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Mutation data reveal the dynamic equilibrium between DNA damage and repair processes in cells and are indispensable

to the understanding of age-related diseases, tumor evolution, and the acquisition of drug resistance. However, available

genome-wide methods have a limited ability to resolve rare somatic variants and the relationships between these variants.

Here, we present lineage sequencing, a new genome sequencing approach that enables somatic event reconstruction by

providing quality somatic mutation call sets with resolution as high as the single-cell level in subject lineages. Lineage

sequencing entails sampling single cells from a population and sequencing subclonal sample sets derived from these cells

such that knowledge of relationships among the cells can be used to jointly call variants across the sample set. This ap-

proach integrates data from multiple sequence libraries to support each variant and precisely assigns mutations to lineage

segments. We applied lineage sequencing to a human colon cancer cell line with a DNA polymerase epsilon (POLE) proof-
reading deficiency (HT115) and a human retinal epithelial cell line immortalized by constitutive telomerase expression

(RPE1). Cells were cultured under continuous observation to link observed single-cell phenotypes with single-cell mutation

data. The high sensitivity, specificity, and resolution of the data provide a unique opportunity for quantitative analysis of

variation in mutation rate, spectrum, and correlations among variants. Our data show that mutations arrive with non-

uniform probability across sublineages and that DNA lesion dynamics may cause strong correlations between certain

mutations.

[Supplemental material is available for this article.]

Somatic mutations are implicated in age-related diseases including
cancer, neurodegeneration, and organ failure in humans (Rossi
et al. 2008; Martincorena and Campbell 2015; Fernández et al.
2016; Vijg et al. 2017; Lodato et al. 2018). Understanding the in-
trinsic and extrinsic factors that contribute tomutagenesis (includ-
ing mutation-inducing cancer therapies) is currently a top priority
in cancer prevention and treatment (Wu et al. 2016; Drost et al.
2017; Vijg et al. 2017; Knijnenburg et al. 2018; Seluanov et al.
2018). However, available methods for somatic mutation detec-
tion are far from satisfactory, limiting our progress in understand-
ing howmutations accumulate in cells and impact health (Gawad
et al. 2016; Baslan and Hicks 2017; Zou et al. 2018). Despite the
complexity of nucleoside chemistry, the wide range of DNA le-
sions characterized in humans, and the large variety of DNA repli-
cation and repair enzymes, only 30 distinct somatic mutation
signatures have been defined from human tumor sequencing,
and the etiology of more than half remains unknown (Petljak
and Alexandrov 2016). Analysis of quantitative, high-resolution,

and unbiased somatic mutation data has the potential to link ob-
served mutation spectra with molecular mechanisms. However,
the distributed and asynchronous nature of mutations in somatic
cells makes these mutations difficult to detect and accurately
quantify. Specifically, published rates of somatic mutation vary
widely from 10−11 to 10−7 single nucleotide variants (SNVs) per
base pair per cell division (SNV/bp/division) (Lynch 2010;
Holstege et al. 2014; Li et al. 2014; Blokzijl et al. 2016; Ju et al.
2017; Milholland et al. 2017) due to differences across cell types
and reliance on uncertain cell division rate estimates (Tomasetti
et al. 2017). Without strong selection such as that occurring in tu-
mor development (McGranahan and Swanton 2017), these
somatic mutation rates result in variant allele frequencies lower
than can be reliably detected in bulk samples using standard se-
quencing approaches, which produce consensus false positive
SNV error rates of 10−5 to 10−4 per nucleotide (Reumers et al.
2011; Schmitt et al. 2012). Thus, there is a need for quantitative
and accurate genome-wide somatic mutation analyses that are un-
biased by positive or negative selection (Levy et al. 2015).
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Available approaches for somatic variant analysis haveprovid-
edvaluable insightsbut also exhibit technical limitations that com-
promise quantitative mutation analysis. Extremely rare alleles in
bulk samples can be detected by molecular consensus sequencing,
although a requirement for ultradeep coverage makes genome-
wide analysis challenging (Schmitt et al. 2012; Martincorena
et al. 2015;Merkle et al. 2017; Salk et al. 2018) and such approaches
do not directly report on intra-lineage structures or dynamics. To
enrich samples for particular somatic variants, single cells can be
isolated and cloned or processed for sequencing directly. These
cells or clones are typically separated by a large andunknownnum-
ber of cell division events, which contribute to uncertainty in mu-
tation rate calculations and severely limit the power to determine
exactlywhen themutations arosewithin a lineage and correlations
among themutations (Blokzijl et al. 2016; Szikriszt et al. 2016;Assaf
et al. 2017; Drost et al. 2017; Milholland et al. 2017; Pfeiffer et al.
2018). Direct single-cell methods do not require live cells or suffer
from a selection bias against slower-growing or nongrowing cells.
Despite recent advances, however, thesemethods remain compro-
mised in the sensitivityandaccuracyof variantdetectioncompared
with bulk approaches (Lodato et al. 2015; Gawad et al. 2016;
Xu et al. 2016; Chen et al. 2017). Mutation accumulation ex-
periments that run for hundreds of generations or more to enrich
lineages with large numbers of mutations are widely used for fast-
growing bacterial cells (Tenaillon et al. 2016) but are impractical
for mammalian cells. Other approaches for measuring mutation
rates in vitro target specific genomic loci, which can strongly
bias estimates of genome-wide mutation rates and spectra (Araten
et al. 2005). Thus, no previous approachhas combined (1) the abil-
ity to identify groups of variants that arise during the replication of
an individual cell, (2) high accuracy and sensitivity for genome-
wide somatic SNV detection, and (3) minimal positive and nega-
tive mutation selection biases.

Here, we introduce lineage sequencing (Fig. 1) and its appli-
cation to clonal cell populations cultured in vitro. In lineage
sequencing, one collects specific cells representing different line-
ages, subclones these cells (or otherwise amplifies the subject ge-
nomes), and shotgun sequences each subclonal population. De
novo variants arising during the growth of the original population
are shared between subclones and detected with high sensitivity
and specificity by identifying somatic variants across the sub-
clones that are consistent with the estimated lineage structure of
the population. In regions of the lineage that are well-covered by
subclones, the origin of variants can be pinpointed to an individ-
ual cell division event.

In this proof-of-concept demonstration, we precisely con-
trolled cells in the population using a microfluidic device (Kim-
merling et al. 2016) and carried out time-lapse microscopy to
track cells and provide independent knowledge of the relation-
ships between subclones (Supplemental Fig. S1; Supplemental
Movie MS1). In this work, we apply the device for culturing and
manipulating single cells in preparation for assessment of the ge-
nomic changes in individual sublineages. In contrast, our previous
work using this and other microfluidic device classes focused on
direct analysis of RNA to study transcriptional heterogeneity (Kim-
merling et al. 2016) and integrated sample preparation for se-
quence library construction (Kim et al. 2017).

Initially, we used the lineage structure generated from the
microscopic tracking to search for somatic variants (optical track-
ing → lineage → called variants). Subsequently, in order to test
the accuracy and sensitivity of lineage sequencing in the absence
of cell tracking results, we blinded ourselves to the imaging data

and generated a prior estimate of the lineage structure using only
the sequence data (raw variants → lineage → called variants).
This sequencing-only implementation resulted in equivalent
somatic variant detection performance but does not allow ob-
served single-cell phenotypes to be linked with single-cell somatic
events. By resolving the lineage at high cellular resolution, lineage
sequencing is able to probe intra-lineage heterogeneity of muta-
tional processes. For example, we apply lineage sequencing to
compare mutation rates across different lineage segments, to iden-
tify statistical dependencies between mutations, and to suggest
mechanistic links between certain mutation sets.

Figure 1. Lineage sequencing concept and implementation. Overview
of the lineage sequencing concept. Numbering indicates key conceptual
and implementation steps. Single cells are sampled from a clonal popu-
lation and sequenced (steps 1–6; in this study, subclonal culture was
used to produce enough genomic DNA for PCR-free shotgun sequence
library construction). Crucially, a prior estimate of the population lineage
structure (step 7; either from single-cell tracking by time-lapse imaging
or from raw SNV calls) was used to identify novel somatic variants in a
joint analysis of the sequence libraries (step 8). This use of the lineage in-
formation enables all the sequence libraries to provide statistical support
for somatic “branch variants,” enhancing the sensitivity and specificity of
somatic variant identification (for example, the schematically indicated
“red variant” is supported by presence of an SNV in four sequence
data sets from one sublineage and the absence of this SNV in four addi-
tional sequence data sets from the other sublineage). Where the cover-
age by sampled sublineages (via subclones in this study) is high, the
mutations that appeared during the lineage experiment can be mapped
with single-cell resolution onto the lineage (step 9; e.g., blue, red, tan
segments in the dendrogram at bottom). We term mutations occurring
in the last round of cell division events “leaf variants,” which by definition
can be supported only by a single sequence data set (e.g., green seg-
ment in the dendrogram at bottom). Leaf variants can also be analyzed
but do not benefit from the enhanced statistical power that supports
branch variants and thus cannot be reliably assigned to specific cellular
events.
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Results

Application of lineage sequencing to cultured human cells

To demonstrate the lineage sequencing concept (Fig. 1), we select-
ed two cell lines expected to exhibit different mutation rates and
spectra. The human colon carcinoma cell line HT115 possesses a
missense mutation in one copy of the DNA polymerase epsilon
(POLE) gene, specifically a V411L mutation in the exonuclease
domainwhichhas been associatedwithhypermutated cancer phe-
notypes (Barretina et al. 2012; Forbes et al. 2015). POLE exonucle-
ase (‘proofreading’) deficiency has been identified in a subset of
human tumors and results in highmutation burdens and a unique
mutation signature (Albertson et al. 2009; Lange et al. 2011;
Shinbrot et al. 2014; Haradhvala et al. 2018). The human retinal
pigmented epithelium cell line RPE1 was immortalized by telome-
rase reverse transcriptase (TERT) overexpression and has not been
annotated as exhibiting a mutator phenotype (Bodnar et al.
1998). For each cell line, we grew lineages to five or six generations
starting from a single founding cell. This culture step was carried
out in a custom microfluidic device able to track and manipulate
small populations of cells arising from a single founding cell
(Supplemental Fig. S1; SupplementalMovieMS1). The samedevice
was previously used in a different study tomeasure transcriptional
heterogeneity among related cells with RNA-seq (Kimmerling et al.
2016). The device contains an array of hydrodynamic trap struc-
tures that enable long-term growth with the entire population un-
der continuous observation by time-lapse imaging. The device is
also configured to release cells one at a time, a capabilityweutilized
to collect cells fromthepopulationandestablish subclonal cultures
representing individual lineages. Fromour time-lapsedata,wewere
able to measure the inter-division times for all cells in the device.
We extracted genomic DNA from subclones and prepared PCR-
free shotgun sequence libraries, which were sequenced to 35-fold
coverage (Methods). The sampled lineages show a similar dis-
tribution of inter-division times compared with the overall distri-
bution, showing that there is no obvious bias in our results
toward cells/lineages with any particular inter-division time
(Supplemental Fig. S2).

Lineage structure information can be utilized in variant calling

across multiple data sets

In order to produce a list of provisional SNVs for each lineage ex-
periment, sequence data from all pairs of subclones were analyzed
with MuTect1 (Cibulskis et al. 2013) using the hg19 reference
(Genome Reference Consortium GRCh37). SNVs that arose de
novo during the lineage experiment were identified by filtering
for groups of SNVs produced by the primary variant calling analy-
sis that occurred at the same locus in two or more (but not all) sub-
clones. Such groups of matching SNVs that coincide at the same
genomic locus in multiple subclones putatively represent de
novo somatic mutations that occurred during generations 1–5 in
the lineage experiments. We term these SNVs “branch variants”
(Fig. 2A–C). In contrast, SNVs shared by all subclones were most
likely present in the founding cell.

SNVs appearing in only one subclone are termed “leaf vari-
ants” and likely represent variants that either appeared in the
last round of cell division, appeared early in subclonal culture (or
later in culture if strongly selected), or represent technical errors
in sequencing or variant calling. Variants arising during subclonal
culture are excluded from the branch variant call set, which only
accepts variants present in at least two subclones.Using the branch

variants, which represent de novo somatic mutations that ap-
peared in generations 1–5 of the lineage experiments, we quantita-
tively reconstructed mutation events and the flow of mutations
through the lineages (Fig. 2B and Supplemental Table S2 for
HT115; Fig. 2C and Supplemental Table S3 for RPE1). Branch var-
iants are expected to appear as fully penetrant clonal variants in
the affected subclonal populations because they occur before the
subcloning step. In HT115, such coincident SNV sets constituting
branch variants were enriched at allele fractions close to 0.5, as ex-
pected for clonal mutations in a predominantly diploid genome
(Fig. 2D; corresponding RPE1 allelic fraction results are shown in
Supplemental Fig. S3). The allele fraction distribution of clonal
branch variants is concordant with the copy number variation
analysis for both cell lines (Fig. 2E; Supplemental Figs. S3B, S4).

In contrast, noncoincident SNVs representing variants aris-
ing within or after the last (sixth) generation of the HT115 line-
age—the leaf variants—had to be identified within individual
samples. The leaf variants showed an allele fraction distribution
distinct from the branch variants with most values lower than
0.5 and range down to uncertain instances of candidate variants
with low allele fraction that are filtered out by the variant caller
(Fig. 2D,E and Supplemental Fig. S3 for RPE1).

The knowledge that branch variants must be clonal is valu-
able in variant detection. For example, we can easily segment mu-
tations according to the copy number determined at each genomic
locus from the read coverage depth in our 35× PCR-free data since
variant alleles are known to be clonal. Coverage to 35× performs
well for branch variant calling since the reduced average read
depth at lower ploidy sites is compensated for by the higher allele
fraction and the low coverage dispersion of our PCR-free data. Our
ability to apply relaxed thresholds in calling branch variantswith a
low chance of false-positive detections makes branch variant call-
ing more sensitive and quantitative than standard approaches.

Leaf variants in our data include subclonal variants, and their
detection is fraught with challenging tradeoffs in read depth and
variant allele fraction cutoffs (Fig. 2E for HT115; Supplemental
Fig. S3B for RPE1).

To test how these tradeoffs are realized across different variant
callers, we reran the analysis with a different variant caller, Strelka
(Saunders et al. 2012). The Strelka and MuTect1 results for branch
variants were highly similar, with Strelka making up to 3% more
branch variant calls but recapturing better than 99% of MuTect1
calls, reflecting the high accuracy of both branch variant call sets
(Supplemental Fig. S5). There was lower but still extensive overlap
in the Strelka and MuTect1 calls from the leaf variant data set
(80%–90%) as expected due to the lower certainty of the leaf vari-
ant calls and the expected variance in lower-confidence calls across
algorithms (Supplemental Fig. S5; Cai et al. 2016). To further test
the robustness of our results, we also called variants with
MuTect2 against an updated reference genome hg38 (GRCh38).
We found that the call sets overlap extensively with the
MuTect1 calls made against hg19 (GRCh37) (branch variants:
>96%; leaf variants: >93%) (Supplemental Fig. S5C).

Lineage sequencing recapitulates mutational characteristics

of POLE proofreading deficiency

Mutations are driven by the biochemistry of nucleotides, DNA,
and their metabolism, including synthesis and repair. Each muta-
genic pathway has particular characteristics and results in a dis-
tinct mutation spectrum (Alexandrov et al. 2013a,b). As a result,
observed mutation spectra provide clues about the mutational
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Figure 2. HT115 and RPE1 lineage sequencing experiments by the “optical tracking→ lineage→ called variants” approach. (A) Scheme of the analysis
pipeline for identifying branch variant SNVs by the “optical tracking → lineage → called variants” approach. “Branch variants” are SNVs that occur at the
same locus in two or more (but not all) subclones and are consistent with prior lineage information. Variant counts at different stages of the informatics fil-
tering steps used to identify high-quality lineage structure concordant branch variants are shown for the HT115 and RPE1 lineage sequencing experiments.
Detail on an example HT115 GG→GT branch variant is shown. Allele counts from sequence reads at Chromosome 1 diploid locus 111370246 are shown.
Four subclone sequence libraries (subclone indices 49, 34, 63, and 44, marked in red) show about half the reads indicating a variant T allele, where all the
other subclones support only the reference G alleles at this locus. This G→ T SNV is scored as one of 404 branch variants that appeared within the two cell
cycles represented by the pink segment on the right-hand side of the dendrogram representing the HT115 lineage experiment in B. (B,C ) Dendrograms
representing the HT115 and RPE1 lineage experiments; red circlesmark time points where cells died during the lineage development andwere not available
for recovery from the device. The green triangles in the bottom of the dendrogram represent cells that were recovered, subcloned, and sequenced.
Dendrograms are annotated with the count of “branch variants” for resolved lineage segments (some segments are resolved to individual cell cycles).
Every sequenced subclone is annotated with its index number and the count of “leaf variants” for each sequenced subclone (at bottom). “Leaf variants”
are SNVs that are supported by only one subclone and likely represent variants that arose during or after the last generation of the lineage experiment.
The x-axis of the dendrogramonly relates to linkage of the subclones. The y-axis of the dendrogram represents the culture time course, with each cell division
event observed by time-lapse imagingmarked by a branch point in the dendrogram. Single cells were recovered for subculture from theHT115 lineage after
141 h, while cells were recovered from the RPE1 lineage after 168 h. (D) HT115 branch variants are clonal. Histogram of allele fraction for detected variants.
Comparison betweenbranch variants (mutations occurring during lineage formation up to the last cell division) and leaf variants (mutations occurringwith-
in or subsequent to the last cell division event in the lineage). Branch variant SNVs show a bimodal allele fraction distribution peaked at 0.5 and 1.0 as ex-
pected for themeasured ploidy (copy number variation [CNV] analysis) at variant loci in this mostly diploid cell line. In contrast, subclonal mutations appear
in the leaf variant groupand showanallele fractiondistributionpeakedwell below0.5 as the variant caller attempts tobalance sensitivity for lowallele fraction
variants with false-positive detections without the enhanced performance available for branch variants. (E) Left panel: scatter plot of variants; average read
depth versus allele fraction; branch variants (blue) and leaf variants (green). The branch variant readdepth is tightly correlatedwith the variant allele fraction
in accordance with clonal mutations. The leaf variants include many subclonal variants that blend with technical noise at low variant allele fractions. Right
panel: normalized histogram of read coverage depth for HT115 lineage; whole-genome (red), called branch and leaf variants (blue and green).



processes operating in cells. The spectrum of mutations caused by
POLE proofreading deficiency has been previously characterized
(Shinbrot et al. 2014). We compared the mutation spectrum of
our aggregated HT115 branch variant SNV call set with mutation
spectra derived from tumor-normal whole-genome sequencing
of group A POLE colon tumors (samples with mutant POLE but
not mutant POLD1) (Shinbrot et al. 2014) generated by the
TCGA Research Network and found high similarity (Fig. 3A). The
highest similarity to our HT115 spectrumwas found with a partic-
ular colorectal tumor sample annotated with stop codon (R1371∗)
and a missense mutation L1235I in the POLE gene (cosine similar-
ity = 0.97±0.01) (Fig. 3B; Supplemental Table S1). The RPE1 spec-
trum differs markedly from the HT115 spectrum (cosine similarity
= 0.67±0.015) and the POLEmutant clinical tumor spectra (Figure
3A) and COSMIC mutation signature analysis (Supplemental Fig.
S6).

The activity of the DNA mismatch repair (MMR) pathway is
known to be coordinated with DNA replication and to be most ac-
tive during S phase, particularly in euchromatic early-replicating
regions (Kunkel and Erie 2015; Supek and Lehner 2015). Using
high-resolution genomic replication timing data, we compared
the frequency of SNVs and replication timing across the genome
(HT115 replication timing, Supplemental Table S4). SNVs were
markedly suppressed in early-replicating regions relative to late-
replicating regions (HT115 in Fig. 3C,D and RPE1 in Supplemental
Fig. S7).We also observed significantly fewer SNVs in genic regions

than in inter-genic regions and an even higher bias against vari-
ants in exons (Fig. 3D; Supplemental Fig. S5; Dulak et al. 2013;
Li et al. 2015; Frigola et al. 2017). These effects were observed in
both the branch and leaf variant call sets and are likely attributable
to differential epigenomic status and repair efficacy across different
classes of genomic loci (Schwartz et al. 2009; Huff et al. 2010; Li
et al. 2013; Frigola et al. 2017; Smith et al. 2017). Such local varia-
tion in mutation rates across the genome underscores the need for
mutation rates to be assessed on a genome-wide basis, as targeted
approaches are likely to be biased by sampling any particular sub-
set of genomic loci.

POLE mutations are also associated with a particular type of
strand asymmetry called replication-class (R-class) asymmetry
(Haradhvala et al. 2016), which arises due to POLE’s specific role
in synthesis and proofreading of the leading strand during DNA
replication and the stereotyped locations of replication origins
in much of the human genome. POLE-driven mutations appear
in these regions in a polarized fashion with respect to the two
DNA strands. For example, we expect a high proportion of C>A
relative to G>T in the DNA strand being synthesized as the lead-
ing strand (C>A in left replicating regions and G>T in right rep-
licating regions relative to the genomic reference). Indeed, we
observed the predicted POLE R-class asymmetry among HT115
branch variant SNVs at the same level previously quantified in
TCGA POLE mutant samples (Supplemental Fig. S8; Haradhvala
et al. 2016).

CA

D

B

Figure 3. Analysis of mutation patterns in human colon carcinoma epithelial cell line HT115. HT115 shows POLE proofreading deficiency that matches
previously published bulk POLE mutant colon tumor sample data. (A) Heat map showing the cosine similarity scores of comparisons of whole-genome
HT115 variant SNV mutation spectra with whole-genome spectra from RPE1 samples and published data sets from POLE mutant tumor samples
(Cancer Genome Atlas (TCGA), dbGAP: phs000178.v1.p1; sample annotations in Supplemental Table S1). The blue rectangle denotes the most similar
tumor sample (COAD-CA-6717). (B) Comparison of detailedmutation spectra of all base substitutions observed in HT115 and RPE1 cell line branch variants
and in the COAD-CA-6717 TCGA sample. HT115 and COAD-CA-6717 show highly similar spectra that differ from the RPE1 spectrum. (C) Distribution of
DNA replication timing for all genomic positions and the somatic SNV branch variants and leaf variants (blue and green, respectively) from the HT115 cell
line. Both the branch and leaf variant sets show the expected enrichment in late-replicating regions and depletion in early-replicating regions versus the
background distribution of replication timing at all genomic loci (red). (D) Quantification of the enrichment and depletion of SNVs in the indicated cat-
egories. SNVs are enriched in the late-replicating regions while SNVs are depleted in RefSeq genic regions and further depleted in RefSeq exons (P<0.01) in
both the branch and leaf variant SNV sets.
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Lineage sequencing without optical cell tracking

We tested whether lineage structures could be estimated from the
genomic data alone by blinding ourselves to the time-lapse imag-
ing data from the HT115 and RPE1 experiments. We first filtered
the raw SNV calls from MuTect1 to identify coincident SNV calls
(Fig. 4A). We then counted the number of coincident SNVs for
each set of subclones in which coincident SNVs occurred and
plotted the ranked counts for the HT115 and the RPE1 experi-

ments (Fig. 4B,C). A small number of subclone sets contained
high counts of coincident SNVs (HT115: >100; RPE1: >10), while
other sets contained very low counts (HT115: <10; RPE1: <5).
The groups of subclones with high frequencies of coincident
SNVs comprised a consistent set of relationships that predicted
a single lineage structure for each experiment (Fig. 4D,E, den-
drograms plotted based on total set of high quality coincident
SNVs). Using these lineage structure estimates, we then recovered
nearly the same sets of branch variant calls identified earlier using

CB

D E

A

Figure 4. Accuracy and sensitivity of lineage sequencing without microscopic tracking. (A) Scheme of the analysis pipeline for identifying branch variants
by the “raw variants→ lineage→ called variants” approach. Variant counts at different stages of the informatics filtering steps used to identify high-quality
lineage structure concordant branch variants are shown for the HT115 and RPE1 lineage sequencing experiments. The pipeline is similar to the “optical
tracking→ lineage→ variants pipeline” (Fig. 2A) except that lineage information is incorporated later, separately from SNV coincidence, and the source of
the prior lineage estimate is analysis of raw SNVs (see B and C ) rather than time-lapse imaging. (B,C) Histogram of the number of high-quality coincident
SNVs for each set of subclones in which such variants occurred for the HT115 (B) and the RPE1 (C) data sets. At bottom, each cluster is marked as consistent
(+) or inconsistent (−), with the lineage structure indicated by the time-lapse imaging. For each cell line, the group of subclone sets with high frequencies of
these SNVs are both internally self-consistent and consistent with the independent time-lapse imaging data. (D,E) Comparison between dendrograms rep-
resenting lineages based on genomic distance among subclone pairs and the time-lapse imaging data (only subclones that were cultured and sequenced
are represented); HT115 (D) and RPE1 (E). The dendrograms based on genomic distance and time-lapse imaging indicate the same connectivity between
subclones, the information relevant to joint variant calling in lineage sequencing, but have different branch lengths and are missing several internal cell
divisions. The blue dots in the time-lapse imaging dendrogram represent cell division events that are not independently available from the sequence
data. The dendrograms based on time-lapse imaging have a y-axis with units of minutes.
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the time-lapse imaging data to track cells (SNV recovery versus the
time-lapse imaging-informed approach: HT115, 99.4%; RPE1,
97.1%). However, time-lapse imaging adds the ability to detect
the accurate number of cell divisions between subsets of cells irre-
spective of mutation rate (Fig. 4D,E). Additionally, for cases with a
lownumber ofmutations per cell cycle or dynamic changes inmu-
tagenesis, time-lapse imaging would be necessary for reliable iden-
tification of subclone relationships.

Lineage sequencing is accurate and sensitive

Lineage sequencing also allows data quality testing by quantifying
variants that do not agree with the consensus lineage structure
(Supplemental Fig. S9).We estimated the specificity and sensitivity
of our branch SNV calls as a function of the quality threshold
for accepting coincident variant calls, similar to the construction
of a receiver operator characteristic (ROC) (Supplemental Fig.
S10). ForHT115branchvariant SNVs, the sensitivityandspecificity
were estimated to be 96.4% and 99.9% (HT115) and 91.9% and
99.9% (RPE1) based on the selected quality threshold of 0.99 ap-
plied to filter coincident SNVs when branch variants are called
(Methods). The mutation spectra of the SNVs that do not agree
with the consensus lineage structure differ from the spectrum
for the lineage structure-concordant set for each cell line, consis-
tent with the hypothesis that SNVs in disagreement with the
called lineage structure represent errors that were correctly filtered
out by our data analysis procedure (Supplemental Fig. S11). In
contrast, mutation spectra of branch variant SNVs show strong
similarity across sublineages, indicating the high specificity of
these variant calls (Supplemental Fig. S12). In addition, we tested
for bias affecting branch variant call sensitivity in relation to tree
position. Individual branch variants have different numbers of
subclones representing the variant; however, we did not detect
any specific positional bias affecting branch variant call sensitivity
(Supplemental Fig. S13).

Lineage sequencing enables mutation rate determination

with certainty in the generation number

We constructed a null statistical model for mutation accrual based
on the assumptions that somatic mutation events were indepen-
dent and that the number of mutations appearing in each daugh-
ter cell followed the same distribution (Poisson). We estimated the
averagemutation rate for HT115 cells as 173 SNVs per cell division
with the 95% confidence interval (CI) [147,203] (using themodel),
which corresponds to a rate of 3.0 × 10−8, 95% CI [2.5 × 10−8, 3.5 ×
10−8] SNV per bp per cell division. The error in this estimate is driv-
en principally by the variant counting statistics since we have a re-
liable prior estimate of the number of generations over which
mutations accrued in each lineage segment. At haploid loci, leaf
variant data can also be used to independently estimate the muta-
tion rate for SNVs at haploid lociwith a allele fraction of one. These
SNVs must occur prior to subclone expansion to appear clonal;
otherwise, the SNV would be diluted in the population. We calcu-
lated the mutation rate on haploid sites for branch variants, 2.9 ×
10−8 CI [1.3 × 10−8, 5.2 × 10−8] SNV/bp/division, and for leaf vari-
ants, 4.2 × 10−8 CI [2.2 × 10−8, 6.5 × 10−8] SNV/bp/division, at
HT115 haploid sites and found rates similar to those calculated
for diploid/triploid sites, suggesting that homology-directed repair
(and any associated mutations) makes a minor impact in our
HT115 experiment (Supplemental Fig. S14).

Consensus estimates of spontaneous mutation rates during
nuclear DNA replication in normal cells are close to 5×10−10

SNV/bp/division (Blokzijl et al. 2016), indicating that the muta-
tion rate wemeasured in HT115 cells is about two orders of magni-
tude higher than expected in normal cells and similar to previous
estimates of the rate in cells with compromised POLE proofreading
activity, although our HT115 line carries two normal POLE copies
whereas many POLEmutant tumors are reported to carry one nor-
mal POLE copy (Billingsley et al. 2015). In contrast to the rapidly
mutating HT115 cells, RPE1 cells showed an average mutation
rate of 39 CI [27,52] SNVs per cell division, or 4.3 × 10−9 CI [2.9 ×
10−9, 5.7 × 10−9] SNV/bp/division, seven times lower than ob-
served in HT115 cells. For the most relevant estimation of the mu-
tation rate ratio between the cell lines, we also compared rates after
removing a subsignature of guanine oxidation (Cosmic signature
18, Supplemental Fig. S6) from the RPE1 data set that has previous-
ly been associated with in vitro culture and only rarely contributes
many mutations under physiological conditions (Costello et al.
2013; Rouhani et al. 2016; Pilati et al. 2017; Zou et al. 2018).
After removing the putative in vitro artifact from the RPE1 data
set (HT115hadhardly any contribution from signature 18), we cal-
culated the mutation rate difference between HT115 and RPE1 to
be nearly 10-fold (HT115: 3.0 × 10−8 CI [2.5 × 10−8, 3.4 × 10−8],
RPE1: 3.3 × 10−9 CI [2.0 × 10−9, 4.5 × 10−9]).

With time-to-division data available from the time-lapse im-
aging, our data structure enabled analysis of the dependence
between mutation accumulation and generation time (Supple-
mental Fig. S15) but found no evidence for the accrual of muta-
tions during inter-phase. This could be explained by limited
statistical power in analysis of our small data sets, by the do-
minance of POLE substitution errors at replication, or by com-
pensation of accruing mutations by more effective DNA repair in
slow-cycling cells.

Mutation rates vary across sublineages

We next tested the presumption that mutations accrue according
to a Poisson process (uniform probability per cell in time), or
equivalently, that the cells in our lineage experiment growing un-
der similar conditions at the same timewould exhibit the same av-
erage mutation rate. We produced quantile-quantile (QQ) plots of
P-value quantiles to compare the observed distribution of branch
variant SNV counts across each lineage segment with the theoret-
ical Poisson process model based on a constant rate of mutation.
The QQ plots show poor concordance of the experimental data
with the theoretical Poisson processmodel (Fig. 5A). This result in-
dicates that mutations accrued across sublineages in HT115 and
RPE1 experiments by amore heterogeneous process than expected
from the Poissonmodel and that newmodels for mutation accrual
with additional parameters to account for variable mutation rates
are likely justified when analyzing mutational processes and inter-
preting mutation data.

Multinucleotide variants exemplify variant nonindependence

Multinucleotide variants (MNVs) are known in the literature as
somatic events where substitution mutations occur on neighbor-
ing nucleotides with higher frequency than would be expected
by chance for independent variants (Rosenfeld et al. 2010;
Besenbacher et al. 2016). We observe these events as strong
enrichment (versus a random model) in closely linked mutations
within the same sublineage (Supplemental Fig. S16, HT115 in A
and RPE1 in B). The speculation that these linked variants arise
at the same time as the concomitant occurrence of specific cluster
events is supported by our finding that clustered events were
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A

B

C

Figure 5. Intra-lineage heterogeneity in mutation rate and multiple mutation events. (A) Measured P-values from observed mutation counts are plotted
vs. calculated theoretical (Poisson) P-values for the branch variant set for each sublineage to form quantile-quantile (QQ) plots (P-values for theoretical
Poisson-distributed lineage-wise mutation count data versus observed data) for both HT115 (left) and RPE1 (right). The plotted points deviate strongly
from the expected distribution (which would follow an x= y relationship) at both ends of the distribution, showing that the sublineages present in each
data set cannot be plausibly modeled by a Poisson distribution based on independent mutations. (B) Schematic showing persistent lesion hypothesis
for correlated same-sitemutation. DNA lesions (marked as G∗) that are not repaired during S-phase compel the DNApolymerase to replicate opposite lesion
bases with a high probability of mutation. If the lesion has not been repaired before the next S-phase in the daughter cell carrying the lesion, an additional
mutation at the identical genomic locus is likely to result. If the second mutation is different from the first, this process can be readily detected from lineage
sequencing data. The example scheme represents the CC>CT and CC>CAmutations we detected at the Chromosome 2 locus 128889581 (marked with
purple circle). (C) Sevenmultiplemutation events were found in the HT115 lineage. Read counts for each example are presented andmarkedwith a colored
symbol. The lineage segment where each example occurred is shown (with corresponding colors). None of these events overlap the most probable mu-
tation types found in the POLE signature.
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consistently observed within sublineages but not across subli-
neages (Supplemental Fig. S16, HT115 in C and RPE1 in D). In ad-
dition, the accuracy and resolution of our data enable us to
constrain the time window further and provide some evidence
that the mutations in a cluster appear in the course of a single-
cell cycle (example in Supplemental Fig. S16E). The SNVs from
closely linked events also show a distinct mutation signature com-
pared with other SNVs, indicating a different mechanism of origin
(Supplemental Fig. S16, HT115 in part F and RPE1 in part G). This
idea is also supported by the finding that, in RPE1, cells present a
higher fraction of multinucleotide events (>2%) than HT115 cells
(<0.5%), consistent with amutationalmechanism that is indepen-
dent of POLE activity.

Persistent lesions cause mutations in multiple cells

An extreme form of somatic event clustering are events where the
genomic distance between two different SNVs is zero in two sister
lineages.We observed 11 such instances where two different SNVs
occurred at identical genomic positions in related sublineages
(HT115: seven instances, Fig. 5C; RPE1: four instances, Supple-
mental Fig. S17). In our data set, it is extremely unlikely that two
variants coincide by chance (P<6.9 × 10−5 by estimating the fre-
quency of chance overlaps of independent HT115 SNVs [leaf vari-
ants from different lineages]). Based on that null model, we could
determine the chance to observe seven repeated events in the
HT115 data set (P<3×10−5) or four repeated events in the RPE1
data set (P<1×10−5) by resampling (Supplemental Fig. S18A).

We hypothesize that these coincident mutation events result
from DNA lesions that persist through multiple rounds of DNA
replication and cause multiple, different substitution errors
through translesion DNA synthesis opposite the same DNA lesion
(Fig. 5B;Makridakis and Reichardt 2012; Sale et al. 2012; Sale 2013;
Ziv et al. 2014; Bi 2015). Lesion persistence could result from com-
mon DNA lesions that escape repair by chance, other types of le-
sions that are repaired only slowly by cells, or damage-tolerant
cell states (Geacintov and Broyde 2017). All the detected pairs
of SNVs that occurred at identical genomic positions were found
to be in related sublineages. Persistent lesions would necessari-
ly generate overlapping mutations only within sublineages, not
across sublineages. In contrast, randommutation processes should
not be biased toward co-occurrence within the same sublineage. It
is highly unlikely that independent random mutation pairs
overlap only in related sublineages (HT115, 7/7, P<6×10−6;
RPE1, 4/4, P<6.6 ×10−4) (Supplemental Fig. S18B).

These events can be effectively identified only when somatic
variants are detected with high sensitivity and single-cell cycle res-
olution. The multiple mutation events also seem to show a differ-
ent mutational spectrum than the complete branch variant sets,
lending additional support to the idea that the multiple mutation
phenomenon results from one or more unique molecular subpro-
cesses. Linking multiple mutations to lesion persistence exempli-
fies how detailed analysis of high-quality variant data can be
used to refine mutation signatures and parse mutation signatures
for distinct biochemical processes.

Discussion

Here, we describe lineage sequencing, a new genome-wide tech-
nique that utilizes knowledge of the cell lineage structure to recon-
struct mutation events occurring during lineage formation with
high resolution, high accuracy, high precision, and minimal

bias. Lineage sequencing is based on popular short-read next-gen-
eration sequencing methods applied at typical shotgun sequenc-
ing coverage depth for each sequence library and utilizes joint
variant calling across the set of sequence libraries informed by an
estimate of the lineage structure. Our proof of concept implemen-
tation achieves partial resolution of individual cell cycles with nei-
ther whole-genome amplification nor polymerase chain reaction
amplification steps and, as a result, produces sequence libraries
with highly uniform and accurate coverage of the genome. By ap-
plying lineage sequencing, we measure the accumulation of SNVs
by identifying >90% of SNVs that evolved during lineage forma-
tion and mapping these onto cells in the lineage with very high
resolution (1–4 cell divisions, with little uncertainty in the number
of cell divisions in each lineage segment where SNVs were as-
signed). Altogether, themethodprovides accurate and nearly com-
plete estimates of cellular genotypeswithin the lineage, suggesting
that lineage sequencingmay emerge as a gold standard for somatic
mutation quantification.

We were able to distinguish two types of SNV call sets: high-
confidence branch variants that occur during lineage formation
and leaf variants that occur in the last round of cell divisions or
during subclonal culture. Leaf variants can be compared to vari-
ants identified by the existing “double bottleneck” methodology
(Blokzijl et al. 2016; Szikriszt et al. 2016; Drost et al. 2017). Leaf var-
iants cannot be assigned to a specific cell division in the lineage
with high confidence and suffer from low specificity preventing
precise quantification for mutation rate assessment. In contrast,
our branch variant analysis shows improved performance over al-
ternative methods by providing a nearly complete and highly ac-
curate list of somatic variants that accumulate within a specific
number of cell divisions.

Our motivation to develop lineage sequencing was to make
measurement of mutagenesis more quantitative and more highly
resolved in populations to enable a focus on mutational processes
in addition to mutational outcomes and resulting effects on cell
function. The commonmethods for measuring differences in mu-
tation rate between cells require one or two bottleneck steps, with
double-bottleneck protocols producing data sets with similar char-
acteristics as our leaf variant data. In such approaches, including
thosewe carried out to produce the leaf variant call sets, differences
in the growth or death rates (which can be summarized versus a
reference by a selection coefficient) affect the allele fraction at
which mutations appear. High allele fraction variants can appear
not only because the variant was present at the second bottleneck
but also if a mutation appeared after the (second) bottleneck when
the population sizewas still small or because amutation appearing
after the (second) bottleneck itself (or a linked variant) caused pos-
itive selection. These factors present technical challenges to vari-
ant calling and degrade confidence in the quantitative nature of
mutation data. However, the branch variant set detected by line-
age sequencing is not biased by early mutation events or selection
downstream from the bottleneck.

Even so, lineage sequencing does have limitations that could
affect results and in principle is subject to selection bias at two stag-
es. The first is the choiceof the lineages foranalysis (or the cellswith
which to found lineages) from the overall population under study
(first bottleneck). This can be addressed bymaking the sampling as
random as possible and by obtaining data across lineage replicates.
Second, bias could, in principle, arise when cells are subsampled
from a particular lineage (second bottleneck). Ideally, all cells can
be recovered and analyzed, but this may not be possible. In our ex-
periments, sampling was limited by the viability of recovered cells,
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with survival rates observed to be �30% for HT115 and �65% for
RPE1. When only some cells are analyzed, there is a potential for
bias based on ease of recovery, culture or other means of genome
amplification, amenability of a given sample to the sequencing
technology used, or operator preference based on observed charac-
teristics of sublineages or cells. Bias at the second bottleneck can be
minimized by randomizing sublineage sampling. Here, we tested
for bias in our sampled sublineages by comparing inter-division
times observed by imaging in sublineages that were collected and
that produced sequence data with those for which we were not
able to produce sequence data. No evidence for significant bias
based on inter-division time was found (Supplemental Fig. S2).

The use of the prior estimate of intersample relationships here
is analogous to the use of known family relationships in human
germline trio and quartet sequencing and provides high statistical
power for variant detection (Roach et al. 2010) with a capability for
assigning event timing. Since branch variants are clonal by defini-
tion, standard coverage depth (�30×) supports extraordinary
performance in their detection. In addition to the internal consis-
tency of our branch variant analysis (Supplemental Figs. S5, S10,
S12), these results are validated independently by agreement
with the lineage structure established by time-lapse microscopy
and the consistency of our aggregated de novo somatic variant
sets with the expected mutation spectra, the expected impact of
replication timing on mutation, and observed R-class asymmetry
in POLE mutant samples. We found strong similarity of the
HT115 whole-genome SNV spectrum with tumor samples sharing
POLE deficiency and, amongCOSMICexomemutation signatures,
to theCOSMICPOLE signature (Supplemental Fig. S6). Theseobser-
vations highlight the need for quantitative genome-wide signature
assessment to take full advantage of somatic mutations to dis-
criminate specific mechanisms of mutagenesis and DNA repair
dynamics.

Our results show that mutations do not occur independently
with uniform probability but rather are heterogeneous across the
genome and across closely related cells, even when environmental
conditions are uniform. We gained key insights into the short-
term mutational dynamics of human cells, including indications
that the measured mutation counts across lineage segments were
overdispersed relative to a Poisson process, indicating that themu-
tation rate showed excess random variability across the lineage
and/or across time on top of the mutation rate variability we ob-
served across different genomic loci.

Multiple processes contributemutations. In the samples shar-
ing POLE deficiency, the dominant factor is likely the fraction of
the mutated polymerase enzymes in the specific cell cycle, so var-
iability in allele specific gene expression may add complexity that
explains the observed overdispersion (Crowley et al. 2015). We
also found evidence for two classes of nonindependent variant
sets.Weobserved the first, previously described asmultinucleotide
variants (Rosenfeld et al. 2010; Besenbacher et al. 2016), and pro-
vide evidence that some of the linked mutation sets occur at the
same time. In addition,we observed differentmutations that occur
at exactly the same genomic locus in related cells. Lesion persis-
tence probably explains this and serves as an example of a bio-
chemical mechanism capable of causing strong correlations
among somatic mutations.

In principle, the observed time-to-replication for each cell in
our imaging data can be used to determine whether the number of
cell cycles, or alternatively, the elapsed time, is a better predictor of
the number of somatic mutations, and further, to constrain likely
mechanisms of mutagenesis in these cells. Our sample size provid-

ed insufficient power for this task, although the analysis illustrates
the analysis framework enabled by our unique data structure
(Supplemental Fig. S15). Where observations or perturbations are
made of the cells during the development of the lineage, these
can be directly related to genomic variants that appeared at the
same times in the lineage. Targeting specific lineages in which in-
tra-cellular events of interest were observed would enrich the var-
iant set for mutations linked to these events (Supplemental Fig.
S19). Much can be learned by studying real-time cellular pheno-
type data with linked genomic data from lineage sequencing,
for example, the effects of different exogenous insults to cells,
checkpoint activation, DNA repair capacity or stochastic dynam-
ics, cell division defects, and more. Another feature of our ap-
proach is that the subclonal cultures can be grown to different
population sizes and sampled at different times. This flexibility
means that multiple genotyping methods with differing biomass
requirements can be deployed optimally on the same subclone
and that live cultures representing sublineages will typically be
available for further experimentation.

Here, we showed two different ways that information about
the lineage structure can be obtained prior to joint variant calling
to support lineage sequencing: (1) by time-lapse microscopy; and
(2) using raw SNVs from whole-genome sequence data (provided
there is at least one detectable variant per cell to achieve full resolu-
tion of the lineage). While the lineage structures we derived from
sequence data alone enabled recovery of the same set of relation-
ships among the subclones as observed in the time-lapsemicrosco-
py, they lack independent information about the number of cell
divisions and duration of each cell cycle that was available from
the imaging data. Accurate lineage information is important for
mutation rate estimation and could be uncertain from genomic
data alone in cases where the number of mutations per generation
is very small or when the sampling of sublineages is sparse. The lat-
ter is the case in our HT115 and RPE1 lineage experiments, and we
use imaging data to ensure accurate cell division counts and precise
mutation rate estimation (cf. the two dendrograms in Fig. 4C).
Imaging capability also enables correlation of single-cell pheno-
types with mutation data (as outlined in Supplemental Fig. S19).
In principle, other approaches for tracking/estimating lineage
structures could also support lineage sequencing (Woodworth et
al. 2017), for example, approaches using recently reported self-ed-
iting genomic barcoding (McKenna et al. 2016; Frieda et al. 2017).
With appropriatemethods for cell sampling and subclonal culture,
we expect that the lineage sequencing concept can be applied to
study mutations that occur in solid tissues or whole organisms.

Lineage sequencing is able to overcome the consensus se-
quence error rate and provide higher power for genome-wide
somatic event detection (Salk et al. 2018). Technical errors in stan-
dard sequencing approaches are introduced independently across
subclones and are uncorrelated, resulting in dramatically lower
false positive error rates in the branch variants calls where uncor-
related errors are excluded. In a simplistic view, the branch variant
error probabilities are expected to fall by at least the square of the
nominal consensus error rate, e.g., (10−6)2 = 10−12, since data from
more than two independent samples contribute to the call. In ad-
dition to the samples providing evidence for the presence of the
variant, the absence of variant reads in the remaining samples
also supports the joint variant call. The extra statistical power
lent by joint variant calling in lineage sequencing could conceiv-
ably support accurate and more sensitive mutation detection for
direct single-cell readout that depends on noisy whole-genome
amplification. Sampling strategies for lineage sequencing can be
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tailored to optimize statistical power for different estimation tasks;
for example, sparser sampling of cells from the lineage could im-
prove mutation rate determination at constant sequencing effort
for cells with few mutations per generation.

The ability to check lineage sequencing variant call sets for
self-consistent and independently predicted (e.g., from image
data) variant relationships facilitates in-line data quality evalua-
tion by enabling quantification of inconsistent candidate variants.
In the examples reported here, the agreement of independent im-
age-based and sequence-based lineage structures gave us high con-
fidence that we determined correct lineage relationships among
subclones. Data quality assessments can, in turn, be used to opti-
mize the experimental and computational protocols (Supplemen-
tal Fig. S9).

In summary, lineage sequencing allows precise assessment of
the rate and spectrum of somatic mutations with intra-lineage res-
olution as high as individual cell division events. Lineage sequenc-
ing can be combined with real-time phenotypic observation and/
or perturbation to link cellular activity and responses with muta-
tion events at the single-cell level. This detailed level of analysis en-
ables the detection of individual biochemical events in cells and
the parsing of mutation spectra with enhanced spectral/biochem-
ical resolution.We imagine that lineage sequencingwill be applied
widely to study spontaneous and exposure- or therapy-associated
mutational processes in remarkable detail. Such work would help
identify the molecular mechanisms and biological consequences
of somatic mutations broadly.

Methods

Cell culture and conditioned media preparation

Human HT115 epithelial colon carcinoma cells from the Cancer
Cell Line Encyclopedia (CCLE) (Barretina et al. 2012) were main-
tained in high-glucose Dulbecco’s modified Eagle’s medium
(DMEM, Life Technologies, Inc.) supplemented with 15% fetal bo-
vine serum (Mediatech, #35-015-CV). The telomerase-immortal-
ized RPE1 cells (ATCC) were maintained in DMEM/F12 medium
(Thermo Fisher) with 10% fetal bovine serum. Conditioned medi-
um for use with the microfluidic device was collected from the
stock cell flask between 24 and 48 h after freshmediumwas added.
The medium was centrifuged (4700g for 5 min) and filtered
(0.2 μm) before use.

Microfluidic device

Hydrodynamic trap array devices were fabricated in silicon and
glass as described previously (Kimmerling et al. 2016). Prior to
cell culture in the device, the system was flushed with 10% bleach
for 10 min for sterilization and cleaning, rinsed with water, and
then flushed with conditioned cell culture medium overnight to
fully rinse and prime the system for cell culture. Finally, devices
were flushed with a 0.1% poly-L-lysine solution (Sigma) for 10
min to coat the channel surfaces and promote cell adhesion and
growth, followed by a short wash of a few seconds with condi-
tioned cell culture medium just before cell loading.

Single-cell culture in the hydrodynamic trap array

A single-cell suspension was introduced at the downstream port of
the system to load cells into the device (port P3 in Supplemental
Fig. S1). In order to introduce cells into the device, the pressures
P2 and P3 were increased equivalently (P2=P3) and the pressure
P1 was decreased (P2>P1) such that there was equal flow from

the downstream (P2, P3) to upstream (P1) ends of the bypass
channels on either side of the hydrodynamic trap array. Once
the dead volume of the system was purged and cells were within
view in the device, single cells were manually loaded into each
lane of the trap array. This cell loading was achieved by decreasing
the pressure P2 relative to P3 (P2 <P3) to introduce reversed flow
through the trap array (Supplemental Fig. S1). With this sustained
flow into the trap array, the upstream pressure (P1) was periodical-
ly toggled between a higher pressure than P3 (P1> P3) and atmo-
spheric pressure (P1< P3) to flow cells upstream and downstream
near the entrance of the trap array to allow cells to slowly drift
into each lane. Once a single cell had been loaded into each
lane, the bypass channels were flushed with conditioned cell
growth medium and the pressures were set for long-term culture
such that media was constantly perfused along the bypass chan-
nels (P1> P2, P3) and very slightly across the trap array (P2>
P3). This reverse-side loading approach ensured that only cells
of interest entered the trap array and no cells or debris accumulat-
ed in the bypass channel on the left side of the device (channel
connecting P1 and P2). Therefore, when cells were released
from the trap array and flushed from the left bypass channel,
there was significantly lower risk of collecting a contaminating
cell or debris that had been caught in the channels or tubing dur-
ing cell loading.

Trypsinization for cellular reseeding or release

Following multigenerational growth in the device, cells were de-
tached from the channel surfaces by introducing a solution of
0.25% trypsin and EDTA (Gibco). In order to achieve rapid fluidic
exchangewhileminimizing shear stress on cells within the trap ar-
ray, the pressures were set to have significant flow rate along the
bypass channels (P1≫P2, P3) while maintaining only slight
flow across the trap lanes (P2> P3). Fully dissociated cells were ei-
ther reseeded in the device for continued culture or released one
at a time for downstream collection and subclonal outgrowth.
Cellular reseeding was carried out both across and within individ-
ual lanes of traps in the array. For instance, for longer-term lineage
tracking, a single cell was loaded into one lane of the trap array and
allowed to divide for two generations. After trypsin treatment,
these cells were released into the left bypass channel (P3>P2)
where the pressures were set to have no flow (P1=P2) and subse-
quently recaptured one cell per lane by maintaining slight flow
across the array (P2>P3) and periodically increasing the upstream
pressure (P1>P2) or setting it to atmospheric pressure (P1 <P2) to
move cells along the length of the left bypass channel and position
them for capture within each lane of the trap array. Following sub-
sequent rounds of cell divisions, cells were reseeded within each
trap lane by gently flowing forward across the trap array (P2>P3)
after detachment with trypsin. In both cases, the cellular detach-
ment and recapture processes were recorded in order to maintain
lineage information collected via time-lapse imaging. For sin-
gle-cell collection downstream from the device, the pressures
were set to have substantial flow rate along the bypass channels
(P1≫P2, P3) after detachment with trypsin—these pressures
were set such that the volumetric flow rate along the bypass chan-
nel was�15 μL perminute. To release individual cells to the bypass
channel, the flow direction was periodically reversed (P3>P2) un-
til a cell reached the bypass channel at which point flow into the
traps was re-established (P2> P3) to ensure no other cells were re-
leased. Each cell was flushed for 30 seconds (�7.5 μL total volume,
in order to clear the dead volume of the system) and collected
directly into 70 μL of conditioned cell culture medium in a glass-
bottom 384-well plate for continued subclonal outgrowth in a
standard tissue culture incubator (37°C, 5% CO2).
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Cell identity tracking and lineage reconstruction by time-lapse

image analysis

Time-lapse imaging was conducted with a custom LabView pro-
gram (National Instruments), which drove a TTL-triggered white
LED light-source (ThorLabs) for illumination, as well as two auto-
mated stages (Newport), which traversed the x- and y-axes to cap-
turemultiple fields of view for each frame. Imageswere taken every
3 min (using 10×-magnification lens). We experienced one rare
case of a longer gap between images; however, cell identities
were preserved at all times and tracking ability was not affected.
Lineage structure and time to division measurements were deter-
mined by manually tracking the recorded image series using
ImageJ software (example image series shown in Supplemental
Movie MS1). The trypsin release and reseeding and single-cell re-
lease image series were captured continuously using a lower mag-
nification (4×) lens that captured the entire device image in a
single field of view. These image series were analyzed with the as-
sistance of custom Python code based on the OpenCV library
package that pre-analyzed the movies and marked each cell with
a different color to ease human analysis, which was performed
with iMovie software (Apple, Inc.).

Cell growth measurements

Single cells released into separate wells on a glass-bottom plate for
subclonal culturewere immediately imaged upon collection to val-
idate the presence of a single cell per well. The growth of subclones
was monitored every 24–48 h, and fresh conditionedmediumwas
introduced every 48 h. For HT115 lineage, we isolated 37 cells (out
of 45 cells in the channel), of which 11 grew as subclonal cultures
and were processed for sequencing. For RPE1, we isolated 22 single
cells (out of 26 cells in the channel), of which 15 grew as subclonal
cultures. Thirteen of these subclonal cultures were processed for
sequencing.

gDNA extraction and library construction

Colonies were grown to at least 106 cells. Genomic DNA was ex-
tracted from each sample using the QIAamp DNA Mini kit
(Qiagen). PCR-free library construction was performed by the
Genomics Platform at the Broad Institute using their standard pro-
cess. All sample information and tracking was performed by auto-
mated LIMS messaging. Samples underwent fragmentation by
means of acoustic shearing using a Covaris focused ultrasound
shearing instrument to provide fragments of �385 bp. Following
fragmentation, size selection was performed using a SPRI cleanup.
Library preparation was performed using a commercially available
kit (product KK8202, KAPA Biosystems) that entailed palindromic
forked adapters with unique 8-base index sequences embedded
within the adapter (the DNA oligonucleotide adapters were pur-
chased from IDT). Following library construction, each library
was quantified using quantitative PCR (qPCR; KAPA Library
Quantification kit [ABI Prism] from KAPA Biosystems). This
qPCR quantification assay was automated using Agilent’s Bravo
liquid handling platform. Based on the qPCR quantification, li-
braries were normalized to 1.7 nanomolar. Library samples were
then pooled into groups of 24 samples, and the 24-plex pools
were once again quantified by qPCR. Library pools were then com-
bined with HiSeq X Cluster AmpMix 1, 2, and 3 in a tube strip us-
ing the Hamilton Starlet Liquid Handling system. Cluster
amplification of the templates was performed according to
Illumina’s protocol using the cBot instrument (Illumina).
Clustered flow cells were subjected to shotgun sequencing on
HiSeq X to �35-fold coverage of the genome using proprietary se-

quencing by synthesis (SBS) reagents (Illumina HiSeq X) and ana-
lyzed using RTA2.

Primary analysis of genomic data

Sequence read alignment, data aggregation, preliminary produc-
tion analysis, and quality control proceeds after sequencing using
the automated Picard pipeline (Broad Institute Genomics
Platform, http://picard.sourceforge.net/). The Picard pipeline pro-
duces high quality recalibrated sample level BAM files using the
following procedure. Readswere extracted from sequencing instru-
ments and aligned using BWA against the hg19 reference.
Duplicate reads were marked for downstream interpretation in
the analysis pipeline. Reads around known indel sites were
realigned to produce improved alignments. Quality scores were re-
calibrated using the GATK base quality score recalibrator to in-
crease the accuracy of reported base quality scores. Cell line
identity was verified against reference genotype fingerprints.
Data were aggregated per sample in BAM format including base
calls, quality scores, and alignment data. Finally, summarymetrics
were generated to allow quality assessment.

Copy number variation (CNV) analysis

Copy number variation (CNV) analysis for each cell line
(Supplemental Fig. S4) was carried out by the procedure outlined
below and showed that HT115 cells were largely diploid as ex-
pected. However, CNV analysis showed that our RPE1 cells were
predominantly triploid, which might be related to genomic insta-
bility caused by telomerase/telomere dysfunction (Garbe et al.
2014), as the RPE1 line was originally immortalized by telomerase
expression. For CNV analysis, reads were counted for each sample
in 10,000-base bins using the GATK 4 Tool SparkGenomeRead-
Counts function and divided by the median bin coverage. By ex-
ploiting the fact that each sample came from a pure subclonal
population, coverage was scaled by a factor of α where α mini-
mized the objective sum{bins}(abs(α coverage(bin)−nearest inte-
ger(α coverage(bin)))). This had the result of scaling coverage
scores to line up with integers as well as possible. The absolute
(but noisy) coverage level values were entered into a Hidden Mar-
kov Model (HMM) with integer copy number states 0, 1, 2, 3, 4,
5. This HMM learned transition matrix elements between states
via an expectation–maximization (EM) algorithm. The observed
coverage was modeled as a Cauchy distribution, centered on the
integer copy number values, and the model learned the width pa-
rameter of this emission distribution via the EM algorithm. The
parameters were updated by anM step consisting of numerical op-
timization while the E step consisted of obtaining posteriors from
the forward-backward algorithm. Once the model had converged,
the Viterbi algorithm was used to obtain segments of constant
copy number. With these calculations we could estimate the total
size of the genome in each of our cell lines, finding 5.7 × 109 bp for
HT115 and 9.2 ×109 bp for RPE1.

Single nucleotide variant (SNV) analysis

Raw single nucleotide variants were identified using MuTect1
(Cibulskis et al. 2013), MutTect2, and Strelka (Saunders et al.
2012) within the “Firehose” pipeline, developed at the Broad
Institute (www.broadinstitute.org/cancer/cga). The variant callers
were run for every pair of subclones twice, such that each sample
acted as a “tumor” sample in one run for a subclone pair, and as
a “normal” sample in another run of the same subclone pair.
The SNV lists from all samples were combined and de-duplicated
using a custom Python script (Supplemental File S5).
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Lineage sequencing analysis pipeline

Raw SNVs for each lineage experiment were extracted from the
combined SNVcaller output list. Candidate coincident SNVs, iden-
tical SNVs appearing at matching genomic loci in two or more but
not all subclones from a lineage experiment, were identified. DNA
base countswere extracted for all subclones at the locus for each co-
incident SNV. SNVs that contained lowcoverage (<5 reads) of alter-
nate alleles (compared with the reference) in one of the variant
samples were not pursued further. Coincident SNVs were called
where the quality of coincident SNV classification was assessed
by calculating the probability for each sample to belong to its con-
sensus-assigned group (‘reference’ or ‘alternative’) considering the
base content in the read alignment at the locus in question for each
sample. The probability was calculated using a binomial distribu-
tion test for each of the samples. Assuming each sample can belong
to the assigned reference or variant group (H0) or to the nonas-
signed group (H1). The calculated probability serves a heuristic
score to rank the quality of coincident SNV groups.

H0: P = P1, the probability weight that the sample belongs to
group1, the assigned reference or variant group.

H1: P = P2, the probability weight that the sample belongs to
group 2, a different group than assigned.

P1 = P(altallele = x [ group 1)

= #alt
total nucleotides

( )
P1#alt(1− P1)#!alt,

P2 = P(altallele = x [ group 2)

= #alt
total nucleotides

( )
P2#alt(1− P2)#!alt,

P(H0|alternative allele = x) = P1
P1+ P2

.

For each classified SNVwe calculated this probability for every
sample (P1/(P1+P2)) and chose the minimal probability to repre-
sent the quality of this coincident classification option to the SNV.
We filtered out all SNVs with quality of this coincident classifica-
tion less than 0.99 (Supplemental Fig. S9).

Two approaches were used to obtain a prior estimate of the
lineage structure for use in calling the final branch variant sets:

Method 1: In the “optical tracking → lineage → called vari-
ants” approach, the lineage structure was determined by analysis
of time-lapse imaging of cells in the microfluidic trap array device.
This lineage structure was subsequently used for calling branch
variants. SNVs were grouped as coincident SNVs and branch vari-
ants called by evaluating the coincident SNV quality score for the
highest scoring group of subclones over all the groups of subclones
consistent with the lineage structure determined by time-lapse im-
aging, including the option that an SNV is only truly present in a
single subclone and represents a leaf variant.

Coincident SNV quality score = Max Pclusters Min Psample
P1

P1+ P2

( )( )( )
.

Method 2: In the “raw variants → lineage → called variants” ap-
proach, we used the shotgun sequence data to estimate the most
likely lineage structure in each lineage experiment. This was ac-
complished by identifying coincident SNVs by analysis of raw
SNV calls from the subclones generated by the variant caller
(Supplemental File S5). Subclones sharing the same SNVs were
grouped without restrictions by hierarchical clustering, and for each
coincident SNV, the quality score was calculated as: Coincident
SNV quality score = (Min Psamples (P1/(P1+P2))). The frequency of
coincident SNVs for each group of subclones was tabulated and
ranked to generate the plots in Figure 4B. For the experiments
withboth cell lines, the groups of subclones sharing a largenumber

of high-scoring coincident SNVs nested in such a way as to indi-
cate a single lineage structure for each of the experiments. This lin-
eage structure was subsequently used for calling branch variants.
The prior estimated lineage structure was used to filter the high-
quality coincident SNV list for coincident SNVs that were con-
sistent with the lineage structure and produce the final branch var-
iant call set.

Filtering the loss-of-heterozygosity (LOH) variants: LOH can
detect SNVs resulting from deletions or duplications of parts of
chromosomes in an accurate and efficient way and further sup-
press false-positive SNVs (Roberts et al. 2013). MuTect has such a
capability when applied in the conventional way comparing tu-
mor and normal sample pairs. However, in our case we perform
analysis across variable numbers of samples, so we needed to iden-
tify and remove LOH events in a separate step. LOH SNVs are de-
fined as SNVs where the alternative allele fraction> 0.85 AND
the reference allele fraction<0.85.

Classifying SNVs in the first cell division of the lineage

By grouping the samples in each branch variant SNV and compar-
ing to the base call at the same locus in a sister lineage, we could
determine which was the reference allele and which was the alter-
native and calculate the variant allele fraction without depending
on an external reference allele. However, for the first cell division,
no such sister lineage exists within our data set, so we do need an
external reference to identify the reference genotype for the cell
that founded each lineage experiment. In the HT115 lineage,
this involved the split across subclones {{47,54}; {34,44,49,63,48,
45,38,56,57}} and in the RPE1 lineage, the split across subclones
{{46,39,34,37,38}; {28,32,36,24,27,44,23,22}}. In order to resolve
this issue, we compared each branch variant SNV in these groups
to the reference genome (hg19) for RPE1 cells and assigned alleles
matching hg19 as a reference. We were less confident in using
hg19 to identify reference alleles in the fast-mutating HT115 cells,
so instead we used base calls from an additional HT115 subclone
we sequenced from a different HT115 lineage experiment (seeded
from the same HT115 cell stock) to identify reference alleles at the
top of the HT115 lineage presented in this study. An additional
consistency check was performed to evaluate if the correct alleles
were assigned as reference after the first generation in the lineage
by verifying that the majority of the SNVs represent homozygote
to heterozygous changes as expected, which was indeed found
to be the case.

Cell line authentication

Cell identity was authenticated by the Broad Genomics Platform
for HT115 using previously stored fingerprint genotypes. The fin-
gerprint consists of the genotype at 82 loci from the query sample
which were compared against fingerprints of all the Cancer Cell
Line Encyclopedia cell lines using the farthest neighbor graph
(FNG) algorithm. The highest correlation (0.83) was found be-
tween our HT115 sample and the CCLE HT115 sample. For RPE1
(which is not a CCLE cell line), we used the ATCC short tandem
repeat (STR)-based authentication service. The STR profile of our
RPE1 sample validated with 100% similarity to hTERT RPE1.

POLE tumor WGS data sets

We assembled a collection of 10 whole-genome tumor data sets
that were published and annotated with POLE coding mutations
and mutator phenotype from the Cancer Genome Atlas (TCGA;
dbGAP: phs000178.v1.p1) (Haradhvala et al. 2016).

Lineage sequencing

Genome Research 1913
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238543.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238543.118/-/DC1


Mutation spectrum calculation

Mutation spectra were defined using standard approaches and re-
ported in the standard format (Alexandrov et al. 2013b). Each
SNV was classified into one of six subtypes—C:G>A:T, C:G>G:
C, C:G>T:A, T:A>A:T, T:A >C:G, and T:A>G:C—and further re-
fined by including the sequence context of each mutated base
(one base 3′ and one base 5′). For example, a C:G>T:A mutation
can be characterized as TpCpG>TpTpG (mutated base underlined
and presented as the pyrimidine partner of the mutated base pair)
generating 96 possible mutation types (six types of substitution×
four types of 5′ base × four types of 3′ base). We compared the mu-
tation spectra from our HT115 and RPE1 branch variant and leaf
variant SNV call sets with patterns extracted from POLE mutant
clinical and cell line (ATCC) samples (Fig. 3A; Supplemental
Table S1). The similarity between two mutation patterns A and
B, defined as a nonnegative vector with 96 mutation types, was
computed by cosine similarity:

sim(A, B) =
∑n

i=1 AiBi����������∑n
i=1 A

2
i

√ ����������∑n
i=1 B

2
i

√ .

A larger cosine similarity value indicates mutation spectra are
more similar to one another. Ninety-five percent confidence inter-
vals were calculated by bootstrapping the SNV list 104 times.

Replication timing analysis

DNA replication timing for HT115 cells wasmeasured according to
a previously described method (Koren et al. 2012; Supplemental
Table S4). Briefly, 50 million cells were fixed with EtOH, treated
with RNase A, and stained with propidium iodide (PI) for DNA
content. G1 and S phase cells were sorted using the FACSAria III
cell sorter (BD; 1 million cells per fraction), and genomic DNA
was extracted and whole-genome sequenced. Replication timing
was calculated by counting the number of S phase reads in consec-
utive windows containing 200 G1 reads along each chromosome,
filtering outlier data points, and smoothing the data with a cubic
smoothing spline. We arbitrarily divided the genome into early-
(≥60), intermediate- (>33 and <60), and late- (≤33) replicating
bins. The 95% confidence intervals (presented as error bars) were
calculated by bootstrapping the SNV list 104 times. Replication
timing data for the RPE1 data set were obtained from a general pre-
viously published data set (Koren et al. 2012).

Branch variant SNV occurrence in genes and exons

Genomic regions consisting of genes, exons, and introns were de-
termined fromRefSeq gene tables (Pruitt et al. 2007). The total frac-
tion of these regions in the genome were counted and normalized
with attention to the locus-wise CNV calls. The log2(observed/ex-
pected) ratios of the branch variant SNV count values in each ge-
nomic region type were calculated. One-tailed binomial tests
were performed to calculate the statistical significance of devia-
tions by the observed counts from the expected number of muta-
tions (based on the average genome-wide count for each lineage
experiment and the size of each genomic region type considered)
using binomial statistics (custom Python code); P<0.01 was con-
sidered significant. The 95% confidence intervals (presented as er-
ror bars) were calculated by bootstrapping the SNV list 104 times,
recalculating results for each list, and determining the 0.025th
and 0.975th quantile values.

Analysis of replication-class (R-class) asymmetry

Left- and right-replicating regions were calculated from replication
timing (Supplemental Table S4) measurements as described previ-

ously (Haradhvala et al. 2016). Regions with 0.1 < slope< 0.3 units/
interval were designated right-replicating, and regions with −0.3 <
slope<−0.1 were designated left-replicating. In order to determine
the reference strand asymmetries (a control for other types of
asymmetry), each of the 12 possible substitutions with respect to
the genomic reference strand (six base-pair changes × two orienta-
tions) were counted and normalized by the number of correspond-
ing bases in the genome to measure mutations/Mb. Rates of
complementary mutations (e.g., C>A and G>T) were then com-
pared. To measure replicative strand asymmetries, all SNVs were
counted with respect to the leading strand template as described
(Haradhvala et al. 2016) using the left- and right-replicating re-
gions defined above. For example, C>A mutations in the leading
strand reference are considered to be genomic reference strand C
>A mutations in left-replicating regions and genomic reference
strand G>Tmutations in right-replicating regions. Mutation rates
were again calculated by normalizing for the number of corre-
sponding bases in the genome within our intervals with defined
replication direction, and the complementary mutations were
compared. Error bars for mutation rates represent a 95% confi-
dence interval for the underlying binomial probability of a given
base being mutated, calculated from the beta distribution parame-
terized as Beta (n+1, N−n +1), where n is the number of a given
mutation and N is the size of the genomic territory of the mutated
base. P-values represent the binomial probability of seeing a given
distribution of complementary mutations, assuming the probabil-
ity of a given mutation is determined solely by the base composi-
tion within an interval (e.g., the probability of seeing a C>A
instead of a G>T is the proportion of C:G base-pairs with a C on
the strand of reference. This will be very near a value of 0.5).
Strand asymmetries were calculated as log2 of the ratio of comple-
mentary mutation counts. Error bars represent a 95% confidence
interval on the log2 quotient of the underlying binomial probabil-
ities above. These confidence intervals were determined empirical-
ly by taking 1000 pairs of samples from the beta distribution above
for both complementarymutation sets, taking the log2 quotient of
each sampled pair, and determining the 0.025th and 0.975th
quantiles of the resulting distribution.

Calculation of branch variant SNV sensitivity and specificity

in lineage sequencing

Due to the lack of a sufficiently accurate independent validation
method (Schmitt et al. 2012; Salk et al. 2018), we estimated the
sensitivity and specificity of lineage sequencing by checking for
the internal consistency of the structured lineage sequencing
data and its consistency with the image-based tracking data.
False-positive and false-negative SNV call rates were estimated by
applying the “raw variants→ lineage → called variants” approach
to generate calls and analyzing the results in the context of the op-
tical cell tracking-based lineage structure. The consensus lineage
structure estimated from the genomic data agreed with the lineage
structure determinedby time-lapse imaging andwas assumed to be
the true lineage structure for this analysis. In the following, coin-
cident SNVs were considered to be true positives when in agree-
ment with the consensus lineage structure and false positives
when conflicting with the consensus lineage structure.

Next, we prepared a scrambled version of our data set where
subclone labels were randomly scrambled for each SNV call, and
false-positive SNV call rates were calculated by summing the count
of coincident SNVs in the scrambled data set that agreed with the
consensus lineage. The data were scrambled by building a list of
10,000 alternative scrambling patterns. Each pattern was checked
to verify that each real subclone set representing the known true
lineage structure was indeed disrupted by the scrambling
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operation and would not create bias. For each SNV, we randomly
picked a scrambling pattern from the list and reassigned SNVs to
the new subclone identities. The scrambled data setwas reanalyzed
and the false-positive coincident SNV rate found to be five SNVs
for the HT115 lineage experiment and 24 SNVs for the RPE1 line-
age experiment, where the quality threshold for accepting coinci-
dent SNVs was set to ≥0.99 (Supplemental Fig. S9).

False-negative SNV counts were estimated by counting the
number of true SNVs thatwere filtered out as a result of their failure
to surpass the required quality threshold for accepting coincident
SNVs. We recognize that these “missing” SNVs could likely be im-
puted to improve the sensitivity of the branch variant SNV call
sets, but we have not performed such an imputation in this study
and seek here to report the “raw” false-negative rate. We start with
the true-positive branch variant SNVs, then query subclones
where the consensus lineage structure would have predicted the
same SNV to exist but none was called due to the “missing” SNV
falling short of the quality threshold applied (0.99). From the
counts of these “missing” SNVs, we subtract the estimated false
positive counts separately estimated at this quality threshold to ar-
rive at the estimated false negative SNV count

FN = [#branch variants , threshold]

− [#scrambled branch variants , threshold].

With True Negative (TN), False Positive (FP), True Positive
(TP), and False Negative (FN) counts, we could estimate the specif-
icity and sensitivity of lineage sequencing for the HT115 and RPE1
lineage sequencing data sets with the coincident SNV quality
threshold at 0.99

Specificity = TN/(TN+ FP) = 0.999 (HT115 and RPE1),

Sensitivity = TP/(TP+ FN) = 0.964 (HT115) and 0.918 (RPE1).

We then estimated the sensitivity and specificity of SNV calls
using the above estimation approach as a function of the coinci-
dent SNV quality threshold value to produce the plots in
Supplemental Figure S10. An additional possible source of false-
negative branch variant SNV calls are coincident SNV calls that
surpass the quality threshold but only partially agree with the con-
sensus lineage structure and were excluded—for example, coinci-
dent SNVs that agree with two out of three samples in a clade of
the consensus lineage structure. These cases were not found to
be higher than expected based on background raw SNV noise.

Generating lineage dendrograms from raw sublineage

SNV calls

Dendrograms representing cell lineage relations between samples
weremeasured by counting the number of high-quality coincident
SNVs between every pair of samples normalized by the total num-
ber of high-quality coincident SNVs. One minus this matrix of
similarity scores results in a matrix of distance scores between ev-
ery pair of samples. This pairwise distance matrix was used to ren-
der dendrograms using the MATLAB seqlinkage tool.

Removing putative in vitro artifacts

To avoid studying in vitro artifacts (Zou et al. 2018), we removed
the oxidation-associated spectrum from the data by de-con-
voluting a subsignature of guanine oxidation (COSMIC signature
18) from the branch variant call sets. We performed a projection
approach to determine the sample-specific attributions of 30
COSMIC mutation signatures by modifying “SignatureAnalyzer”
(http://archive.broadinstitute.org/cancer/cga/msp) (Kasar et al.
2015; Kim et al. 2016). More specifically, the projection was

done by minimizing the Kulbeck-Leibler divergence between the
mutation count matrix, X (96 ×N), where N is the number of pos-
sible sublineages (branches and leafs subclones) from the two cell
lines, and a product of the signature-loading matrix W (96 ×30)
and the activity-loading matrix H (30 ×N). During the optimiza-
tion, the signature-loadingmatrixW, comprised of the normalized
signature profiles of 30 COSMIC signatures, was strictly frozen and
the activity-loading matrix H was iteratively refined through the
multiplication update scheme to best approximate the mutation
count matrix X�WH. The resulting row vectors in H represent
a de-convoluted signature activity across samples (Abeshouse
et al. 2017). The contribution of COSMIC signature 18 was sub-
tracted from all branch variant counts, and mutation rates were
recalculated.

Statistical analysis of mutation rate and quantile-quantile plotting

The counts of branch variants (Fig. 2) were assumed to follow inde-
pendent Poisson distributions (Gelman et al. 2013) with a cons-
tant rate proportional to the number of cell divisions
(=generations). Let yi be the number of mutations per branch,
where yi|λ�Poisson(λ×ni), where ni is the number of generations
per branch.

Weassume thenoninformative prior distribution of λ|gamma
(α,β) with α=0, β=0. So, the posterior distribution is then

l|y � gamma (a+ n× ymean, b+ n).

We then generated the distribution of λ, which resemble the
number of mutations per generation and determined as well as the
0.025th and 0.975th quantiles of the resulting distribution. These
counts were normalized by dividing out the total size of the ge-
nome taking into account the regional copy number variation of
each line (for HT115, total bp of 5.7 ×109, and for RPE1, total bp
of 9.2 × 109) to obtain the mutation rate with units of SNV/bp/
cell division.

The P-value calculations for branch variant counts in each
lineage segment were done by simulation of the Poisson model
106 times with dependence on the segment length. The quan-
tile-quantile plot was produced by comparing the log10 of the sort-
ed observed P-values against the log10 of the sorted expected P-
values.

Haploid mutation count validation

The full list of branch and leaf variants in the HT115 lineage exper-
iment was reduced to those SNVs that occur in haploid regions by
filtering allele fraction SNVs where both the reference allele frac-
tion was >0.9 and the alternative allele fraction was also >0.9.
Leaf variant SNVs in this set are likely to be true SNVs that occurred
in the last generation of the lineage experiment. The total length
of haploid regions was calculated in consideration of themeasured
copy number and totaled 3.05× 108 bp. We estimated the muta-
tion rate in these regions.We then simulated the Poisson counting
statistics as described before 106 times and determined the 0.025th
and 0.975th quantiles of the resulting distribution to establish
confidence intervals.

Detection of multinucleotide variants

The distances between variants were measured and compared to
the expected distances between variants that were generated ran-
domly assuming random uniform spacing of mutations across
the genome. We simulated random sets of 12,662 SNVs for
HT115 (branch and leaf variants) and 1985 SNVs for RPE1 (branch
and leaf variants) 103 times and calculated distance distributions.
Then, for each SNV we calculated the distance to the closest SNV
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from the same lineage from (1) all other detected SNVs, or (2) all
other SNVs except SNVs that shared between the same group of
subsets.

Detection of different SNVs that occurred at identical genomic

positions

In order to identify SNVs that occurred at identical genomic posi-
tions, we modified the “raw variants → lineage → called variants”
approach by allowing initial clustering into three groups (‘refer-
ence,’ ‘alternative 1,’ or ‘alternative 2’). Initial coincident SNVs
were then determined by hierarchical clustering of three groups
for each SNV (Scipy hierarchy fcluster). The center of every cluster
was calculated and the quality of coincident SNV classificationwas
calculated similarly as above, by the probability of each sample to
belong to its consensus-assigned group

P(sample [ assigned group) = P1
P1+ P2+ P3

.

The final quality score of themultiple event coincidentmuta-
tions was determined by taking the minimum probability sample
as describing each sample

Coincident SNV quality score = Min Psample
P1

P1+ P2+ P3

( )( )
.

Calculating the probability of getting two variants coinciding in

the same locus in our data set

Initially, we estimated the probability ofmultiple variants coincid-
ing at the same genomic locus for uniform probability along the
whole genome by simulating (104 times) the chance of getting
more than one repeated event out of 12,662 total events in
HT115 (all branch and leaf variants), or out of 1985 total events
in RPE1, which provide a low probability for a repeated event P<
2×10−6. However, the assumption of uniform probability over
the genome is not accurate (Fig. 2C,D; Supplemental Figs. S7, S8)
and underestimates the probability of mutation coincidence. For
a more accurate estimate, we used data available from an addition-
al HT115 subclone we sequenced from a different HT115 lineage
experiment, seeded from the same HT115 cell stock (subclone
‘out’) (Fig. 2A). Subclone ‘out’ has mutations that are independent
of the specific mutations in our HT115 lineage experiment but
have the same underlying distribution. We could test for overlaps
with the leaf variant set fromour lineage experiment; two overlaps
were found. To determine the number of effective comparisons
(denominator), we compared subclone ‘out’with the estimated ge-
notype of the cell that founded the lineage experiment and found
about 18,901 SNVs that separate sample ‘out’ from our lineage an-
cestor + 9880 more leaf variants that accumulate separately in the
lineage. We searched for overlapping mutations among the sam-
ples and found two overlaps from a set of 28,781 independent
SNVs. This provides a rate of overlap from representative null
data we can use to determine a P-value for the overlap rate we ac-
tually observed in the HT115 lineage experiment (seven overlaps
out of 12,662 total intra-lineage variants). After running the simu-
lations (105 times) we estimated the probability to observe several
repeated events (Supplemental Fig. S17A): seven cases in HT115 (P
<3×10−5) and for four cases in RPE1 (P<1×10−5).

Probability that overlapping SNV pairs co-occur within

sublineages

In our results, all the detected pairs of SNVs which occurred at
identical genomic positions occurred within a given sublineage.
We tested the likelihood that independent pairs of SNVs occurring

at identical genomic positionswill fall within the same sublineage.
We simulated two independent events at a time using the proba-
bility of getting mutation from each specific subset of samples.
We simulated 5 ×105 instances and for each chose randomly two
possible branch/leaf variants from our call sets (four times for
RPE1 and seven times for HT115). For every set of pairs, we mea-
sured the fraction of pairs that were congruent with the lineage
structure and plotted the resulting distribution of observed frac-
tions for RPE1 and for HT115. In the simulation, 1–3 out of
500,000 cases gave this result for HT115 (seven events), indicating
a P-value less than P<6×10−6. P<6.6 ×10−4 was found for four
events in RPE1 (Supplemental Fig. S18B).

Data access

All sequencing data produced in this study (aligned to hg19
[GRCh37]) have been submitted to the NCBI Sequence Read
Archive (SRA; https://www.ncbi.nlm.nih.gov/sra/) under acces-
sion number SRP159787. Custom Python source code is available
in Supplemental File S5 and on GitHub (https://github.com/
yehudabrody/Lineage-sequencing- - -proof-of-concept).
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