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Abstract: Despite the reality that a death from cerebrovascular accident occurs every 3.5 min in the
United States, there are few therapeutic options which are typically limited to a narrow window of
opportunity in time for damage mitigation and recovery. Novel therapies have targeted pathological
processes secondary to the initial insult, such as oxidative damage and peripheral inflammation. One
of the greatest challenges to therapy is the frequently permanent damage within the CNS, attributed
to a lack of sufficient neurogenesis. Thus, recent use of cell-based therapies for stroke have shown
promising results. Unfortunately, stroke-induced inflammatory and oxidative damage limit the
therapeutic potential of these stem cells. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been
implicated in endogenous antioxidant and anti-inflammatory activity, thus presenting an attractive
target for novel therapeutics to enhance stem cell therapy and promote neurogenesis. This review
assesses the current literature on the concomitant use of stem cell therapy and Nrf2 targeting via
pharmaceutical and natural agents, highlighting the need to elucidate both upstream and downstream
pathways in optimizing Nrf2 treatments in the setting of cerebrovascular disease.
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1. Introduction

There are two major types of cerebrovascular accidents, hemorrhagic (HS) and is-
chemic (IS) stroke. IS refers to an obstruction of blood flow to a region in the brain,
ultimately leading to significant CNS damage. HS involves blood vessel damage and rup-
ture in the cerebral vasculature, also resulting in substantial CNS damage. Approximately
87% of strokes are ischemic, with the remainder being hemorrhagic [1]. Nearly a quarter of
patients with IS die, and half of patients with HS [2]. One-sixth of people around the world
will have a stroke in their lifetime, and the yearly incidence of stroke is nearly 14 million.
Furthermore, it is the fifth leading cause of death in the United Sates and the leading cause
of long-term disability [3–5]. Despite these grave statistics, treatments for both types of
strokes are severely limited. For IS, there are narrow time windows where thrombolytic
therapies, such as tissue plasminogen activator (tPA) or mechanical thrombectomy (MT)
can be employed. If these treatments are attempted outside of a 4.5 h time window, hemor-
rhagic transformation can occur and further detriment a patient’s prognosis [6–10]. HS has
no proven clinical therapies [11]. With poor prognoses and little to no treatment available,
it is vital that greater research focus is attributed to stroke therapy development.

While substantial brain damage occurs because of IS or HS conditions alone, it can be
argued that an even greater contributor to stroke pathophysiology is secondary cell death
mechanisms [3,12]. After both types of strokes, major cell death mechanisms include exci-
totoxicity, oxidative stress, free radical accumulation, mitochondrial dysfunction, inflam-
mation, and impaired neurogenesis, angiogenesis, and vasculogenesis [13–15]. With such a
wide range of pathophysiological mediators, ample treatment targets exist to be studied as
potential stroke therapeutics. Nuclear factor erythroid 2-related factor 2 (NFE2L2/Nrf2)
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and its associated pathway is one such attractive target due to its role in sequestration of
oxidative stress that will remain as the focus of this review.

Nrf2 binds to promoters of antioxidant genes and thus serves a crucial role in the
attenuation of reactive oxygen/nitrogen species. Seeing that the brain is vulnerable to
oxidative stress [16], activation of Nrf2 is an attractive target in the setting of ischemia
such as cerebrovascular accidents. An E3 ubiquitin ligase complex consisting of several
proteins including Kelch-like ECH-Associated Protein 1 (KEAP1), Cullin 3 (CUL3), and
RING-box protein 1 (RBX1) serves to inhibit Nrf2 in the normal physiological setting.
At baseline, the complex binds to Nrf2 for ubiquitination and subsequent proteasomal
degradation of Nrf2 [17]. In the event of oxidative stress, KEAP1′s conformation adjusts
via modification of cysteine thiols [18], allowing Nrf2 to accumulate. Nrf2 then travels
to the cell nucleus, binds with small musculoaponeurotic fibrosarcoma (sMaf) proteins,
and drives transcription of >250 cytoprotective genes. Many genes driven by Nrf2 are
involved with glutathione synthesis or action. De novo synthesis of glutathione begins
with the action of the enzyme γ-glutamylcysteine synthetase, which uses ATP hydrolysis to
combine glutamate with cysteine to produce γ-glutamylcysteine. The enzyme glutathione
synthetase then utilizes ATP to add glycine to the dipeptide to form glutathione [19,20].
Glutathione conjugates to xenobiotics to eliminate them; glutathione S-transferases (GSTs)
are enzymes that assist in this manner [21]. Glutathione must be in its reduced form to act
properly, which the enzyme glutathione reductase ensures [22]. Other examples of Nrf2
promoted genes include superoxide dismutase (SOD), catalase, heme oxygenase 1 (HO-1),
and NAD(P)H quinone dehydrogenase 1 (NQO1).

Nrf2 plays a vital role in managing excessive oxidative stress following stroke, with
a vital role in heme and iron metabolism, antioxidant proliferation, glutathione regenera-
tion, thioredoxin, and protein recycling [23,24]. The major producers of Nrf2 in the brain
include microglia and macrophages [25,26]. In fact, microglia and astrocytes produce an
extreme amount of Nrf2 within 24 h following an induced middle cerebral artery occlusion
(MCAO) [27]. In IS, hydrogen peroxide is elevated after ischemia and reperfusion, serving
as a major stimulus for Nrf2 activation [5,28–31]. IS models in Nrf2-/- rats have greater
damage after IS due to the loss of the protective Nrf2 properties [28,32,33]. While targeting
Nrf2 has clear benefits for IS treatment, similar toxic ROS accumulation in HS suggests that
Nrf2 may also be beneficial for HS treatment. HS Nrf2-/- models have poor prognoses, with
larger hematomas, more functional defects, greater cell death, ROS, and cell damage [34,35].
The primary contributors heme, hemoglobin, and iron have been shown to induce Nrf2
signaling, further elucidating this signaling mechanism’s role in lessening oxidative dam-
age following HS [36,37]. Within its producer cells, Nrf2 downstream proteins clear red
blood cell debris and reduce oxidative damage [38]. One Nrf2-related protein mentioned
above, HO-1, is an antioxidant which produces protective substances, carbon monoxide and
biliverdin, and increases microglial capabilities to phagocytose HS damaged tissue [36,39].
HO-1, the stress-induced isoform of heme oxygenase, is significantly increased within
3–5 days following HS in rodents [40,41]. Other than HO-1 simply degrading proinflamma-
tory heme into anti-inflammatory carbon monoxide and eventual bilirubin, it also decreases
NF-κB signaling [42], which subsequently decreases proinflammatory cytokines including
TNF-α and IL-6. Targeting any of the aforementioned ameliorators of oxidative stress has
therapeutic potential, however, we argue that targeting the most upstream protein, Nrf2,
will show the greatest therapeutic benefit.

A schematic representation of the Nrf2 pathway, downstream effectors, and molecular
crosstalk with the NF-κB pathway can be seen in Figure 1.
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Figure 1. The Nrf2 pathway and downstream effectors. Note the inhibition of the KEAP1 complex by
ROS to promote the release of Nrf2 for subsequent nuclear translocation and transcription of antioxidant
proteins. Downstream, HO-1 inhibits NF-κB signaling to downregulate the inflammatory response.

Despite the described therapeutic effects of Nrf2 upregulation, it must be noted that
such benefits of Nrf2 are dependent on disease state. Recent reviews have pointed to
uncontrolled Nrf2 expression as the reason for chemoresistance through inhibition of
oxidative stress in ovarian cancer [43] and gastric cancer [44]. Thus, the therapeutic benefits
of Nrf2 are limited.

This review will probe scientific evidence for the reduction in oxidative stress following
stroke by targeting the Nrf2 signaling pathway.

2. Neuroinflammation and Oxidative Stress in Stroke

Oxidative stress is a common feature of HS and IS; however, the processes vary due
to different mechanisms of infarction. In IS, a cascade of events prompted by nutrient
and oxygen deprivation promote cell death. Without ample oxygen, mitochondrial res-
piration is shut down, and ATP levels are depleted. Thus, ATPase pumps vital to cell
equilibrium, including the Na+/K+ pump, are inoperative. Further along this cascade,
Na+/Ca2+ pumps are disrupted, and Ca2+ accumulation occurs within neurons, promoting
lipases, proteases, and other cell death pathways [45]. Mitochondria undergo programmed
death processes and release cytochrome C, leading to apoptosis [46]. Further expression
of the Fas ligand also instigates cell death pathways. This excessive cell death increases
levels of reactive oxygen species (ROS) and exacerbates mitochondrial dysfunction and
ATP shortages [47,48]. Furthermore, alterations in mitochondrial metabolic processes also
increase ROS. Despite an already exorbitant number of pathological processes, cell death
also causes excitotoxicity due to excessive glutamate release. Glutamate furthers the ongo-
ing processes by stimulating even more Ca2+ influx, perpetuating a cycle of inflammation
and cell death [49]. Apoptotic neurons, necrotic neurons, and their released products serve
as damage-associated molecular patterns activating a cascade of inflammatory immune
cells within the infarction area. Local microglia, astrocytes, and neutrophils release ROS,
perpetuating oxidative stress within the brain after IS [47,50,51]. Later invasion of periph-
eral immune cells further worsens oxidative stress. Ultimately, the brain is faced with an
overwhelmingly toxic proliferation of ROS after IS.

While cell death and release of ROS is also seen in HS, oxidative stress following
HS has additional pathologic ROS contributions, primarily related to the large influx of
hemoglobin and its metabolites [12]. Once a blood vessel ruptures, red blood cells flood
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the cerebral parenchyma and release hemoglobin after loss of membrane integrity [52].
Hemoglobin, composed of heme, is also broken down by macrophages and microglia.
Primary constituents of heme include iron, biliverdin, and carbon monoxide [36,52]. Iron
and heme ultimately contribute to the oxidative damage seen after HS, causing damage to
the local neurovasculature and blood–brain barrier [39,53–55]. Iron promotes the Fenton
reaction, a notorious contributor of free radicals [36,56,57]. Furthermore, iron can promote
ferroptosis, an iron-dependent cell death, further enhancing oxidative damage via ROS,
lipid peroxidation, mitochondrial changes, and inflammatory pathways [55,58,59]. Both
IS and HS demonstrate extreme ROS damage, perpetuating a cycle of cell death and an
injurious local environment. Reducing oxidative stress should be a central therapeutic goal
for stroke, possibly revolutionizing stroke treatments.

3. Peripheral Inflammation and Nrf2
3.1. Mechanistic Interrogation of Peripheral Inflammation

In addition to the drastic oxidative damage observed after stroke, inflammation
undoubtedly plays a major role in the clinical and functional outcomes of patients with
ischemic or hemorrhagic stroke. Growing scientific evidence indicates that stroke should
be treated as a multi-organ disease, rather than the traditional compartmentalization of
the CNS and other affected organ systems (Figure 2) [60]. Local inflammatory processes
have been clearly documented to cause damage to brain tissue [61], and a more recent
body of evidence points to peripheral inflammation as also playing an important role
in the pathogenesis of stroke. For example, plasma concentrations of IL-6 were closely
correlated with infarct volume and stroke severity [62]. Other inflammatory markers such
as C-Reactive Protein are also elevated upon the onset of stroke [63].
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Figure 2. Peripheral contributions to oxidative and inflammatory responses after stroke. This figure
illustrates the bidirectional inflammatory and oxidative signaling between the damaged central
nervous system tissue and peripheral organs, such as the spleen, lymph nodes, and bone marrow.
The Nrf2 pathway can mitigate this exacerbated response via its antioxidative protein products.

Organs that influence peripheral inflammation include but are not limited to the
spleen [64], cervical lymph nodes [65], and bone marrow stem cells [66]. Of note, the spleen
has been shown to decrease in size following stroke in rats subjected to MCAO [64,67,68].
This is largely due to the release of lymphocytes, monocytes, and neutrophils from the
spleen due to upregulated catecholamines, as seen in stroke models such as MCAO [69–71].
These splenocytes play a significant role in inflammation, and accordingly, rats with splenec-



Antioxidants 2022, 11, 1447 5 of 27

tomy prior to the MCAO display an 82.3% decrease in infarct volume compared to those
with an intact spleen [64]. Clinical studies also show an inverse correlation between spleen
size and blood lymphocyte counts, while there is a positive correlation with neutrophil
counts, further supporting evidence of the spleen’s role in peripheral inflammation [72].
Bone marrow has a relatively less understood role in peripheral inflammation follow-
ing ischemic stroke, but recent studies in mice subjected to MCAO show activation of
hematopoiesis via bone marrow β3 adrenoreceptors [66]. Similar to splenectomy, the
removal of cervical lymph nodes decreases the extent of brain damage in the days after
ischemic stroke. Additionally, the possible activation of VEGFR3 tyrosine kinase receptors
on cervical lymph nodes by VEGF-C secretion from the brain stands as a potential cause
for the initiation of peripheral immune response [73], tying together the multi-organ web
that carries out the damaging changes we see from peripheral inflammation.

Although much of the damage occurs due to the inflammation itself, the immunode-
pression that follows poses a sizable challenge that cannot be ignored. Immunodepression is
the body’s response to the acute inflammation that occurs post-stroke, but it can precipitate
a wide range of infections, the most common of which are pneumonia and urinary tract in-
fections [74]. This primarily occurs through the activation of the β-arrestin2-NF-κB [75] or
cAMP-PKA-NF-κB pathways [76], exciting the adrenal medulla and increasing plasma cate-
cholamine levels which ultimately decreases the amount of plasma lymphocytes [77]. Other
pathways, such as the cholinergic anti-inflammatory pathway [78] and the hypothalamus–
pituitary–adrenal axis [79], also exacerbate the risk of infection.

Nrf2′s role in post-stroke peripheral inflammation is still a topic of exploration. Recent
research has shown Nrf2′s role to lie primarily in its complex transcriptional regulation
of inflammatory pathways such as the NF-κB system [80] and subsequently, cytokines
such as IL-6 and IL-1β [81,82]. Nrf2 has also been shown to regulate other cytokines
such as COX-2 and iNOS in mouse models [83], although this has not yet been shown
in MCAO mice. More research needs to be conducted to fully understand Nrf2′s role
in post-stroke peripheral inflammation, particularly whether it impacts any of the organ
systems described above, but the general wealth of knowledge on Nrf2′s role in other
pathologies gives researchers a substantial incentive to investigate Nrf2 in stroke.

3.2. Stem Cells and Peripheral Inflammation

While stem cell therapy for stroke is an area of heavy focus, there is comparatively
less research conducted on the role of stem cells in the context of peripheral inflammation.
A perceived problem was that stem cells administered peripherally could not cross the
blood–brain barrier, which limits their applications. However, recent research has shown
that there is potential for stem cell therapy to modulate the peripheral immune response.
Infusion of human umbilical cord blood cells was shown to restore spleen size and function
in rats with MCAO [84,85], coincident with significant reduction in ischemic brain damage
and improved behavioral performance [86]. Subsequently, multipotent adult progenitor
cells have been shown to suppress groups of genes that upregulate inflammatory response
from within the spleen [87]. This resulted in decreased levels of inflammatory cytokines
such as IL-1β and TNF-α. These studies all show that targeting the spleen can significantly
benefit stroke outcomes. More recent research has shown that bone marrow mesenchymal
stem cells implanted into rat brains with MCAO preferentially migrate to the spleen [88].
Unfortunately, less is known about the applications of stem cells in the other organs
involved in peripheral immunity during a stroke. As more is revealed about the intricacies
of the brain’s post-stroke communication with organs in the body, researchers will be able
to develop more targeted therapies to address peripheral immune response more precisely
and effectively. Considering the substantial literature on Nrf2, alongside emerging literature
using cell-based therapies for stroke, combining these two therapeutic modalities may be
incredibly beneficial.
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4. Current Nrf2-Directed Treatment Modalities
4.1. Stem Cell Therapies and Nrf2

Several initiatives have been implemented to examine the therapeutic role of ex-
ogenous stem cells for stroke treatments [13,89]. It is hypothesized that these cell-based
therapies work via a bystander effect [90]. As opposed to the transplanted cells replacing
the dead or dying ischemic cells, bystander effects refer to the grafted stem cells releasing
protective factors against neuroinflammation and oxidative stress [91–93]. This ultimately
promotes neurogenesis, angiogenesis, oligodendrogenesis, vasculogenesis, and synaptoge-
nesis by releasing anti-inflammatory and repair signals [94]. Clinically and pre-clinically,
stem cells such as fetal-derived neural stem cells, embryonic stem cells, bone marrow stem
cells, umbilical cord stem cells, adipose stem cells, and induced pluripotent stem cells
have been examined for stroke treatment and demonstrate promising results [74,95–99].
Unfortunately, the use of stem cells after stroke poses some difficulty due to the exorbi-
tant inflammatory and oxidative stressors present within the infarcted area. Oxidative
stress can induce autophagy, or cell-induced recycling of intracellular components. While
beneficial and homeostatic in some instances, this process of ROS-induced autophagy can
be of detriment to stem cell viability [100]. To optimize stem cell treatments and amplify
cell survival for the most beneficial results, oxidative stress should be reduced prior to or
concurrently with stem cell administration.

Endogenously, adult human neurogenesis is incredibly limited to only certain locations
of the brain such as the subgranular zone of the dentate gyrus and subventricular zone of
the lateral ventricles [101], but neural stem cells (NSCs) do reside there and are able to differ-
entiate into neurons and certain glia, including oligodendrocytes and astrocytes [102,103].
NSC survival and differentiation is promoted by Nrf2 secondary to its role in the reduc-
tion in intracellular ROS [104,105]. In rats, it has been noted that variations in expression
levels of Nrf2 are tied with the survival of NSCs [106], and in mice, a deficiency in Nrf2
expression or function resulting in the reduction in NSC proliferation could be improved
with administration of Nrf2 [107]. However, following an ischemic cerebrovascular ac-
cident, neurogenesis by NSCs is insufficient for complete recovery due to relatively low
yields of new cells [108,109]. Thus, a possible therapy is to administer exogenous NSCs
obtained from neuroectoderm in fetuses or from the neurogenic sites in adults, after they
have been cultured and exposed to basic fibroblast growth factor and epidermal growth
factor [110,111]. Unfortunately, the host brain often rejects transplant NSCs [112], although
it has been observed that delivery of human NSC-derived extracellular vesicles improves
transplantation outcomes by stimulating nuclear localization of Nrf2, which subsequently
decreases oxidative stress and stimulates axon elongation [113,114]. The following section
investigates drug therapy that may be used concomitantly with NSC therapy to improve
outcomes in patients suffering from cerebrovascular disease.

4.2. Targeting Nrf2 to Enhance Stem Cell Therapy

While stem cell therapy is undoubtedly a promising stroke treatment [115], its overall
efficacy may benefit from adjunctive therapeutics that ameliorate inflammation, such
as Nrf2 treatments (Figure 3). The following reviews a number of potential agents for
co-administration with NSCs as a potential treatment modality.

Dimethyl fumarate (DMF), derived from fumaric acid, is a known treatment for
psoriasis and multiple sclerosis due to its immunomodulatory effects [116]. Considerable
research into its precise mechanism and interactions is ongoing, however, it is known
to bind KEAP1, resulting in upregulation of antioxidant genes, including HO-1 [117],
γ-glutamylcysteine synthetase, glutathione synthetase, and glutathione reductase [118],
following nuclear translocation of Nrf2 [119]. A study in an MCAO model on Sprague-
Dawley rats demonstrated significantly reduced infarct volumes in the group treated with
DMF compared to control counterparts [120]. As for its use in stem cell therapy, DMF
delivered to mouse and rat models following a treatment with hydrogen peroxide to
trigger oxidative stress resulted in increased NSC survival. Additionally, DMF enhanced
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the survival of motor neurons and reduced both the production of ROS and the rates of
apoptosis following hydrogen peroxide treatment [103].

Antioxidants 2022, 11, x FOR PEER REVIEW 7 of 30 
 

 

Figure 3. Crosstalk between Nrf2 and stem cells for targeting stroke-induced inflammation. This 

figure exemplifies local (neutrophils, monocytes, lymphocytes, and microglia) and peripheral 

(spleen, lymph nodes, and bone marrow) inflammatory and oxidative stressors due to ischemic and 

hemorrhagic stroke. The use of Nrf2 pathway amplification concurrent with stem cell therapy can 

enhance the efficacy of stem cell treatments to reduce secondary cell death following stroke. 

Dimethyl fumarate (DMF), derived from fumaric acid, is a known treatment for pso-

riasis and multiple sclerosis due to its immunomodulatory effects [116]. Considerable re-

search into its precise mechanism and interactions is ongoing, however, it is known to 

bind KEAP1, resulting in upregulation of antioxidant genes, including HO-1 [117], γ-glu-

tamylcysteine synthetase, glutathione synthetase, and glutathione reductase [118], follow-

ing nuclear translocation of Nrf2 [119]. A study in an MCAO model on Sprague-Dawley 

rats demonstrated significantly reduced infarct volumes in the group treated with DMF 

compared to control counterparts [120]. As for its use in stem cell therapy, DMF delivered 

to mouse and rat models following a treatment with hydrogen peroxide to trigger oxida-

tive stress resulted in increased NSC survival. Additionally, DMF enhanced the survival 

of motor neurons and reduced both the production of ROS and the rates of apoptosis fol-

lowing hydrogen peroxide treatment [103]. 

Berberine (BBR), a natural alkaloid isolated from medicinal herbs, is a known treat-

ment for diarrhea that has recently become a multitarget drug for neurological disorders 

owed in part to antioxidant and anti-inflammatory properties [121]. The interaction of 

BBR with the Nrf2 pathway was demonstrated through siRNA inactivation of Nrf2 sig-

naling, which diminished antioxidant effects following BBR’s administration [122,123]. In 

MCAO-induced stroke mice, BBR activated peroxisome proliferator-activated receptor-δ 

(PPARδ), which in turn upregulated Nrf2, along with other known antioxidants, to scav-

enge ROS in NSCs, thereby promoting their proliferation and improving recovery [124]. 

Carbon monoxide (CO) has recently been shown to have a significant role as an an-

tioxidant, stimulating the bilirubin/biliverdin redox cycling system and the pentose-phos-

phate pathway to produce NADPH, a reducing equivalent [125]. CO plays a protective 

role against iron overload, making it an attractive treatment for administration with trans-

planted NSCs following hemorrhagic stroke. This has been previously demonstrated in 

mouse models through modulation of the crosstalk between Nrf2 and NF-κB, in which 

CO inhibited NF-κB while inducing ROS scavenging through Nrf2 activation [126]. 

Sulforaphane (SFN) is an isothiocyanate found in a number of cruciferous vegetables 

with known antioxidant, anti-inflammatory, and anti-tumor activity [127]. Specifically, 

the antioxidant properties of SFN are derived from well-documented activation of the 

Figure 3. Crosstalk between Nrf2 and stem cells for targeting stroke-induced inflammation. This
figure exemplifies local (neutrophils, monocytes, lymphocytes, and microglia) and peripheral (spleen,
lymph nodes, and bone marrow) inflammatory and oxidative stressors due to ischemic and hemor-
rhagic stroke. The use of Nrf2 pathway amplification concurrent with stem cell therapy can enhance
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Berberine (BBR), a natural alkaloid isolated from medicinal herbs, is a known treatment
for diarrhea that has recently become a multitarget drug for neurological disorders owed
in part to antioxidant and anti-inflammatory properties [121]. The interaction of BBR
with the Nrf2 pathway was demonstrated through siRNA inactivation of Nrf2 signaling,
which diminished antioxidant effects following BBR’s administration [122,123]. In MCAO-
induced stroke mice, BBR activated peroxisome proliferator-activated receptor-δ (PPARδ),
which in turn upregulated Nrf2, along with other known antioxidants, to scavenge ROS in
NSCs, thereby promoting their proliferation and improving recovery [124].

Carbon monoxide (CO) has recently been shown to have a significant role as an antiox-
idant, stimulating the bilirubin/biliverdin redox cycling system and the pentose-phosphate
pathway to produce NADPH, a reducing equivalent [125]. CO plays a protective role
against iron overload, making it an attractive treatment for administration with trans-
planted NSCs following hemorrhagic stroke. This has been previously demonstrated in
mouse models through modulation of the crosstalk between Nrf2 and NF-κB, in which CO
inhibited NF-κB while inducing ROS scavenging through Nrf2 activation [126].

Sulforaphane (SFN) is an isothiocyanate found in a number of cruciferous vegetables
with known antioxidant, anti-inflammatory, and anti-tumor activity [127]. Specifically,
the antioxidant properties of SFN are derived from well-documented activation of the
Nrf2 pathway [128–130] including downstream activation of GSTs, NQO-1, and HO-1 [28].
MCAO-induced Sprague-Dawley rats treated with SFN demonstrated heightened Nrf2
levels within the cerebral microvasculature after 24 h, resulting in reduction in blood–brain
barrier (BBB) disruption and lesion progression [131]. Later experimentation into Sprague-
Dawley rats revealed that SFN treatment at concentrations less than 10 µM stimulated
NSC differentiation and proliferation [132]. Thus, SFN shows significant promise in stroke
treatment with and without concurrent stem cell treatment.

Doxycycline (DOX) is a tetracycline derivative known to be well-tolerated and demon-
strate broad-spectrum efficacy as an antibiotic that also exhibits antioxidant and anti-
apoptotic activity [133,134]. Antioxidant activity has been determined using electron
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paramagnetic resonance to confirm scavenging of superoxide by DOX and has been related
to modulation of the Nrf2 pathway [134], while its anti-apoptotic role in neuroprotection
has been attributed to inhibition of microglial activation [135]. Additionally, DOX has
been tied to the upregulation of tight junctions with subsequent inhibition of the matrix
metalloproteinases (MMP) MMP-2 and MMP-9 and protein kinase C delta for protection of
the BBB [136]. This neuroprotective role explains the historic success of DOX in reducing
damage from ischemic stroke modeled in rabbits and MCAO-induced rats [137,138]. As an
aspect of stem cell treatment, DOX has been documented to upregulate Nrf2 mRNA and
protein levels in NSCs for an overall increase in cell survival in preconditioned fetal rat
brains [139–141].

Minocycline, a semisynthetic tetracycline, has also been associated with significant
neuroprotection through a number of properties including antioxidation, anti-apoptosis,
anti-inflammation, and vascular protection [142,143]. A systematic review and meta-
analysis by Malhotra et al. of randomized control trials of minocycline application in stroke
patients indicated success in reducing damage attributed to acute ischemic stroke and a
need for further research into a potential role in acute intracerebral hemorrhage [143]. In a
number of experimental studies on rat models, NSCs pretreated with minocycline resulted
in a noted upregulation of Nrf2 and downstream genes such as NQO1 and HO-1, which
correlated with increased NSC viability and proliferation [112,144]. Further, minocycline
resulted in the NSCs releasing neuroprotective factors such as brain-derived neurotrophic
factor, nerve growth factor, glial cell-derived neurotrophic factor, and vascular endothe-
lial growth factor [112]. Outcomes of neuroinflammation were mitigated by minocycline,
inhibiting microglial activation and counteracting proinflammatory cytokines that nor-
mally inhibit neurogenesis, restoring the neurogenic and oligodendrogliogenic potential
of NSCs [145–147]. Minocycline has also been implicated in the success of bone marrow-
derived mesenchymal stem cell transplantation in animal stroke models in which the
combination of therapies results in reduced infarct size and enhanced recovery [148–150].

Tert-butylhydroquinone (tBHQ), a synthetic phenol, is a common food additive known
to have low toxicity and antioxidant properties. Pulse-chase assay has demonstrated a
stabilizing effect of tBHQ on Nrf2 in NSCs, making it an attractive molecule for research
into neuroprotection from oxidative stress [151]. tBHQ has been studied extensively in
cerebral ischemia, sufficiently activating Nrf2 in rat models to reduce cortical damage and
sensorimotor deficits following ischemia-reperfusion [33]. Further studies into cerebral
ischemia in mice reveal that activation of Nrf2 by tBHQ also enhances angiogenesis and as-
trocyte activation [152]. For intracerebral hemorrhages, tBHQ treatment reduced oxidative
brain damage, microglial activation, and release of proinflammatory cytokines to improve
outcomes in CD1 mice [153]. Models of subarachnoid hemorrhage treated with tBHQ
highlighted the upregulation of KEAP1, Nrf2, HO-1 and NQO1to reduce early brain injury
and cognitive dysfunction [154]. tBHQ has recently been implicated in the generation of
multipotent stem cells from normal brain pericytes placed under oxidative stress for a key
role in regeneration of cerebral vasculature, suggesting the potential for future research
into tBHQ and in vivo generation of stem cells [155].

Resveratrol, a natural stilbene, is produced by a number of fruits and vegetables with
known antioxidant and antitumor activity [156]. In response to vascular injury, resveratrol
has been indicated to mobilize endothelial cells and increase endothelial progenitor cell
proliferation [157,158]. A recent meta-analysis in rodents has demonstrated an overall
neuroprotective effect of resveratrol in ischemic stroke models [159]. On a molecular level,
this effect is achieved through upregulation of Nrf2 and downstream antioxidant genes,
including HO-1 [160], that enhance neurogenesis and increase viability of NSCs by reducing
apoptosis [140,161].

Ginseng, along with its bioactive ingredients ginsenosides, is a staple of herbal
medicine predominantly utilized in Asia. Rodent and human models have highlighted a
number of important pharmaceutical properties that include antioxidant, anti-inflammatory,
and immunomodulatory effects [162]. These effects are achieved through inhibition of the
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proinflammatory NF-κB pathway and subsequent upregulation of Nrf2 [163]. Panax notoginseng
was also shown to reduce the expression of Nogo-A and Nogo Receptor, molecules that
typically inhibit axonal regeneration after ischemic injury [162]. As it pertains to stem cell
therapy, ginseng has been implicated in regeneration during inflammatory diseases such as
stroke, inducing neurogenesis and angiogenesis that has been shown to preserve cognitive
function [164]. For instance, pretreatment of MCAO-induced Wistar rats with Ginseng
total saponins resulted in improved neurological scores after a two-week recovery period,
highlighting Ginseng’s inductive effect on NSCs to promote regeneration [165].

Theaflavin (TFA), a polyphenolic compound, is a pigment contained in black tea
known to exert antioxidant [166] and anti-inflammatory effects [167], among a number
of other health benefits [168]. TFA’s mechanism of action revolves around the nuclear
translocation of Nrf2, activating the Nrf2/ARE pathway to upregulate HO-1 [169]. Li et al.
showed that NSCs treated with TFA can result in a decreased infarct volume and improved
cognitive function through Nrf2′s protective effects against oxidative stress [170]. Addi-
tionally promising for stem cell viability is a reported dose-response relationship between
TFA and B-cell lymphoma 2 (Bcl-2) overexpression to downregulate the mitochondrial
apoptotic pathway in ischemic stroke models [171].

Curcumin is a natural polyphenol that is isolated from turmeric. This compound
has low toxicity and owes both its antioxidant and anti-apoptotic properties to activation
of the Nrf2 pathway by modulating the demethylation of CpG islands to promote gene
transcription [172], which also leads to enhanced activation of HO-1 and NQO1 [173,174].
Curcumin has been shown to exert a neuroprotective effect in MCAO-induced rat models [175],
and post-stroke injections reduced damage to hippocampal CA1 neurons [176]. In addition
to oxidative stress, the far-reaching effects of curcumin in ischemia-reperfusion injury are
involved in BBB disruption, platelet adhesion and aggregation, and immune functions [177].
Endogenously, curcumin regulates NSC proliferation, differentiation, and migration, with
a number of potential applications to stroke and other neurological disorders [178]. In
stem cell transplantation, embryonic stem cell exosomes loaded with curcumin resulted in
significant cerebrovascular regeneration in mouse models [179].

With both treatment modalities alone showing promise in treating stroke, combining
pharmaceuticals or natural products with stem cell therapy can efficiently target the Nrf2
pathway to promote broad effects on cell viability and proliferation.

4.3. Downstream Targets of the Nrf2 Pathway

In addition to the potential stroke therapies described above, there exist a number
of compounds known to target key mediators related to the oxidative and inflammatory
response that exist downstream of the Nrf2 pathway. The following will summarize a
number of such treatment options while emphasizing the advantages of targeting Nrf2
upstream for broader therapeutic outcomes.

HO-1 is an intriguing target considering it has the greatest amount of antioxidant
response elements on its promoter, when compared to other key downstream targets such
as NQO1, GST, and γ-glutamylcysteine synthetase [180]. As discussed earlier, HO-1 me-
tabolizes heme into various components including: ferrous iron (which promotes ferritin
expression and thus iron sequestration, preventing iron-mediated cell injury) [181,182],
biliverdin-IXa which is converted to bilirubin-IXa via biliverdin reductase (both compo-
nents have antioxidant and anti-inflammatory properties) [183], and carbon monoxide (with
anti-inflammatory, vasorelaxant, and anti-apoptotic properties) [184]. Animal studies have
demonstrated protection against experimental stroke with various compounds activating
HO-1 including some drugs previously mentioned: sulforaphane, Gingko biloba (EGb 761),
curcumin, resveratrol, triterpenoids, and dimethyl fumarate [117,160,173,185–189]. Mela-
tonin specifically increases expression of HO-1 downstream of Nrf2, resulting in improve-
ment of motor skills and reduction in infarction size in experimental stroke models [190].
With regard to stem cells, melatonin has been shown to enhance neurogenesis in peri-
infarct regions [191]. Other inducers of downstream HO-1 expression include oleanolic
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acid, hemopexin, and propofol, all of which have brought about improved outcomes in
stroke models [192–194].

NQO1 is an important downstream enzyme involved in detoxifying reactive species.
In rats who suffered stroke, intraperitoneal injection of 300 mg/kg curcumin was shown to
induce expression of NQO1 [174], as well as reduce oxidative stress and improve binding of
Nrf2 to ARE. Animal studies also showed increased concentrations of mRNA and protein
product of NQO1 (as well as Nrf2, KEAP1, and HO-1) after treatment of tBHQ [154].

GSTs are enzymes that utilize the supply of reduced glutathione to detoxify xenobiotics.
As previously noted, sulforaphane activates the Nrf2 pathway, inducing GSTs, as well as
HO-1 and NQO-1 [28]. γ-glutamylcysteine synthetase is another enzyme important in the
glutathione pathway, and its expression (along with glutathione reductase and glutathione
synthetase) was seen to be induced in astrocytes and microglia in the setting of dimethyl
fumarate administration [118].

NF-κB, a mediator demonstrating previously discussed antagonistic crosstalk with the
Nrf2 pathway, is a key regulator of neuroinflammation that leads to the common compli-
cations of edema, hemorrhage, and necrosis following stroke [195–197]. For this reason, a
significant body of research exists into post-stroke inhibition of the NF-κB pathway. Experi-
mental models of cerebral ischemia have indicated that statins, such as simvastatin [198]
and atorvastatin [199], substantially reduce NF-κB expression in brain tissue through
transcriptional inhibition [200]. In exogenous stem cell therapy, simvastatin has been
shown to aid bone-marrow-derived mesenchymal stem cell migration, while both statins
have demonstrated activity in proliferation, viability, and differentiation of endogenous
NSCs [201,202]. Naloxone has been shown to promote NF-κB inhibition through increased
expression of the inhibitory protein, IκBα, and a reduction in NF-κB p65 nuclear transloca-
tion, resulting in decreased neuronal apoptosis and a dose-dependent decrease in infarction
volume in animal models of cerebral ischemia [203]. An additional inhibitor of NF-κB
nuclear translocation is artesunate, a drug prescribed for cerebral malaria that has recently
found use in a mouse model of ischemic stroke, and ameliorated neuroinflammation by
suppressing neutrophil infiltration and microglial activation [204]. In the context of stem
cells, artesunate has been utilized to enhance NSC proliferation in the subventricular zone
and peri-infarct cortex [205,206]. Aspirin, a common prophylactic in stroke prevention,
may also have a role in treatment, having been shown to downregulate NF-κB-mediated en-
doplasmic reticulum stress in cerebrovascular endothelial cells following cerebral infarction
in a mouse model [207]. Aspirin treatment alongside human umbilical cord matrix-derived
stem cells improved learning and memory via the Morris water maze test [208]. Isosteviol
sodium (STVNA), obtained from stevioside (a natural sweetener), exerts neuroprotective ef-
fects by interfering with the NF-κB signaling pathway [209]. In models of ischemia, STVNA
has been implicated in inhibition of astrogliosis [210], modulation of microglia/macrophage
polarization [211], and preservation of volume control in endothelial cells [212]. Flavonoids
constitute a class of natural products with a significant role in the inhibition of microglial
polarization and management of oxidative stress, with a number of compounds acting
upon the NF-κB signaling pathway [213–220]. A number of the flavonoids have been
implicated in the activity of stem cells, including hesperetin in NSC proliferation [221],
icariin in neurogenesis and angiogenesis through release of BDNF and VEGF [222], and
quercetin in enhancing stem cell viability and proliferation while reducing apoptosis [223].

While targeting of NF-κB and other downstream molecules mentioned above will
certainly hold a central role in the future of stroke treatment, there exists limitations in this
approach that are not yet fully appreciated. For instance, corticosteroids are commonly
prescribed for controlling inflammation and have long been known as potent inhibitors of
NF-κB through induction of its inhibitory protein, IκBα [224,225]. Despite this, a systematic
review first published in 1997 and updated in 2011 consistently found the corticosteroids
dexamethasone and betamethasone to have no effect on death or neurological/functional
outcomes in acute ischemic stroke [226]. Treatment targeting Nrf2 upstream, as opposed
to specific downstream targets, offers durability to treatment by enhancing a number of
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antioxidant, anti-inflammatory, and neuroprotective pathways should specific downstream
approaches fail to achieve desired outcomes.

A comprehensive list of compounds and associated targets upstream or downstream
within the Nrf2 pathway, along with the recognized effects in stroke treatment and stem
cell therapy, is outlined in Table 1. Studies were completed in vivo (typically middle
cerebral artery occlusion/reperfusion technique) or in vitro (typically oxygen-glucose
deprivation/reoxygenation technique) in rodent models.

Table 1. Nrf2-based compounds and downstream molecules that interact with stem cell therapy for stroke.

Compound Target(s) Effect on Stroke Treatment Citation Effect on Stem Cells in Setting
of Stroke Citation

Dimethyl Fumarate Nrf2 Pathway via
KEAP1

• Reduced infarct volume
• Inhibited leukocyte infiltration
• Supported subcellular

localization of tight junctions
• Decreased neurological deficits
• Reduced edema volume

[120]

• Enhanced NSC survival
• Increased motor neuron survival
• Reduced ROS production
• Decreased apoptosis

[103]

Berberine Nrf2 Pathway via
PPARδ

• Reduced inflammation by
upregulation of
inhibitory cytokines

• Reduced infarct volume
• Reduced edema volume

[227]
• Promoted NSC proliferation
• Promoted ROS scavenging [121]

Carbon Monoxide Nrf2 and NF-κB
Pathways

• Reduced infarct volume
• Reduced cerebral edema
• Improved neurological function [228]

• Modulated NSC tolerance to
iron overload

• Increased NSC proliferation
[126]

Sulforaphane Nrf2 Pathway
Upstream

• Reduced BBB disruption
• Reduced lesion progression
• Decreased neurological deficits

[131]
• Promoted NSC proliferation
• Promoted NSC differentiation [132]

Doxycycline Nrf2 Pathway
Upstream

• Protected BBB via inhibition of
MMP-2, MMP-9, and PKCδ

• Blocked leukocyte adhesion
[136–138]

• Inhibited microglial activation
• Promoted superoxide

scavenging
• Reduced NSC apoptosis

[134,135]

Minocycline Nrf2 Pathway
Upstream

• Preserved BBB via
MMP-9 inhibition

• Improved neurologi-
cal/functional outcomes

[143]

• Increased NSC viability
• Increased NSC proliferation
• Promoted NSC release of

neuroprotective factors
• Restored neurogenesis

[112,147]

Tert-
butylhydroquinone

Nrf2 Pathway
Upstream

• Reduced cortical damage
• Reduced sensorimotor deficits [33]

• Inhibited microglial activation
• Decreased release of

proinflammatory cytokines
• Increased angiogenesis

[153,155]

Resveratrol Nrf2 Pathway
Upstream

• Reduced infarct volume
• Improved neurobehavioral

scores
[159]

• Increased proliferation and
mobilization of endothelial
cell progenitors

• Enhanced NSC survival
and proliferation

• Reduced NSC apoptosis

[157,158,161]

Ginseng Nrf2 and NF-κB
Pathways

• Reduced infarct volume
• Reduced edema volume
• Improved neurological

outcomes
[229]

• Promoted proliferation of
endothelial precursor cells
and NSCs

• Enhanced neurogenesis,
angiogenesis, and
synaptic plasticity

• Induced NSC differentiation

[164]
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Table 1. Cont.

Compound Target(s) Effect on Stroke Treatment Citation Effect on Stem Cells in Setting
of Stroke Citation

Theaflavin
Nrf2 Pathway
Upstream (via

nuclear translocation)

• Reduced infarct volume and
neuronal injury

• Improved memory
impairment and
learning ability

[170]
• Increased Bcl-2 overexpression
• Inhibited mitochondrial

apoptotic pathway
[171]

Curcumin
Nrf2 Pathway

Upstream (via gene
transcription)

• Decreased neuronal
cell death

• Decreased lipid peroxidation
• Protected hippocampal

CA1 neurons
• Prevented BBB disruption

[172,175,176]

• Increased NSC proliferation,
differentiation, and migration

• Enhanced viability of
embryonic stem
cell exosomes

[178,179]

Gingko biloba HO-1 Downstream • Improved infarction volume [187]
• Improved infarction volume

and motor skills
• Enhanced proliferation of NSCs

[230]

2-cyano-3,12
dioxooleana-1,9

dien-28-oyl
imidazoline

HO-1 Downstream

• Upregulated HO-1
• Increased neuronal survival
• Improved neurological

dysfunction and infarct volume
[188] - -

Melatonin HO-1 Downstream
• Increased expression of HO-1
• Improved infarct size and

motor skills
[190]

• Enhanced endogenous
neurogenesis and cell
proliferation in
peri-infarct regions

[191]

Oleanolic acid HO-1 Downstream

• Attenuated cytotoxicity and
overproduction of
intracellular ROS via
suppression of GSK-3β
activation and enhancement
of HO-1 expression

• Improved area of cerebral
infarction and
neurological scores

[192] - -

Hemopexin HO-1 Downstream

• Induced expression of HO-1
• Promoted migration and

differentiation of endothelial
progenitor cells

• Facilitated angiogenesis

[193] - -

Propofol HO-1 Downstream

• Improved neurological
deficits and infarct volume

• Attenuated neuron apoptosis
• Increased HO-1 protein

expression in
ischemic penumbra

[194] - -

Simvastatin NF-κB Pathway • Abolished NF-κB activation [198]

• Increased
bone-marrow-derived
mesenchymal stem cell
relocation, endogenous
neurogenesis, arteriogenesis,
astrocyte activation

• Decreased neuronal damage

[201]

Atorvastatin NF-κB Pathway

• Decreased expression of
TLR4 and NF-κB

• Improved neurological
deficit scores

[199]
• Restored survival,

proliferation, migration, and
differentiation of NSCs

[202]
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Table 1. Cont.

Compound Target(s) Effect on Stroke Treatment Citation Effect on Stem Cells in Setting
of Stroke Citation

Naloxone NF-κB Pathway

• Decreased brain edema,
infarction volume, and
morphological injury

• Improved motor behavioral
function

• Inhibited nuclear
translocation of NF-κB p65

• Decreased concentrations of
nuclear NF-κB p65 in the
ischemic penumbra

• Increased IκBα
• Attenuated phosphorylated

NIK and IKKα levels in the
ischemic penumbra

• Increased Bcl-2 and
decreased Bax

• Stabilized mitochondrial
transmembrane potential

• Inhibited cytochrome C
release and activation of
caspase 3 and caspase 9

[203] - -

Artesunate NF-κB Pathway

• Improved neurological deficit
scores and infarct volumes

• Reduced neutrophil
infiltration and
microglia activation

• Downregulated TNF-α and
IL-1β expression

• Inhibited nuclear
translocation of NF-κB

[204]

• Promoted proliferation of
NSCs in ipsilateral
subventricular zone and
peri-infarct cortex

[205,206]

Aspirin NF-κB Pathway

• Suppressed TLR4 and NF-κB
expression in cerebrovascular
endothelial cells

• Improved infarct area
[207]

• Improved learning and
memory with human
umbilical cord
matrix-derived stem cells

[208]

Isosteviol sodium NF-κB Pathway

• Improved infarct volume and
neurological scores

• Increased number of restored
neurons and
decreased astrocytes

• Downregulated mRNA
expression of inhibitor of
nuclear factor kappa-B
kinase-α, inhibitor of nuclear
factor kappa-B kinase-β,
NF-κB, inhibitor of NF-κB-α,
tumor necrosis factor-α,
interleukin-1 beta,
Bcl-2-associated X protein,
and caspase 3

• Upregulated mRNA of Bcl-2

[209] - -

Hesperetin NF-κB Pathway
• Improved neurological deficit
• Regulated polarization

of microglia
[213] • Induced proliferation of NSCs [221]
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Table 1. Cont.

Compound Target(s) Effect on Stroke Treatment Citation Effect on Stem Cells in Setting
of Stroke Citation

Baicalein NF-κB Pathway

• Improved infarct volume and
sensorimotor function

• Decreased proinflammatory
markers, release of
proinflammatory cytokines,
and nitric oxide

• Increased anti-inflammatory
markers CD206 and Arg-1

• Reduced TLR4,
phosphorylation of IKBα and
p65, and nuclear
translocation of NF-κB p65

• Inhibited phosphorylation of
signal transducer and activator
of transcription 1 (STAT1)

[214] - -

Icariin NF-κB Pathway

• Reduced cerebral infarct
volume, neurological deficit,
cerebral cell death of rats

• Downregulated expression of
TNF-α, IL-6, C-caspase 3,
and Bax

• Upregulated expression of Bcl-2
• Downregulated activation of

PPARs/Nrf2/NF-κB and
JAK2/STAT3 pathways

[216]

• Increased expression of BDNF
and VEGF in the hippocampus
and frontal cortex

• Promoted angiogenesis
and neurogenesis

• Improved brain infarction
volumes, motor and
somatosensory deficits, and
neurobehavioral outcomes

[222]

Genistein-3′-sodium
sulfonate NF-κB Pathway

• Improved brain infarct volume
and neurological function

• Reduced microglia M1
polarization and IL-1β levels

• Inhibited activation of NF-κB
signaling in the
ischemic penumbra

[218] - -

Quercetin NF-κB Pathway

• Improved cerebral
infarct volumes

• Improved cognitive and
motor deficits

[220]

• Improved neurological
functional recovery

• Reduced proinflammatory
cytokines IL- 1β and IL-6

• Increased anti-inflammatory
cytokines IL-4, IL-10,
and TGF-β1

• Inhibited cell apoptosis
• Improved survival rate of

human umbilical
mesenchymal stromal cells

[223]

Anfibatide NF-κB Pathway

• Improved neurological deficit,
neurobehavioral impairment,
and infarct volume

• Increased cell viability
• Decreased LDH release
• Inhibited expression of

p-IκBα, p-p65, NLRP3, ASC,
cleaved caspase 1, Bax, and
cleaved caspase3

• Promoted expression of Bcl-2
• Decreased TUNEL-positive

cell number and concentration
of IL-β and IL-18

[231] - -

Cyclo-(Phe-Tyr) NF-κB Pathway

• Decreased size of
cerebral infarct

• Improved neurological scores
• Blocked inflammatory and

oxidative factor release

[232] - -
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Table 1. Cont.

Compound Target(s) Effect on Stroke Treatment Citation Effect on Stem Cells in Setting
of Stroke Citation

Maraviroc NF-κB Pathway

• Improved neurological
deficits and infarct volumes

• Decreased levels of apoptosis
and inflammation

• Increased viability of
primary microglia

• Decreased secretion of and
expression of IL-1β, IL-6, and
TNF-α in microglia

• Inhibited activity of NF-κB
pathway and JNK pathway

[233] - -

Donepezil NF-κB Pathway

• Increased cell viability of
human brain microvascular
endothelial cells

• Promoted cell migration
and angiogenesis

• Decreased cell permeability
• Increased expression of tight

junction proteins
• Regulated expression of

SIRT1/FOXO3a/NF-κB

[234]

• Enhanced post-stroke
neurogenic effects that
naturally occur in the
subventricular zone such as:

# Upregulated
metabotropic
acetylcholine
receptors,
phosphorylated
protein kinase C,
and p-38

# Increased number of
BrdU/doublecortin-
positive cells, protein
count of
phosphorylated-
neural cell adhesion
molecules, and
mammalian achaete
scute homolog-1

• Induced proliferation of
NSCs and neuroblasts in
subventricular zone

[235,236]

Dexmedetomidine NF-κB Pathway
• Reduced infarction area
• Increased miR-214 expression [237] - -

Aloe-emodin NF-κB Pathway

• Improved infarct size and
behavioral score

• Decreased expression of
TNF-α, MDA, LDH, caspase
3, and NF-κB

• Increased expression of SOD,
Bcl-2/Bax, PI3K, AKT,
and mTOR

[238] - -

9-Methylfascaplysin NF-κB Pathway

• Improved motor
impairments and infarct size

• Reduced activation of
microglia/macrophage in
ischemic penumbra

• Reduced expression of
proinflammatory factors

• Inhibited oxidative stress and
activation of NF-κB and
NLRP3 inflammasome

[239] - -

Uric acid NF-κB Pathway

• Attenuated severity of
cerebral infarction and
activation of microglia in
cerebral cortex

• Reduced release of
proinflammatory cytokines
TNF-α, IL1β, and IL6

• Improved cell viability
• Decreased LDH release

[240] - -
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Table 1. Cont.

Compound Target(s) Effect on Stroke Treatment Citation Effect on Stem Cells in Setting
of Stroke Citation

Clinacanthus nutans NF-κB Pathway

• Inhibited IL-1β transcription
• Attenuated IκBα degradation
• Decreased production of IL-6

and TNFα
[241] - -

Pterostilbene NF-κB Pathway

• Improved neurological scores,
edema, and infarct volume

• Increased number of
mature neurons

• Decreased microglia activation
• Reduced iNOS and IL-1β

mRNA expression
• Promoted IκBα expression
• Inhibited expression of

inflammatory cytokines
• Suppressed NADPH activity
• Decreased ROS production

[242] - -

Salvianolic Acid B
and Puerarin NF-κB Pathway

• Reduced ROS levels
• Inhibited apoptosis
• Improved mitochondrial

membrane potential
• Improved neurological deficit

scores and infarct area
• Inhibited expression of

proinflammatory cytokines
(TNF-α, IL-1β, IL-6)

[243]

Salvianolic Acid B:

• Induced proliferation of NSCs
• Improved cognitive impairment

[244]

Steppogenin NF-κB Pathway

• Inhibited nuclear
translocation of NF-κB

• Suppressed JNK and p38
MAPK signaling

[245] - -

Triptolide NF-κB Pathway

• Attenuated brain infarction
volume, water content,
neurological deficits, and
neuronal cell death rate

• Downregulated iNOS,
COX-2, and GFAP

• Increased expression of Bcl-2
• Suppressed Bax and caspase 3

[246] - -

Sitagliptin NF-κB Pathway

• Suppressed IL-6 and TNF-α
• Increased anti-inflammatory

IL-10
• Reduced neutrophil infiltration,

lipid peroxides, and nitric oxide
associated with replenished
reduced glutathione

• Decreased glutamate
• Decreased cytochrome C and

caspase 3

[247] - -

Fluoxetine NF-κB Pathway

• Decreased TNF-α, IL-1β,
IL-6, and NF-κB subunits p65
and p50

• Increased IκBα
[248]

• Increased NSC differentiation
• Upregulated neurogenin1

expression
• Downregulated ERK2

phosphorylation

[249]

5. Conclusions and Future Directions

This review consolidates a plethora of information regarding oxidative damage and
inflammation, both centrally and peripherally, following IS and HS. Furthermore, an elabo-
rate discussion on the power of stem cells encourages ongoing studies to determine optimal
safety and efficient uses of cell-based treatments for stroke. Considering both focuses, we
argue that enhancing the antioxidant properties of the Nrf2 pathway concurrently with
stem cell administration is a novel and imperative future research focus. Currently, the
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very few treatment options for IS and HS offer little reprieve from permanent functional
impairments. Thus, greater initiatives are necessary to amplify treatment options for stroke.
Furthermore, this review has revealed a number of potential directions for future research,
including the oxidative processes that occur following cerebrovascular accident to enhance
targeted therapies for improved stem cell viability and the role of Nrf2 in peripheral in-
flammation. Ultimately, we propose optimizing antioxidant and cell-based therapies by
targeting the most upstream regulator of the antioxidant Nrf2 pathway, Nrf2 itself, to
reduce secondary cell death, peripheral inflammation, and improve stem cell survival
and effect.
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