_hour() function. This is made pos-
sible by a template RMarkdown document, included in the GeneTonic package, which 
accesses the input elements and the reactive values for the Shiny components. Notably, 
this functionality can also be used outside an interactive usage session, specifying as 
parameters the values for the genes and genesets to focus on. In either case, a full HTML 
document is rendered, whose content mirrors the structure of the info boxes, and can be 
later shared or stored as a reproducible artifact for the performed analyses.

A set of buttons below each generated visualization displays in a modal window the 
code necessary to reproduce a specific output—these snippets can be copied from the 
in-app editor into more comprehensive analysis scripts or notebooks.

Another action button creates the serialized version of a SummarizedExperiment 
object, ready to be provided as the main input to iSEE [74], for further tailored visuali-
zations, either with standard or custom panels of the web application.

Discussion
Interpreting the results of transcriptomic studies can be a complex task, where differ-
ential expression analysis is combined with a higher-level pathway enrichment analy-
sis, in order to robustly define the molecular actors that display expression changes, 
and also to identify the underlying functional patterns. Geneset functional enrich-
ment has been successfully applied to thousands of works, and for this step many 
methods and approaches have been developed. These tasks are also often shared with 
alternative workflows other than DE analysis, whereas the aim is to extract meaning-
ful information from large lists of genes, yet it is still a prohibitive task to combine in 
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a straightforward way all the single results from each step. This can be for example 
due to disjoint sets of identifiers, different output and file formats, and to the dif-
ficulties in extracting knowledge while handling large numbers of redundant gene-
sets. Providing concise and biologically meaningful views of the underlying cellular 
processes, defined via differential expression, is essential in many applications, and a 
proper visualization framework plays a fundamental role in transforming the other-
wise tedious and error/bias-prone task of navigating large textual tables into a more 
compelling activity [18, 78].

In this work, we introduced GeneTonic as a solution to explore all the com-
ponents of a transcriptome dataset in a more integrative way, instead of having to 
process them as separated outputs. As such, GeneTonic is not structured as an end-
to-end workflow including quantification, preprocessing, exploratory data analysis, 
and DE modeling—all operations that are also time consuming, but in many scenarios 
need to be carried out only once. GeneTonic is focused on the analytic step devoted 
to the interpretation of data, rather than on the implementation of additional meth-
ods for detection of functionally enriched biological processes or pathways. Conse-
quently, GeneTonic implements a variety of summary and visual representations, 
while accommodating the output of many commonly adopted enrichment tools, 
making efficient use of the Shiny framework to deliver interactivity and enable drill-
down operations. These would otherwise need to be laboriously addressed in multi-
ple iterations of scripted analyses, either done by the user itself or in collaboration 
with an external unit, such as a bioinformatics core facility. This approach liberates 
and empowers both experienced analysts and bench scientists, providing a common 
ground to efficiently transform data and results into interpretable discoveries.

Several software packages and web-based portals exist for providing similar func-
tionality, and a comprehensive overview of their salient features is presented in 
Additional file  1: Table  S1. Naturally, these tools differ in terms of implementation, 
range of applicability, ease of use, with many proposals offering embedded versions of 
enrichment tests. Since we developed GeneTonic in the R programming language, 
where many such testing procedures are natively available, we instead focused on the 
support and integration of their output formats into a common workflow. This can be 
easily combined with existing analysis pipelines, making our tool well suit for poten-
tial wide adoption. The comparison with other tools is also available online (https://​
feder​icoma​rini.​github.​io/​GeneT​onic_​suppl​ement), linked to a Google Sheet where the 
individual characteristics of each tool can be updated, in order to provide guidance 
for users who might be seeking advice on which solution best fits their needs (accessi-
ble at https://​docs.​google.​com/​sprea​dshee​ts/d/​167XV​0w18P​0FSld​1dt6o​wN4C2​Esxl5​
FU2QT​o4D-​wclz0/​edit?​usp=​shari​ng).

While currently focused on the output of single ORA and FCS enrichment meth-
ods, future developments of GeneTonic will implement functionality for com-
bined and ensemble approaches, such as EnrichmentBrowser [82] or EGSEA 
[83]. Moreover, extending such visualizations and interactive summaries to scenarios 
where multiple omics layers are collected will be a promising avenue for GeneTonic, 
given the growing number of such datasets becoming available. Finally, we intend to 
address more refined similarity measurements among genesets, e.g. accounting for 

https://federicomarini.github.io/GeneTonic_supplement
https://federicomarini.github.io/GeneTonic_supplement
https://docs.google.com/spreadsheets/d/167XV0w18P0FSld1dt6owN4C2Esxl5FU2QTo4D-wclz0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/167XV0w18P0FSld1dt6owN4C2Esxl5FU2QTo4D-wclz0/edit?usp=sharing
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information contained in protein-protein interaction networks databases [84], in 
order to better capture the functional relatedness of the affected pathways.

As bioinformatics evolves constantly into a highly interdisciplinary field, it will become 
increasingly important to develop common platforms usable by many profiles with 
substantial differences in their level of programming skills, and GeneTonic’s design 
guidelines adhere to this principle. Serving as a bridge between experts from different 
disciplines, applications such as GeneTonic will have a significant didactic effect by 
making comprehensive analyses more open, transparent, and easy to share—especially 
in the steps of interpreting transcriptome datasets, unlocking their full potential for 
medical and biological research. Moreover, GeneTonic could make it easier for bioin-
formatics skilled users to better understand the systems under investigation, prompting 
e.g. the development of further tailored methods, which could be a key in obtaining a 
deeper knowledge of the experimental scenarios.

Conclusion
The identification of relevant functional patterns for the features identified in the dif-
ferential expression analysis, accounting for the available expression data, remains one 
of the common bottlenecks for transcriptome-based workflows. GeneTonic provides 
a web application and many underlying functions to assemble the pieces together, sup-
porting the exploration both interactively as well as in a programmatic way. Combin-
ing together the results for quantification, DE testing, and functional enrichment (either 
generated autonomously, or obtained from collaborators), GeneTonic assists in 
the unmet yet increasing need of extracting novel knowledge and insights, which can 
become daunting especially on larger datasets.
GeneTonic has the potential to become an ideal interface between experimental and 

computational scientists, with the HTML report built via RMarkdown as a milestone 
for reproducibility, upon conclusion of an interactive session. GeneTonic can be inte-
grated in a wide spectrum of existing bioinformatic pipelines, as it provides functions 
to convert and input the results of many pathway enrichment tools. This aligns with the 
principle of interoperability at the heart of the Bioconductor project, which enables a 
large number of such workflows.

The experience of enjoying transcriptomic data analysis and exploration can be eas-
ily shared with reduced communication burden, with both experimental and computa-
tional sides empowered in the tasks of realizing complex summaries and visualizations. 
This will significantly facilitate and democratize the discovery process, bridging the gaps 
existing between technical and domain expertise.

Availability and requirements

Project name: GeneTonic.
Project home page: https://​bioco​nduct​or.​org/​packa​ges/​GeneT​onic/ (release), https://​
github.​com/​feder​icoma​rini/​GeneT​onic/ (development version).
Archived version: https://​doi.​org/​10.​5281/​zenodo.​55198​59, package source as 
gzipped tar archive of the version reported in this article
Project documentation: rendered at https://​feder​icoma​rini.​github.​io/​GeneT​onic/.

https://bioconductor.org/packages/GeneTonic/
https://github.com/federicomarini/GeneTonic/
https://github.com/federicomarini/GeneTonic/
https://doi.org/10.5281/zenodo.5519859
https://federicomarini.github.io/GeneTonic/
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Operating systems: Linux, Mac OS, Windows.
Programming language: R.
Other requirements: R-4.0.0 or higher, Bioconductor 3.11 or higher.
License: MIT.
Any restrictions to use by non-academics: none.

Abbreviations
DE: Differential expression; FCS: Functional class scoring; FDR: False discovery rate; GO: Gene ontology; GSEA: Gene set 
enrichment analysis; HGNC: HUGO (Human Genome Organisation) Gene Nomenclature Committee; log2FC: Base-2 loga-
rithm of the fold change; MA plot: M (log ratio) versus A (mean average) plot; MDS: Multi-dimensional scaling; MSigDB: 
Molecular Signatures Database; NCBI: National Center for Biotechnology Information; ORA: Over-representation analysis; 
PT: Pathway topology; RNA-seq: RNA sequencing.
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