
Modeling Genome-Wide Dynamic Regulatory Network in
Mouse Lungs with Influenza Infection Using High-
Dimensional Ordinary Differential Equations
Shuang Wu., Zhi-Ping Liu., Xing Qiu, Hulin Wu*

Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, United States of America

Abstract

The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse
engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data
collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection
within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed
modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is
developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data.
Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20
distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic
network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our
inferred network show some interesting findings and are highly consistent with existing knowledge about the immune
response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline
bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data
elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological
processes.
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Introduction

Influenza A virus is an important respiratory pathogen that

poses a considerable threat to public health each year during

seasonal epidemics and even more so when a pandemic strain

emerges. The immune response to viral infection is a dynamic

process and is regulated by an intricate network of many genes and

their products. Understanding the dynamics of this network will

shed light on the mechanisms involved in controlling influenza

infection within a host and is also important for developing new

and effective treatment strategies. Recently, several studies have

been performed to monitor the within host genome-wide

expression patterns of immune responses over time to influenza

infection [1,2]. Analyzing such time course gene expression data

requires the use of advanced statistical and computational

approaches developed specifically for time series data instead of

the standard methods for the traditional snap-shot or vector

expression data. In particular, reverse engineering the gene

regulatory networks (GRNs) from the time course expression data

using mathematical models, especially dynamic network models, is

of increasing research interest. In this paper, we will use a high-

dimensional ordinary differential equation (ODE) model to

construct the genome-wide dynamic GRN of influenza infected

mouse lungs. This model will provide quantitative measures of the

global response of the immune system to influenza infection in vivo

and also help us better understand the virus-mediated immuno-

pathology in a systematic way.

Previously developed computational approaches for inferring

GRNs from gene expression data are either not efficient in

describing dynamic regulations between genes or restricted to

small-scale networks. For example, information theory models [3–

5] are basically correlation networks. They are simple and easy to

compute, but they are static models and do not take into account

that multiple genes could co-regulate a target gene. Boolean

networks [6–9] are discrete dynamic networks in which the state of

a gene is represented by a binary variable that is either on or off.

Such models are limited because the continuous nature of gene

expressions cannot be described adequately by only two states.

Bayesian networks (BNs) [10–16] make use of the Bayesian rule

and provide a flexible framework for combining different types of

data and prior knowledge. Time course data can be used to

reconstruct dynamic BNs [13,15], but the optimization of the

network usually requires very high computational cost, so the

applications are mostly limited to small systems. The vector

autoregressive (VAR) and state space models (SSM) models are
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discrete dynamic models which usually require equally-spaced and

intensive time-series data in order to obtain reliable inference

results for model parameters [17–19]. Differential equation models

[20–28] quantify the change rate (derivative) of the expression of

one gene in the system as a function of expression levels of all

related genes. It is a directed network graph model and the

dynamic feature of the GRN is automatically and naturally

quantified. Moreover, both up and down regulatory relationships

between genes as well as self-regulations can be appropriately

captured. A major challenge to use differential equation models for

reconstructing GRNs is how to identify the model structure and

estimate parameters efficiently in high-dimensional models.

Excellent reviews on diverse data-driven modeling schemes and

related topics can be found in [29–31].

Our objective is to develop a computationally efficient method

that is feasible to reverse engineer genome-wide dynamic GRNs

using high-dimensional ODE models. We propose a novel pipeline

to reconstruct dynamic GRNs from time course gene expression

data by combining a series of cutting-edge statistical techniques. A

major difference of our method from the work by others is that we

do not discretize the ODE model by transforming the derivatives

into differences. Our approach uses the smoothed estimates of the

first derivatives of the gene expression profiles. It has been shown

that such smoothed-based method produces better parameter

estimates for ODEs than those discrete-time models based on

differences, because it is more robust to the noises in data [27,32].

In addition, we use several advanced statistical techniques such as

the two-stage estimation method for ODEs and the penalization-

based variable selection method to speed up the identification of

the network structure, so that our method is capable of handling

large-scale, including genome-wide, gene regulatory networks.

In a typical gene expression experiment, tens of thousands of

genes are measured simultaneously, but only a fraction of them are

associated with the biological process of interest or a particular

stimulus. Since it is reasonable to include only these ‘‘responsive’’

genes in the ODE network model, the first step in the GRN

modeling is to identify temporally differentially expressed genes,

i.e., genes with expression levels that change significantly over

time. Within the set of differentially expressed genes, which usually

ranges from several hundreds to thousands, many genes behave

similarly during the experimental period, making it difficult to

distinguish their expression patterns based on the time course data.

We assume that genes with similar expression patterns have similar

biological functions under the same experimental conditions and

cluster these similarly behaved genes into co-expressed modules

[33,34]. Similar assumptions have been adopted by [4,35] and

[36,37] have clearly shown in their studies that genes in the same

expression cluster were enriched for similar biological functions.

We treat these co-expressed modules as the nodes of the GRN,

which significantly reduce the dimension of the ODE model and

the associated computational cost. Moreover, this approach can

help avoid the identifiability issue of the ODE model, as the gene

expressions of these modules are sufficiently different from each

other [38].

It is well known that biological systems are seldom fully

connected and most nodes are only directly connected to a small

number of other nodes [39], consequently, the GRN is a sparse

network. In the key step of identifying the sparse structure of the

network, i.e., identifying the significant edges between modules, we

couple the advanced parameter estimation method for ODE

models with statistical variable selection techniques to perform

model selection. This method avoids numerically solving the

differential equations directly and more importantly, it allows us to

perform model selection and parameter estimation for one

equation at a time, which significantly reduces the computational

cost. Once the network structure is determined, we can refine the

estimates of the model parameters using more refined optimization

methods, and then annotate biological implications based on the

refined network through the functional enrichment analysis.

Results and Discussion

Pipeline of reverse engineering genome-wide GRN
The road map of the proposed pipeline is summarized in

Figure 1. Our pipeline enables the global analysis of genome-wide

time course gene expression data and outputs the dynamic GRN.

The pipeline consists of five steps: (i) detection of temporally

differentially expressed (DE) genes; (ii) clustering differential genes

into co-expressed modules; (iii) identification of network structure;

(iv) parameter estimate refinement; and (v) functional enrichment

analysis. A series of advanced statistical techniques are employed,

including the functional principal component analysis (FPCA) with

hypothesis testing, time course gene expression clustering,

nonparametric mixed-effects modeling, and parameter estimation

and statistical inference for ODE models. The technical details of

our pipeline are described in the Methods section. D-NetWeaver,

a graphical user interface (GUI) software, implements this pipeline

and is available at https://cbim.urmc.rochester.edu/software/d-

netweaver/.

Experimental data
We apply the proposed reverse engineering pipeline to study the

genome-wide regulatory interactions of the dynamic GRN in

mouse lungs after perturbation of the immune system by influenza

infection. The time course microarray gene expression data were

collected by Pommerenke et al. [2] in mouse lungs infected with

influenza A virus PR8 (H1N1). The genome-wide transcriptome

patterns were measured at days 1, 2, 3, 5, 8, 10, 14, 18, 22, 26, 30,

40 and 60 post infection (p.i.). Three mice were prepared as

independent biological replicates at each day p.i., except for day 3

and 5, where there were 6 replicates. Nine mice were mock-

infected and their gene expression data were collected as baseline

measurements (day 0). The total number of genes in the data set is

27527.

Global temporal variation of differentially expressed
genes

We identify 3666 genes with temporally differential expression

patterns after viral infection at the false discovery rate (FDR) of

0.01. From the pair-wise correlation matrix of these DE genes

(Figure 2 (a)), we can clearly see that the temporal transcriptional

variations can be partitioned into three phases: early (up to day 4

p.i.), intermediate (days 5–17 p.i.) and late (days 18–60 p.i.). These

three transcriptional phases after influenza infection are likely to

be associated with the major phases of the immune response: the

innate, the adaptive, and the memory immune response, as well as

the tissue repair process. In addition, a functional principal

component analysis [40] of the DE genes reveals that the majority

of temporal variations in these genes are reflected by two

orthogonal representative patterns, which we refer to as the

eigenfunctions (Figure 2 (b)). The gene expression profile of each

gene can be represented as a linear combination of these two

eigenfunctions. The first eigenfunction (explaining 79.7% of the

total variation) has an early peak around day 4 p.i. and gradually

drops until around day 18 p.i., followed by a sustained slow

decrease until day 60 p.i. The second eigenfunction (explaining

18.2% of the total variation) exhibits a rapid increase in the

beginning, reaching a peak at around day 10 p.i., and then

Dynamic GRN in Mouse Lungs with Flu Infection
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decreases afterwards. From the shapes of these two eigenfunctions,

we can see that the temporal variations in the DE genes mostly

occur around day 4 and day 10 p.i., which are likely to be

associated with the innate immune response and T cell response,

respectively. We also notice that genes with large negative loadings

on the first eigenfunction are activated after day 10 p.i. and

increase till day 60 p.i. These late-activated genes probably

correspond to the infiltration of B cells into the lungs and the

formation of bronchus-associated lymphoid tissue (BALT) and

tissue repair in the lung.

Identification of distinct temporal expression patterns
To view the temporal gene expression patterns after virus

infection on a more refined scale and also to facilitate the following

network modeling, we cluster the DE genes into co-expressed

modules. A total of 20 modules are obtained (Figure 3, Table S1).

Treating the gene expression profiles within the same module as

longitudinal replicates, we obtain the smoothed mean expression

curve and the corresponding first order derivative for each module

using model (6) in the Methods Section. Please note that Figure 3(b)

is plotted in the real time scale. It may be difficult to see the

differences in the module patterns, because most of the temporal

variation occurred in the first few days. The heat map of the

standardized gene expression profiles for each module in

Figure 3(a) better shows the pattern differences. Functional

enrichment analysis is carried out using DAVID [41]. Due to

space limitation, we only display some selective functional

annotations in Table 1. We can see that several modules have

functions related to the immune response, such as innate immune

response, positive regulation of adaptive immune response, T cell

activation, B cell receptor signaling pathway. More details of the

enriched functions for each module and the genes associated with

each functional term can be found in Table S2.

The innate immune response is the first line of defense against

pathogens and acts more fast in comparison to the adaptive

immune response. We can see that genes in M1 respond to the

viral infection immediately with expression levels rapidly increas-

ing up to around day 8 p.i. and then quickly dropping back to

baseline levels after day 14 p.i. (Figure 3(a)). Consistent with the

early activated expression patterns, we find that genes in M1 are

mostly related to the innate immune response (Table 1 and Table

S2). For example, Tnf is one of the most important proinflamma-

tory and proimmune cytokines and is known to be critically

involved in the regulation of infectious and inflammatory

phenomena [42]. Another important cytokine gene, Infg, is also

found in M1. Interferon gamma (IFNc), which is encoded by Ifng,

is often known as the macrophage-activating factor. It has the

ability to inhibit viral replication directly and thus is crucial for

innate immunity against viral infections [43]. The chemokine

receptors Ccr2 and Ccr5 play important roles in the recruitment of

monocytes/macrophages and T cells. Ccr2 and Ccr5 knockout

mice appear to have impaired macrophage function and dendritic

Figure 1. The road map of the proposed pipeline for reconstructing genome-wide dynamic GRNs.
doi:10.1371/journal.pone.0095276.g001

Figure 2. Overview of the temporal variations of DE genes. (a) Correlation matrix between every pair of time points indicates three major
transcriptional phases. (b) Estimates for the first two eigenfunctions (first-black solid, second-red dashed) for the DE genes.
doi:10.1371/journal.pone.0095276.g002
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cell activation in the lung, which in turn considerably alter natural

killer (NK) cell function and innate immunity in mice [44,45].

Genes in M2 and M3 are also activated in the early phase, but

their gene expression patterns differ from those of M1 after day 14

p.i. As shown in Figure 3(a), gene expressions of M2 stabilize to

levels lower than baseline after day 14 p.i., while those of M3

remain higher than baseline until day 60 p.i. The biological

functions enriched in M2 include DNA replication and apoptosis

after viral infection. Some T cell related functions are also found in

M2 but they are not significantly enriched (Table 1 and Table S2).

M3 is mainly enriched for lymphocyte and leukocyte activations,

including the important innate immune modulator Bcl3, which is

known to be associated with secondary lymphoid organ develop-

ment, cell survival, and inflammatory cytokine gene expressions,

and is able to prevent acute inflammatory lung injury in mice by

restraining emergency granulocyte accumulation [46,47] (Table 1

and Table S2).

The transition to the intermediate phase is marked by the

activation and proliferation of T cells and lymphocytes. We can

see that both M4 and M5 feature strong augmentations of gene

expression levels starting at around day 3 p.i. and peaking around

day 8 p.i. While the gene expression levels of M5 drop quickly

after day 14 p.i., those of M4 still remain considerably higher than

baseline levels till day 60 p.i. (Figure 3(a)). There are several T cell

signature genes in M4, such as Cd28, Tcra, Cd3d, Cd3g and Cd3e

(Table S2). Cd28 is a receptor on T cells and it provides a major

costimulatory signal upon binding to target ligands B7-1 and B7-2.

Such constimulation via Cd28 is essential for initiating antigen-

specific T cell responses, upregulating cytokine expression and

promoting T cell expansion and differentiation [48]. Cd28-

deficient mice have impaired proliferative responses to antigen

and anti-CD3 monoclonal antibody activation, but still display

significant cytotoxic responses and delayed-type hypersensitivity

after virus infection, suggesting that alternative costimulatory

pathways may exist [49]. It has been shown that the costimulatory

pathway involving Cd27 (M5, Table S2) is critical for T cell

expansion and survival and also for the induction of long-term

memory. Although both Cd27 and Cd28 make crucial contribu-

tions in the generation of antigen-specific T cells, Cd27 appears as

a major determinant for CD8 T cell priming at the site of

infection. In addition, both receptors induce the expansion of

virus-specific T cells, but Cd28 promotes cell cycle entry, whereas

Cd27 enhances the accumulation of newly activated T cells by

stimulating cell survival [50].

As shown in Table 1 and Table S2, genes in M6 are mostly

associated with cell cycle and division. B cell related functions are

enriched in M7, indicating the recruitment of B cells into the lung

(Table 1). Accordingly, we find that the gene expression levels of

M7 start to increase after around day 5 p.i., reaching a peak at

around day 14 p.i., and continue to be highly expressed till day 60

p.i. (Figure 3(a)). Many of the genes in M7 are known to be B cell

markers or involved in B cell regulation, such as Cd19, Bank1, Blnk,

Cd79a, Cd79b, Tnfrsf13b and Tnfrsf13c [2,51] (Table S2). In

addition, M7 is enriched for antigen processing and presentation

of exogenous peptide antigen via major histocompatibility

complex (MHC) class II, whereas M1 is enriched for antigen

Figure 3. Temporal expression profiles of DE genes. (a) The DE genes are clustered into 20 modules (M1–M20) and the number of genes in
each module is displayed in the parentheses. Shown are standardized gene expressions normalized to day 0. (b) The smoothed mean expression
curve obtained from (6) (red solid) for each module overlaid with the refined estimate from the linear ODE model (blue dashed).
doi:10.1371/journal.pone.0095276.g003
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processing and presentation of exogenous peptide antigen via

MHC class I (Table 1). Exogenous antigens enter the MHC class I

pathway of antigen-presenting cells (APCs) by a process called

‘‘cross presentation’’ and this process is thought to be crucial for

priming CD8-dependent responses against pathogens. MHC II

molecules associate with peptides derived from exogenous antigens

internalized by endocytosis and they are essential for CD4 T cell

recognition of antigen-presenting cells [52]. The ability of MHC II

molecules to process and present major MHC II-restricted

antigens is known to be regulated by dendritic cells (DCs) [53].

M8, M9 and M10 share similar gene expression patterns, which

gradually increase after viral infection and stay at a stabilized level

until day 60 p.i. The difference among these three modules is that

gene expression levels in M8 start to increase around day 10 p.i.,

while those in M9 and M10 start around day 5 and day 18 p.i.,

respectively (Figure 3(a)). M8 is enriched for the epithelial cell

differentiation and development, so this module is likely to be

associated with the tissue repair process in mouse lungs. Some

genes in M9 and M10 are also related to the epithelial cell

differentiation and development, but these functions are not

significantly enriched in these two modules (Table S2). M11–M20

have down-regulated gene expression patterns, and interestingly,

we find that the enriched functions in these modules are mainly

house-keeping biological functions, such as cellular process,

development, metabolism and binding. Down-regulation in a cell

is the process of decreasing the quantity of a cellular component,

which may be a protein or a receptor or RNA, in response to an

external signal. Here these down-regulated expression levels may

reflect the death of the lung epithelial cells or their impairment due

to virus infection.

Regulatory network between modules
The co-expressed modules can be considered as ‘‘super-genes’’

and the intra-module functional annotations presented in the

previous section summarize the biological functions of these super-

genes. Besides the intra-module functional annotations, we are also

interested in building a functional landscape of the genome-wide

regulatory network in response to viral infection by constructing a

dynamic network between these modules. Applying the two-stage

decoupling approach and the SCAD variable selection technique

(see Methods), we are able to identify the structure of the module-

based network through the linear ODE model (5). The inferred

network is sparse, with 90 regulatory relations between 20 modules

and only 3 to 6 inward regulations for each module. Since the

identified between-module regulatory relationships depend on

appropriately chosen tuning parameters in the SCAD method, we

randomly perturbed the selected tuning parameters by up to 20%

and observed that the structures of the original network and the

networks constructed using the perturbed tuning parameters were

very close (results not shown), indicating that our data-driven

Table 1. The inward and outward regulations in the module-based regulatory network.

Module Inward Influence Outward Influence Functional Annotation

M1 1, 42, 62, 72 1, 32, 5, 62, 72, 92, 122,
132, 14, 15, 172, 18

Innate immune response, antigen processing and presentation of exogenous peptide antigen
via MHC class I, cytokine-cytokine receptor interaction, NK cell mediated cytotoxicity, cytokine
mediated signaling pathway

M2 32, 4, 7, 122, 142, 17 Immune response, apoptosis

M3 12, 4, 6, 72 22, 4, 52, 11, 16, 19 Defense response, leukocyte and lymphocyte activation

M4 3, 5, 72, 18 12, 2, 3, 5, 72, 112, 122 Activation and differentiation of lymphocyte and leukocyte, T cell activation, hemopoietic or
lymphoid organ development, T helper cell surface molecules, T cytotoxic cell surface
molecules

M5 1, 32, 4, 5, 62 4, 5, 162 Activation and proliferation of T cell and lymphocyte, regulation of cytokine production

M6 12, 62, 72, 122, 152,
192

12, 3, 52, 62, 82, 12,
14, 19

M phase, mitotic cell cycle, cell division

M7 12, 42, 82, 92, 152, 192 12, 2, 32, 42, 62, 82,
10, 12, 162, 18

B cell activation, B cell receptor signaling pathway, antigen processing and presentation of
exogenous peptide antigen via MHC class II, intestinal immune network for IgA production

M8 62, 72, 122, 192 72, 92, 102, 13, 15, 17,
18, 19, 20

Epidermis development, primary immunodeficiency, epithelial cell differentiation, epithelium
development

M9 12, 82, 152, 192 72, 162, 19, 202 Epithelium development

M10 7, 82, 142, 152, 19, 202 Regulation of RNA metabolic process, positive regulation of epithelial cell differentiation

M11 3, 42 Transmembrane receptor protein tyrosine kinase signaling pathway

M12 12, 42, 6, 7, 192 22, 62, 82, 14 inositol phosphate metabolism

M13 12, 8, 192 18, 19 Drug metabolism, negative regulation of cell migration

M14 1, 6, 12, 15, 202 22, 102, 20 vasculature development

M15 1, 8, 192 62, 72, 92, 102, 14 Microtubule-based process, ciliary or flagellar motility

M16 3, 52, 72, 92 negative regulation of cellular component organization

M17 12, 8, 192 2 ECM-receptor interaction

M18 1, 7, 8, 13, 182, 192 4, 182, 192 Tight junction

M19 3, 6, 8, 9, 13, 182 62, 72, 82, 92, 10, 122,
132, 152, 172, 182, 202

Drug metabolism

M20 8, 92, 14, 192 102, 142 Negative regulation of molecular function

The negative sign indicates a negative coefficient in the linear ODE model; otherwise the coefficient is positive. The underlined modules are hub modules with the most
outward regulations.
doi:10.1371/journal.pone.0095276.t001

Dynamic GRN in Mouse Lungs with Flu Infection

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e95276



network is robust to the tuning parameter choices. Conditional on

the identified network structure, the regulatory parameter

estimates are refined using the nonlinear least squares. The

estimated expression curves from the refined ODE model are

displayed as dashed lines in Figure 3(b). We can see that these

refined curve estimates from the ODE model closely follow the

mean expression trend for each module.

The inferred module-based GRN is visualized in the inner circle

of Figure 4 and the detailed information about the inward and

outward regulatory relationships between modules is summarized

in Table 1. The negative signs in the table correspond to negative

coefficients in the refined ODE model. They indicate that the

regulatory effects of the other modules on the changing rate of the

target module’s expression are negative. The positive coefficients

in the refined ODE model can be interpreted similarly. We find

that Modules 1, 3, 4, 6, 7, 8 and 19 have the most outward

regulations, indicating their crucial roles in this network, and we

refer to them as the ‘‘hub’’ modules.

Linking the functional annotations and the topology of the gene

network identified through the ODE model (Figure 4) can help us

understand the functional linkages and associations between these

modules, and thus better understand the dynamic regulatory

relationships of the whole immune system. Taking M1 as an

example, we can see from Table 1 that it regulates most of the

other modules, indicating the crucial role of this module in the

immune response. M1 is associated with the innate immune

response, which provides a generic but immediate defense against

pathogens. Since the innate immune response is the first line of

defense against invading microbes, it is likely to have influences on

many other components or processes in the immune system. For

example, it is known that the innate immune response can activate

and regulate the antigen-specific adaptive immune response in

host defense [54,55], consistent with M1 regulating M5 and M7,

Figure 4. The module-based gene regulatory network constructed by the linear ODE model from the viral infection gene
expression data (the inner circle). Selective important regulators and genes identified in each module are shown in the outer circle.
doi:10.1371/journal.pone.0095276.g004
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which are enriched as ‘‘T cell and lymphocyte activation’’ and ‘‘B

cell activation’’, respectively (Table 1). For the inward regulations,

we find that M1 is regulated by M4, M6, M7 and itself. Many cells

are activated during the innate immune response, so cell cycle and

division, the main functions of M6, should be involved in the

innate immune response. M4 and M7 are both associated with the

adaptive immune response, so the regulation of M1 by M4 and

M7 indicates that the adaptive immune response has an impact on

the innate immune response. This is consistent with the fact that

the migration and activities of innate cell types such as neutrophils,

monocytes, macrophages, and dendritic cells can be regulated by

secretion of cytokines and chemokines by lymphocytes, in

particular several T cell subtypes [56,57]. The self-regulation of

the innate immune response has also been discussed in literature.

For example, neutrophils have interactions with different compo-

nents of the innate immune system and can differentially influence

the innate immune response [57]. These inter-module regulatory

relationships imply the cooperative interactions of these network

units and the dynamics of the immune responses after the viral

infection.

To better understand the inter-module regulatory relationships

on the gene level, we compiled 2389 mouse transcription factors

(TFs) from FANTOM [58] and Uniprot [59] (see Table S3) and

identified the TFs contained in each module. Some important TFs

and genes are shown in the outer circle of Figure 4. Within each

module, the TFs can be considered as the functional regulators

that mediate the module to perform certain functions, while

between modules, the regulatory relationships identified through

our data-driven method, may imply potential interactions of the

TFs in one module with the TFs and genes in other modules. In

other words, if module B regulates module A, the regulators/TFs

of a gene in module A are likely to be included in module B.

We find that many of the regulatory interactions identified in

our data-driven GRN are already known. For example, Irf4, Irf5

and Ir8, belonging to M7, M1 and M4, respectively, are members

of the interferon regulatory factor (IRF) family that play versatile

and critical roles in the modulation of cell differentiation,

development and function of immune cells. It is known that Irf5

plays an important role in regulating the innate immune response.

It activates Type I interferon (IFN) and proinflammatory cytokines

and chemokines upon virus infection[60]. It also has a critical role

in the regulation of B-cell differentiation [61], which is in line with

M1 regulating M7 in our inferred GRN. Irf4 and Irf8 are

structurally-related and both support T cell differentiation and B

cell development [60]. Irf4 is known to regulate toll-like receptor

(TLR) signaling and the transcriptional regulation of proinfram-

matory cytokine genes such as Il12b (M1) [60,62], consistent with

M7 regulating M1 in our inferred network. Both Irf4 and Irf8

regulate various macrophage-related genes such as those encoding

Cathepsin C (Ctsc, M3) and Scavenger receptor (Msr1, M1)

[60,63]. In addition, they strongly induce Irf5 (M1) transcripts,

whereas Irf5 may also mediate the effects of Irf8 on the innate

immune responses in macrophages [63].

Regulatory relationships within modules
Our module-based GRN represents the global regulatory

relationships between multiple co-expressed gene sets, which is a

higher level regulation compared to the TF-gene interactions.

Each of the modules assembles the intra-module regulations of

many genes to fulfill certain biological functions and interacts with

other modules cooperatively after viral infection. In order to

decipher the intra-module regulations, we integrate the regulatory

linkages between the TFs and target genes, and build the

regulatory relationships within each module (see Methods). For

illustration, we only show the transcriptional regulatory relation-

ships in four modules M1, M4, M6 and M7 (Figure 5). The

detailed list of regulatory relationships of all modules can be found

in Table S4.

Many interesting intra-module regulatory relationships have

been identified. For instance, it is known that Irf5 in M1 is a

member of the interferon regulatory factor (IRF) family and it

regulates the chemokine gene Ccl4, whose protein is a chemoat-

tractant for NK cells [59]. The TF Stat1 (signal transducer and

activator of transcription 1) in M1 is involved in the cellular

responses to interferons [64]. The regulatory relationships of Stat1

with its targets Ifng, Gbp2, Gbp4, Il12a and Tap1 indicate the

responsive regulations after viral infection, i.e., the activation of

the innate immune response and the activated functions of NK

cells and cytokine-cytokine receptor interactions, which are

consistent with the functional annotation for M1 shown in Table 1.

In M4, the gene regulations between the IRF family member

Irf8 and its targets H2-DMa and H2-DMb1 play critical roles in the

immune response [51]. The gene regulations between lymphoid

transcription factors Ikzf1 and Ikzf3 imply their mediation of

hematopoietic cell differentiation and T cell development [65]. We

also find that TF Bcl11b, which is known as a tumor-suppressor

protein involved in T-cell lymphomas, regulates Cd3g, a T cell

receptor CD3 complex gene [59]. Moreover, the cell-cycle related

regulators Mcm4 and Mcm6 are found to be highly connected with

their targets. These T-cell and cell-cycle related intra-module

regulatory relationships enrich the module function of activation

and proliferation of T cells. From the inter-module perspective,

M4 regulates M1, indicating the cooperative influences of innate

immune responses and adaptive immune responses of T cell

activation and proliferation after influenza A virus infection.

The biological functions most significantly enriched in M6 and

M7 are ‘‘cell cycle and division’’ and ‘‘B cell differentiation’’,

respectively. Accordingly, we find that in M6, the interactions

between the TF Kntc1 and its targets Cdca8, Cdc20 and Cdc25c are

closely related to cell cycle and cell division. In addition, TFs Brca1

and Brca2 are well known as the major mediators of DNA damage

in breast cancer research and the TF Mcm3 is crucial for DNA

replication and cell proliferation [59]. The gene regulations

between these TFs and their targets Rad51, Rad51ap1, Mcm10 and

Pola1 delineate the responses of DNA replication in cell division

and DNA repair after viral infection. In M7, the regulation

between Bcl11a and Tnfrsf13b plays a crucial role in the stimulation

of B cell function and the regulation of humoral immunity [59].

The gene regulations between TFs Irf4, Spib and their target genes

Cd19, Cd79a, Cd79b, Cd37 and Cd83 indicate the B cell

proliferation and differentiation in response to influenza infection.

They assemble the antigen receptors of B-lymphocytes in order to

decrease the threshold for antigen receptor-dependent stimulation

[66]. The interferon regulatory factor Irf4 regulates the major

histocompatibility complex genes H2-Aa and H2-Eb1, which

indicates the control of B-cell proliferation and differentiation.

These intra-module regulations demonstrate the detailed regula-

tory relationships of these interconnected modules respectively.

Besides the four modules above, we also find some interesting

intra-module regulatory relationships in other modules. For

example, M8 is associated with epithelial cell differentiation and

development, which reflects the redevelopment or repair of the

immune system after viral infection. The TF Trp63 in M8 is

considered as a master regulator of stratified epithelial develop-

ment [67] and the regulatory relationship between Trp63 and gene

Krt14 illustrates the underlying transcriptional program during the

repair process. In addition, there are TFs and genes in each

module whose regulatory interactions are currently not docu-
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mented in the literature. For simplicity of presentation, these

isolated TFs and genes are not shown in Figure 5. Although not

connected in the current knowledge-based intra-module regulato-

ry linkages, many of the isolated TFs and genes in the same

module are found to be related to the same biological functions or

processes. For instance, in M4, the TFs Ezh2, Tox and TNF-

receptor-associated factor (TRAF) family members Traf2, Tnfrsf4,

Tnfrsf11a, Tradd and Tnfrsf18 are known to be associated with the

activation of NF-kappaB signaling pathway and the critical roles in

CD4+ T cell responses as well as in T cell-dependent B cell

proliferation and differentiation after influenza A virus infection

[51]. It is possible that there are undiscovered regulatory

relationships between these TFs and genes, which may potentially

lead to some experimentally testable hypotheses of gene regula-

tions responding to influenza A virus infection.

Conclusions

We proposed a novel pipeline for reverse-engineering of the

dynamic GRN based on ODE models. We focused on the

genome-wide time course gene expression data, which provides a

complete view of the evolvement of the biological phenomena over

a period of time rather than at a single time point. A series of

advanced statistical and computational techniques are employed

Figure 5. Intra-module regulatory relationships for four modules M1 (a), M4 (b), M6 (c) and M7 (d). TFs are shown in aquamarine and
target genes are shown in green. Isolated TFs and genes are not shown.
doi:10.1371/journal.pone.0095276.g005
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to efficiently reduce the dimension of the problem and to account

for the correlations between measurements from the same gene.

The proposed pipeline is a computationally efficient, data-driven

tool bridging the experimental data, mathematical modeling and

statistical analysis. More importantly, the pipeline employs a

systems biology approach, allowing us to model a living system as a

whole rather than a collection of individual biological entities and

providing insights into the control of a part of the system while

taking into account the effect on the whole system.

We implemented our proposed pipeline to build a genome-wide

dynamic GRN of mouse lungs after influenza A virus infection.

Our modules are composed of co-expressed genes. The functional

annotations of these modules together with the between-module

network topology provide valuable information about the dynamic

activities in the mouse immune system. Specifically, the intercon-

nected regulatory relationships between these modules represent

the global and cooperative machinery in response to viral

infection. Within each module, some gene regulators may drive

the regulation control program so that genes in the module could

perform certain biological functions of the immune response.

These intra-module network connections suggest the regulatory

relationships between these regulators and their target genes.

Complete lists of the biological functions of each module and the

intra-module regulatory relationships can be found in Tables S2,

S3 and S4. Using the proposed data-driven methods, we

delineated the hierarchical structure and functions of the

genome-wide dynamic GRN and succeeded in detecting many

regulatory interactions that are known to be important in mouse

immune response, demonstrating the usefulness of the proposed

pipeline in rewiring the temporal transcriptomic dynamics in

response to viral infection. Moreover, our pipeline is a general

methodology with broad applicability to time course gene

expression data from a variety of biological processes, which will

provide valuable insights into the systematic modeling of

complicated biological systems and potentially generate data-

driven hypothesis that can be further validated by biological

experiments.

A global transcriptome analysis was conducted for these same

gene expression data in [2] and the authors used cell-specific

signature genes of the three main immune cell populations, NK, T

and B cells, to study the kinetics of immune responses. We adopted

completely different approaches from those in [2] to analysis the

same data and our method emphasizes the time course nature of

the gene expression data and takes into account the correlations

between measurements from the same gene. From a data-driven

point of view, we have identified co-expressed modules with

expression patterns and enriched functions revealing the kinetics of

immune response, which is consistent with the conclusions of [2].

Moreover, our analysis has also elucidated complex inter- and

intra-module regulatory relationships of the mouse immune

response to influenza infection.

In real biological systems, the regulatory relationships between

two genes are not instantaneous. Model (5) can be adapted as

follows to account for time delays arising from the time required to

complete transcription and translation [20,29]:

M 0
k(t)~bk0z

XK

i~1

bkiMi(t{tki), k~1,:::,K , ð1Þ

where tki§0 denotes time delay. To further extend model (1), we

can let coefficients bki be time dependent in order to model time-

varying regulatory relationships [68,69]. We can also consider

more complex nonlinear ODE models with regulatory functions

being either known nonlinear functions with unknown parameters,

such as the sigmoid function model [70], or some unknown

functions that may be estimated using nonparametric techniques

[71]. Compared to the linear ODE model, estimation of these

models is computationally more intensive and usually requires

more data to be measured. Further investigation is required to use

these more complex models to reconstruct high-dimensional

GRNs. Another important extension of the proposed pipeline is

to include some prior information in the ODE network modeling.

For example, if one network component is known from literature

to regulate another component, this information can be incorpo-

rated in the network structure identification with no or less

penalization on the corresponding regulatory coefficients in the

variable selection procedure. These topics are beyond the scope of

this paper and will be studied in the future research.

Methods

Identifying differentially expressed genes
We treat the expression profile of each gene Xg(t) as a smooth

curve of time and the time course microarray measurements are

collected as discrete observations from Xg(t) that are contaminat-

ed by noisy signals. Here we estimate Xg(t) from the noisy time

course data through a data-based eigen-representation:

Xg(t)&mgz
PL

l~1 jglwl(t), where mg is the mean expression, wl

are the sequences of orthonormal eigenfunctions and jgl are the

corresponding functional principal component scores [40]. The

top L eigenfunctions are selected such that the total variation

explained exceeds a pre-specified threshold (such as 90%).

In this paper, we are interested in identifying genes with

significant expression changes after virus infection. So the

hypothesis of testing DE genes can be written as

Hg0 : Xg(t)~Xg(t0), v:s: Hg1 : Xg(t)=Xg(t0),

for any t[½t0,T �,
ð2Þ

where Xg(t0) is the gene expression level at baseline. Another

widely adopted hypothesis is

Hg0 : Xg(t)~mg, v:s: Hg1 : Xg(t)=mg,

for any t[½t0,T �:
ð3Þ

This hypothesis is used to test DE genes that have non-flat

expression patterns within the time interval of interest. For

hypothesis (2), we adopt the modified F -statistic in [72] to

compare the goodness-of-fit of the null model to the alternative

model:

Fg~
RSS0

g{RSS1
g

RSS1
gzr

, ð4Þ

where RSS0
g and RSS1

g are the residual sum of squares under the

null and the alternative models for the g-th gene, respectively. This

statistic can also be viewed as the signal-to-noise ratio of each gene.

For genes with a low signal level, the variance in Fg can be high

because of small values of RSS1
g. The small constant r in the

denominator can help stabilize the variance of Fg and is set as the

estimated variance of the noisy signal in [72]. A permutation test is

used to generate the null distribution of (F1,:::,FG) and the
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multiple testing adjustment method proposed by Benjamini and

Hochberg [73] is applied to control the false discovery rate (FDR).

Clustering genes into modules
For each DE gene, the replicated gene expression levels are

averaged at each time point and then a gene-wise standardization

procedure is applied. It has been well documented that genes with

similar biological functions usually have similar expression

patterns but with different expression magnitudes (fold changes)

[2]. This standardization procedure can remove such magnitude

differences and is commonly adopted when the goal is to group

genes that are functionally related [74].

We use the K-means clustering method [75] to group co-

expressed genes and propose an empirical rule to determine the

number of clusters. Let WCSSk be the sum of the squared

distances to the cluster centers when there are k clusters. We plot

the relative changes of the within-cluster sum of squares

(WCSSk{WCSSkz1)=WCSSk against the number of clusters

k and choose the number K at the knee of the curve. The

motivation behind this proposal is that the within-cluster variation

WCSSk decreases as k increases, and the decreasing rate should

significantly slow down after k passes the optimal number of

clusters [75].

Identification of network structure
Our module-based linear ODE model for the GRN can be

written as

M 0
k(t)~bk0z

XK

i~1

bkiMi(t), k~1,:::,K, ð5Þ

where Mk(t) is the mean expression curve of the k-th module; bk0

is the intercept and coefficients ~fbkigk,i~1,:::,K quantify the

regulatory effects of the other modules, including self-regulation on

the rate of expression change of the k-th module. The

identification of network structure is equivalent to identify the

nonzero coefficients S~f1ƒk,iƒK : bki=0g.
Nonparametric smoothing. Within each of the K modules

(super-genes), the gene expression patterns are similar, so we can

treat the time course data of these genes as longitudinal

measurements of the super-gene and model them using the

following nonparametric mixed-effects model [76]:

Ugj~Mk(tj)zggi(tj)zegij , g[Ck, ð6Þ

where Ugj is the expression level at tj for the g-th gene, j~1,:::,n,

g~1,:::,G; Ck is the collection of gene indices for the k-th module

and ggi(
:) is the random-effects function that quantifies the

deviation of the expression level of gene g from the mean

expression Mk(t). Applying mixed-effects smoothing splines [76],

we can obtain the estimates of the mean expression curve Mk(t)
and its first order derivative M 0

k(t) for each module. Following

[32], we suggest under-smoothing these curve estimates in this

step.

Variable selection for the linear ODE model. We plug the

estimated mean expression curves and their derivatives M̂Mk(t) and

M̂M 0
k(t) into the ODE system (5) to form a set of pseudo linear

regression models. Since M̂Mk(t) and M̂M 0
k(t) are estimated

continuously as nonparametric functions, we recommend using

augmented data from M̂Mk(t) and M̂M 0
k(t) at time points t�1,:::,t�N

([½t0,T �), where N can be larger than the original sample size n.

This data augmentation strategy has also been used by other

investigators before [27,77]. Denote the augmented data as

ykj~M̂M 0
k(t�j ) and zkj~M̂Mk(t�j ), j~1,:::,N. We can write the

pseudo regression models as

ykj~bk0z
XK

i~1

bkizijzdkj , k~1,:::,K : ð7Þ

The error term dkl represents the aggregated estimation error of

M̂Mk(t) and M̂M 0
k(t) and model error due to the substitution of the

differential equation variables by M̂Mk(t) and M̂M 0
k(t). Note that

these errors are dependent, and the predictors zij and responses ykj

in (7) are derived from the smoothing estimates rather than

directly measured data. Therefore, model (7) is not a standard

regression model and this is why we refer to it as a ‘‘pseudo’’ linear

regression model.

For each of these pseudo regression models, we apply the

smoothly clipped absolute deviation (SCAD) method [78] to select

nonzero bki’s. Without loss of generality, we assume that both the

response yk~(yk1,:::,ykN )T and covariates zi~(zi1 ,:::,ziN)T ,

i~1,:::,K in (7) are centered, so bk0~0. Consider the following

penalized objective function

1

2N

XN

j~1

(ykj{
T
i bk)2z

XK

i~1

Jlk
(jbkij), ð8Þ

where bk~(bk1,:::,bkK )T and Jl(jbj) is the SCAD penalty [78].

We employ the CCCP-SCAD algorithm developed by [79] to

minimize (8) and obtain the collective set of nonzero coefficients

ŜS~f(k,i) : 1ƒk,iƒK ,b̂bS
ki=0g, where b̂bS

ki are the minimizers of

(8). This set ŜS gives the structure of the ODE network model (5)

and the regulatory relationships between modules in the network.

A simulation study to validate the performance of the SCAD

variable selection method in identifying the structure of ODE

networks can be found in Materials S1.

Refining parameter estimates
The parameter estimates obtained from the two-stage method

are not efficient in terms of estimation accuracy, because of the

approximation errors brought in by the estimates of the mean

expression curves Mk(t) of the modules and their derivatives

M 0
k(t). These errors could be quite large when the data are

measured at a sparse grid or with large noise signals. To overcome

this drawback, we propose to refine the parameter estimates for

the selected ODE model using the nonlinear least squares (NLS)

method [68]. The SCAD estimators b̂bS
ki from the two-stage

method can be used as the initial estimates in the NLS procedure.

Functional enrichment analysis
Genes within the same module may have many biological

functions and certain functions may be enriched in this module

compared to the population of genes in an organism or a

biological process. These enriched functions are the key factors to

understand the role that the module plays in the whole network.

We can use DAVID [41] to identify the gene ontology (GO)

functional annotations and KEGG/BioCarta/Reactome to iden-

tify pathways that are enriched in each module. In this analysis, a

modified Fisher’s exact test is carried out for each functional term

under the null hypothesis that this function is not over-represented

in the module compared to the background population [41]. The
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statistical significance of each functional term is adjusted by the

multiple testing adjustment method proposed by [73]. We collect

the mouse TFs from FANTOM [58] and Uniprot [59],

respectively (some of them are putative). We also integrate the

curated gene regulations deposited in TRED [80] and KEGG

[81], as well as the documented mouse protein-protein interactions

in STRING [82]. In each module, the regulations between the

TFs and targets are then coupled and analyzed.

Supporting Information

Table S1 A complete list of the 20 modules and their
member genes.
(XLSX)

Table S2 The biological functions and pathways en-
riched in each module. In the column Category, GO-

TERM_MF, GOTERM_CC, or GOTERM_BP refers to the

GO ontologies for molecular function, cellular component and

biological process, respectively, and KEGG_PATHWAY refers to

the KEGG pathway annotations. GOTERM_MF_FAT is a GO

category that filters out the broad GO terms based on a measured

specificity of each term and GOTERM_MF_ALL refers to all the

rest terms. _FAT and _ALL are defined similarly for the other two

GO ontologies. The column Term displays the descriptions of the

enriched functions or pathways. The Column Count lists the

number of genes with the corresponding annotated function and

‘‘%’’ is the percentage of these annotated genes in the background

population. The column Adj.pval lists the adjusted p-values by the

Benjamini and Hochberg procedure and the column Gene

displays the genes associated with the enriched functions or

pathways.

(XLSX)

Table S3 Mouse transcription factors (TFs) compiled
from FANTOM and Uniprot.

(XLSX)

Table S4 The intra-module regulatory relationships in
20 modules. The interactions from TF to Gene are collected

from the databases of TRED, KEGG, and STRING.

(XLSX)

Materials S1 Simulation study.

(PDF)
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