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Meningiomas, the most frequent primary intracranial tumors of the central nervous system
in adults, originate from the meninges and meningeal spaces. Surgical resection and
adjuvant radiation are considered the preferred treatment options. Although most
meningiomas are benign and slow-growing, some patients suffer from tumor
recurrence and disease progression, eventually resulting in poorer clinical outcomes,
including malignant transformation and death. It is thus crucial to identify these “high-risk”
tumors early; this requires an in-depth understanding of the molecular and genetic
alterations, thereby providing a theoretical foundation for establishing personalized and
precise treatment in the future. Here, we review the most up-to-date knowledge of the
cellular biological alterations involved in the progression of meningiomas, including cell
proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused
genetic alterations, including chromosomal abnormalities and DNA methylation patterns,
are summarized and discussed in detail. We also present latest therapeutic targets and
clinical trials for meningiomas' treatment. A further understanding of cellular biological and
genetic alterations will provide new prospects for the accurate screening and treatment of
recurrent and progressive meningiomas.
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INTRODUCTION

Meningiomas generally originate from the meninges and
meningeal spaces. They are the most frequently occurring
primary intracranial tumors of the central nervous system in
adults, with an incidence of 7.86 cases per 100,000 people every
year (1). According to the 2021 World Health Organization
(WHO) tumor classification, meningiomas are classified as
benign (>80%), atypical (15%–20%), and anaplastic (1.0%–
3.0%), depending on the mitotic rate, brain invasion, or
specific histological features (2–4). Although the majority
(~80%) of meningiomas are benign and could be cured or
become stable through surgical resection, some present with
high-risk behaviors and poor prognosis, including early or high-
rate recurrence and rapidly progressive course even after
radiotherapy (5). More interestingly, among meningiomas with
benign pathological features, 7–25% histologically tend to relapse
or become malignant after surgical resection (6). Atypical and
anaplastic meningiomas are naturally substantially more
aggressive, and their recurrence rates in 5 years reach up to
30–50% and 90%, respectively (7, 8). Radiotherapy is
recommended for partially resected Grade II and all Grade III
meningiomas. Nevertheless, a subset of patients with Grade II
meningiomas may live through a benign clinical course with no
need for radiotherapy (9). The histological grade does not fully
reflect the biological behavior of meningiomas to currently guide
treatment. Hence, there is a need to explore useful predictors of
the clinical behavior or overall prognosis of meningiomas.

Previous studies have shown that the risk factors of
meningiomas are complex, including age, sex, radiation,
trauma, diabetes mellitus, and arterial hypertension (1, 7), and
the progression of recurrent meningiomas involves numerous
factors, including Simpson grade IV/V resection, a larger tumor
size, tumor location, high vascular endothelial growth factor
receptor (VEGFR) expression, WHO Grade II/III, high Ki-67
expression, and lack of progesterone receptor expression (10).
Recurrent meningiomas may be accompanied with malignant
transformation and multiple treatments or limited optional
drugs, making management much more challenging (7, 11).
Therefore, a further understanding of the molecular
mechanisms underlying the recurrence or progression will help
predict the clinical behavior, which is beneficial for early
recognition of high-risk meningiomas and timely adjustment
of treatment protocols.
Abbreviations: WHO, World Health Organization; FOXM1, Forkhead box
protein M1; VEGFR, Vascular endothelial growth factor receptor; MDM2,
Murine double minute 2 protein; FAK, Focal adhesion kinase; CDKN2A/B,
Cyclin-dependent kinase inhibitor 2A/B; DMD, Dystrophin-encoding and
muscular dystrophy-associated; AKT1, v-Akt murine thymoma viral oncogene;
HIF-1a, Hypoxia-inducible factor 1a; PI3K, Phosphatidylinositol 3-kinase;
mTOR, mammalian Target of rapamycin; CDK, Cyclin-dependent kinase;
BAP1, Breast cancer 1-associated protein-1; TERTp, promoter of Telomerase
reverse transcriptase; p-CREB, phosphorylated Cyclic-AMP responsive element-
binding protein; RAS, Rat sarcoma; PFS, Progression-free survival; KLF4,
Krüppel-like factor 4; VEGF, Vascular endothelial growth factor; MC,
Methylation classification; PD-1, Programmed death 1; PD-L1, Programmed
death-ligand 1.
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In addition to the traditional WHO grading, the latest studies
on meningiomas have provided insights into the genomic
alterations, including DNA somatic copy number, DNA point
mutation, DNA methylation, and transcriptomic and proteomic
data (12). Advances in molecular classification through DNA
methylation have gradually been approved by researchers (1, 6, 9,
12, 13). Similar to other central nervous system neoplasms, such
as glioma, Nassiri reported that meningiomas could be classified
into different molecular groups with distinct and prototypical
biological features after a comprehensive analysis combining
copy number, DNA methylation, and mRNA sequencing data
(12), complementing existing WHO grades. Here, based on the
most up-to-date biomedical research knowledge, we review the
potential cellular biological mechanisms and molecules involved
in the recurrence or progression of meningiomas from several
perspectives, including the excessive proliferation of tumor cells,
neo-angiogenesis, inhibition of apoptosis, immunogenicity, and
genetic alterations involving chromosomes and genes related to
meningiomas (3, 13). Further, we summarize existing
therapeutic targets and clinical trials for meningiomas’
treatment. We expect this information to allow for an
exploration of more accurate prognostic markers and potential
targeted therapies for meningiomas.
CELL PROLIFERATION

Recurrent or progressive meningiomas usually begin with
excessive cell growth and proliferation. Evidence suggests that
tumor cell growth and proliferation are tightly linked to cell-
cycle dysregulation (4). Disordered cell-cycle proteins, the
uncontrolled regulation of transcription factors, and mutations
in cell-cycle-related genes can promote cell proliferation and
differentiation in meningioma (14–17). The cell-cycle-related
proteins topoisomerase IIa and mitosin, which play important
roles in regulating mitotic chromosome condensation and
separation (18), are positively associated with a high risk of
meningioma recurrence (15). Forkhead box protein M1
(FOXM1), a master transcription factor for cell growth and
proliferation, is closely associated with hepatocellular
carcinoma (19), prostate cancer (20), glioma (21), and basal
cell carcinoma (22). FOXM1 is thought to accelerate G1/S and
G2/M transition to promote mitotic progression (14). A recent
comprehensive molecular profiling study indicated that the
expression of FOXM1 is relevant to increased proliferation and
poor clinical prognosis (23). Similarly, the results obtained in a
newly established model of meningioma showed that FOXM1
overexpression increases proliferation in benign meningioma,
whereas its depletion decreases proliferation in malignant
meningioma (24). As such, thiostrepton, a FOXM1 inhibitor,
combined with radiation therapy, was found to noticeably
prevent the proliferation of malignant meningioma cells
(Figure 1) (24).

Gene mutations in v-Akt murine thymoma viral oncogene
(AKT1), homolog 1 smoothened, frizzled class receptor (SMO),
focal adhesion kinase (FAK), cyclin-dependent kinase inhibitor
2A/B (CDKN2A/B), and dystrophin-encoding and muscular
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dystrophy-associated (DMD) are also considered to be associated
with cell proliferation in meningioma (17). AKT1 encodes the
AKT1 kinase (a serine/threonine-protein kinase), and the
overactivation of AKT1 can lead to uncontrolled cell growth
and proliferation via the phosphatidylinositol 3-kinase (PI3K)/
AKT/mammalian target of rapamycin (mTOR) signaling
pathway (Figure 1) (25, 26). mTOR, mainly regulated by the
PI3K/AKT pathway, is highly expressed in various tumors and is
closely associated with cell growth and proliferation (17). Studies
have indicated that the overactivation of mTOR results in a high
mitotic index (27) and contributes to the recurrence of
meningioma (28) and poorer outcomes (27).

SMOmutations lead to cell-specific proliferation and mediate
the development of meningioma through uncontrolled
activation of the sonic hedgehog signaling pathway (25, 29,
30). FAK, which encodes a cytoplasmic protein tyrosine kinase
that mediates cell growth, proliferation, and survival, is
overexpressed in some meningiomas (31). Ribociclib, a cyclin-
dependent kinase (CDK) inhibitor, was evaluated for its effect on
other highly mutated genes (other than the common NF2), such
as AKT1 and SMO (NCT02933736) (Table 1) (38). Moreover, a
national Alliance-sponsored cooperative group phase II clinical
trial evaluated the efficacy of SMO, AKT1, and FAK inhibitors
for recurrent or progressive meningiomas with targetable
a l tera t ions in SMO, AKT1, and NF2, respect ively
(NCT02523014/A071401) (5). Vismodegib, included in an
ongoing Alliance clinical trial, is a hedgehog pathway-targeting
Frontiers in Oncology | www.frontiersin.org 3
agent tested for SMO/PTCH1-mutated progressive/recurrent
meningiomas (NCT02523014) (32).

CDKN2A encodes p16INK4A and p14ARF, and CDKN2B
encodes p15INK4B. p15INK4B and p16INK4A prevent S-phase
entry by inhibiting the CDK4/cyclin D complex and are generally
mutated in Grade II and III meningiomas. p14ARF prevents cell
proliferation in the G1 phase and decelerates p53 degradation
through downregulation of the proto-oncogene murine double
minute 2 protein (MDM2) (41). The mutation or deletion of
CDKN2A and CDKN2B has been linked to a poorer prognosis in
meningioma (42). A CDK inhibitor combined with ribociclib
could be a potential treatment approach for meningiomas with
mutations in the tumor-suppressor genes CDKN2A and
CDKN2B (NCT02933736) (32). Moreover, mutations in the
tumor-suppressor gene p53 also affect the occurrence and
development of meningioma (43). When mutations occur, p53
changes from a tumor suppressor to a tumor promoter owing
to structural changes that suppress its roles in inhibiting cell
growth and apoptosis, leading to cancer (44). The p53 mutation
rate is higher in atypical and malignant meningiomas, and
most importantly, it is higher in recurrent than in non-
recurrent diseases (45). Some researchers also found that the
combination of p53 and Ki67 could be a promising predictor of
recurrence in meningiomas (45). DMD encodes dystrophin,
which regulates cytoskeleton remodeling and cell proliferation
in response to extracellular signal stimulation (46, 47). The
deletion of DMD contributes to progressive meningioma and a
FIGURE 1 | Potential biological mechanisms of recurrent and progressive meningiomas. This figure briefly summarizes several cellular biological mechanisms and
molecules contributing to recurrent and progressive meningiomas. The abnormal proliferation of tumor cells, downregulation of apoptotic processes, neo-angiogenesis,
and immunogenicity together promote recurrence and progression (the red lines show an inhibitory effect and the blue arrows show a promoting effect).
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shorter overall survival (16), partly due to the defective inhibition
of cell proliferation leading to disease progression (48). Breast
cancer 1-associated protein-1 (BAP1), a deubiquitylating
enzyme, is a tumor suppressor. Familial and sporadic BAP1-
deficient meningiomas tend to be rare, and aggressive malignant
tumors (grade III) are associated with increased aggressiveness
and poorer prognosis (49). Tazemetostat, a BAP1 inhibitor,
increases the level of the PCR2 complex protein EZH2,
activated by BAP1, and might be a potential drug for rhabdoid
meningioma caused by BAP1 loss (NCT02860286) (50).

In addition to the genes mentioned previously herein, a 2018
study showed that mutations in the promoter of telomerase
reverse transcriptase (TERTp) enhance the degree of malignancy
of meningiomas and lead to poor prognosis (51). Other studies
have corroborated that TERTp mutations predict poor survival
in progressive/high-grade meningiomas (33, 52, 53). Telomere
maintenance is a marker of tumor formation, and most tumors
express telomerase to prevent telomere shortening (52).
Telomerase activation caused by TERTp mutations enforces
cell immortalization and promotes the growth of tumors (51),
which could be observed in recurrent and malignant tumors
(54). Furthermore, a 2021 study revealed that TERT alterations
are a biomarker of meningioma progression and reduce
progression-free survival after adjuvant radiotherapy (55).
Hence, we suggest that TERTp mutations can significantly
predict poor prognosis in meningiomas, but no effective
targeted drugs have been found to date.

In recent years, it has been reported that the loss of H3K27
trimethylation (H3K27me3) plays a prominent role in the
recurrence of meningioma (56). Further research found that
the loss of H3K27me3 predicts early recurrence and death for
grade 2, but not for grade 3, meningioma (57). H3K27me3 affects
DNA damage repair and contributes to several biological
processes, including cell differentiation, proliferation, and
stem-cell plasticity (58). The latest study found that ONC206,
a DRD2 antagonist and ClpP agonist, is orally bioavailable,
penetrates the blood-brain barrier, and exhibits anti-cancer
efficacy without toxicity, and it is currently the subject of an
ongoing trial (NCT04541082) for H3K27M-mutant, malignant
Frontiers in Oncology | www.frontiersin.org 4
meningiomas and other central nervous system tumors (34).
However, its therapeutic effect on tumorigenesis or cancer
recurrence with respect to H3K27me3 requires further
clinical trials.
NEO-ANGIOGENESIS

Neo-angiogenesis is one of the most important features of higher-
grade meningiomas. On the one hand, it makes the tumor grow
rapidly, and on the other hand, it makes surgical resection more
difficult based on the rich blood supply. Tumor vessel density is a
key feature during oncogenesis and is tightly correlated with the
upregulation of vascular endothelial growth factor (VEGF),
placental growth factor, and insulin-like growth factor-binding
protein-3 (59). A recent follow-up study investigated VEGF and
its three receptors in meningiomas and demonstrated a significant
increase in VEGF-A levels in WHO grade III meningiomas (60).
VEGF-A, an endothelial cell-specific mitogen, contributes to new
blood vessel growth (35, 61). Upon overexpression, VEGF-A
contributes to the rapid growth of tumors (35) and regulates
maturation and stabilization during the late stages of tumors (62).
VEGF-A is a powerful mitogenic and angiogenic disulfide-linked
homodimer, which is secreted from tumors and increased under
conditions of ischemia for the rapid expansion of tumor vessels (63).
VEGF-A is tightly associated with refractory or higher-grade
meningiomas (35), becoming a potential therapeutic target with
the foundation of anti-angiogenic agents blocking the VEGF
pathway (64). Antiangiogenic drugs, such as bevacizumab,
vatalanib, and sunitinib, were reported to reduce the recurrence
rate of meningiomas significantly (1). Two prospective phase II
trials involving patients with refractory meningiomas have
evaluated the efficacy and safety of bevacizumab (36). One study
of 40 patients treated with bevacizumab indicated that the
progression-free survival (PFS) at 6 months is 87% for grade I
meningiomas, 77% for grade II meningiomas, and 46% for grade III
meningiomas (NCT01125046). Another clinical trial in 2016
combining bevacizumab with everolimus found a median PFS of
22 months for those with recurrent and progressive meningiomas
TABLE 1 | Summarization of key molecules and potential targeted therapy in recurrent and progressive meningiomas.

Targets Inhibitors Ongoing Clinical Trial Reference

Cell proliferation AKT1 Capivasertib
Ribociclib

NCT02523014
NCT02933736

(5, 32)

SMO Vismodegib
Ribociclib

NCT02523014
NCT02933736

(5, 32)

FAK Vismodegib NCT02523014 (5)
CDKN2A/B Ribociclib NCT02933736 (32)
BAP1 Tazemetostat NCT02860286 (33)
H3K27me3 ONC206 NCT04541082 (34)

Neo-angiogenesis VEGF-A Bevacizumab Vatalanib Sunitinib Apatinib mesylate
Erlotinib hydrochloride

NCT01125046
NCT00348790 NCT00589784 NCT04501705
NCT00045110

(35, 36)

Immunogenicity PD-1 Nivolumab Pembrolizumab NCT02648997
NCT04659811
NCT03279692

(37)

Chromosomal
abnormalities

NF2 and/or
SMARCB1

Everolimus Vistusertib Dasatinib Selumetinib NCT00972335
NCT03095248 NCT00788125 NCT03095248

(5, 35, 38–
40)
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after surgery and/or radiation therapy (95% CI 4.5–26.8). This
combination could block disease progression in 88% of patients
(NCT00972335) (35, 36). Both vatalanib (NCT00348790) and
sunitinib (NCT00589784) are tyrosine kinase inhibitors targeting
VEGFR and were shown to act partly on recurrent meningiomas.
Furthermore, other trials like those for apatinib mesylate
(NCT04501705) and erlotinib hydrochloride (NCT00045110)
found on ClinicalTrials.gov have demonstrated that VEGFR is an
emerging therapeutic target.

In addition to VEGF-A, phosphorylated cyclic-AMP
responsive element-binding protein (p-CREB) is a novel high-
risk molecule abundantly expressed in the endothelia of tumor
vessels in all meningiomas, and high p-CREB levels are closely
associated with the recurrence of meningiomas (65). p-CREB
was found in various tumors, including glioma, because of its
physical properties, including binding to upstream signaling
kinases and downstream genes (66). It is a transcription factor
that participates in numerous cellular processes and induces
VEGF expression, leading to neo-angiogenesis in meningiomas
(65). Barresi et al. reported that p-CREB expression can be
identified in tumor vessels but disappears in the vessels of the
normal adult and neonatal leptomeninges, implying that p-
CREB is related to neo-angiogenesis (65). The relationship
between p-CREB and VEGF has not been fully elucidated and
requires further study.

The levels of inflammation in perivascular areas of the tumor,
induced by ischemia or other proteins, can also affect the neo-
angiogenesis of meningiomas. VEGF-A is a downstream target of
hypoxia-inducible factor 1a (HIF-1a), a molecular marker of
hypoxia (67). A large cohort study of 263 patients with
meningiomas found that upregulated levels of HIF-1a and
VEGF-A could significantly predict the recurrence of
meningiomas (68). Moreover, HIF-1a and VEGF-A are
correlated with peritumoral edema (69), which was demonstrated
to be associated with poor prognosis in meningiomas.
RESISTANCE TO APOPTOSIS

Apoptosis, a well-known form of cell death that occurs in
response to external stimuli or internal stresses, is generally
inhibited in tumor cells, resulting in uncontrolled proliferation
(70). Numerous studies have indicated that the Wnt signaling
pathway has an important role in resistance to apoptosis in
neurological disorders, such as stroke (71, 72), spinal cord injury
(73, 74), neuroblastoma (75), and glioma (76). The Wnt
signaling pathway was recently reported to be associated with
the apoptosis of meningioma cells via three pathways, the
classical Wnt/b-catenin signaling, the planar cell polarity
pathway, and the Wnt-Ca2+ pathway (77–80). Inhibition of the
Wnt/b-catenin pathway by plant medicines leads to apoptosis in
human meningioma cells (81). The long non-coding (lnc) RNA
SNHG1 was found to inhibit apoptosis in BEN-1-1 and IOMM-
Lee cells, and SNHG1 deficiency restrains cell growth and
accelerates apoptosis in meningioma cell lines via the Wnt
pathway (79). Moreover, downregulation of the lncRNA
Frontiers in Oncology | www.frontiersin.org 5
LINC00702 reportedly inhibits Wnt activity and induces
apoptosis in malignant meningioma (78). Thus, the Wnt
pathway seems to play a negative regulatory role in the
apoptosis of meningioma cells; however, the precise underlying
mechanism remains unclear.

Recent studies have reported several potential mechanisms
of resistance to apoptosis in meningioma. CD163 is a type I
membrane protein, the overexpression of which leads to
reduced apoptosis in human meningioma cells (82). CLND6,
also called claudin6, is a component of tight junctions that
contributes to maintaining cell–cell junctions in epithelial cells
(83). The downregulation of CLND6 has been associated with
tumor occurrence, and its overexpression accelerates apoptosis
in cancer cells (84–87). Additionally, CLND6 has been found to
regulate migration and invasion capacities in malignant
meningioma cell models (88). Rat sarcoma (RAS) is a
member of the small GTPase family that participates in the
regulation of embryonic development, differentiation, cell-cycle
progression, and cell survival (89). The downregulation of RAS
activity leads to significantly reduced ERK and AKT
phosphorylation, suppresses proliferation, and induces the
apoptosis of human meningioma cells (88). Furthermore, let-
7d, a member of the let-7 family, has been regarded as a tumor
suppressor in various cancers (90–92). Let-7d promotes
apoptosis and suppresses the proliferation of meningioma by
targeting AEG-1 (93). Based on a genomics analysis of 300
meningiomas, Clark et al. reported that mutations in TNF
receptor-associated factor 7 (TRAF7) are also common, and
they identified the accumulation of mutations in Krüppel-like
factor 4 (KLF4), AKT1, and SMO (29). TRAF7, a pro-apoptotic
protein containing an N-terminal RING finger domain, an
adjacent TRAF-type zinc finger domain, a coiled-coil domain,
and seven C-terminal WD40 repeats, affects several signaling
pathways , inc luding the NF-kB pathway, and the
ubiquitination of proteins, such as c-FLIP (29, 94). TRAF7 is
usually mutated together with KLF4, AKT1, or the
phosphatidylinositol-4, 5-diphosphate 3-kinase catalytic
subunit a protein (PIK3CA) (95, 96). KLF4 is a transcription
factor. AKT1 activates the PI3K/mTOR pathway (96). In 2016,
mutations in PIK3CA were found to be frequent drivers of
certain meningiomas (97). Mutations in TRAF7, KLF4, AKT1,
or PIK3CA are commonly associated with grade 1 meningioma,
whereas combined mutations might be associated with a high
recurrence rate (98). Therefore, therapies targeting the pro-
apoptotic roles in recurrence and malignancy via different
approaches might contribute to improved prognosis.
IMMUNOGENICITY

Subsets of patients still experience a progressive clinical course
even after surgery and radiation, because tumors can evade the
immune system via certain mechanisms, leading to the
formation of an immunosuppressive tumor microenvironment,
including the upregulation of programmed death-1 (PD-L1),
suppressive cells, such as regulatory T cells, or other unknown
May 2022 | Volume 12 | Article 850463
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proteins (99). Nassiri found that meningiomas are immunogenic,
characterized by massive immune infiltration and pertinent
pathways including immune regulation and signaling (12). The
proteins associated with immune regulation include IL-1, TNF,
ING-a, and PD-1. Depending on these data, immunotherapy
could be another treatment for these malignant meningiomas
(99, 100). NF2 mutations and the loss of chromosome 22 are
frequently observed in these meningiomas (12). Therefore,
Yeung et al. explored the immunological landscape of
meningiomas in an NF2-mutant murine meningioma model
and found that these tumors were heavily infiltrated by anti-
inflammatory M2 macrophages. Intervention with an anti-CSF1/
CSF1R antibody was found to normalize the tumor
microenvironment, indicating that targeting the CSF1/CSF1R
axis might be a potential treatment for malignant meningiomas
(99). PD-1 and PD-L1 are closely associated with higher-grade
meningiomas. PD-1 inhibitors , such as nivolumab
(NCT02648997) and pembrolizumab (NCT04659811), have a
significant effect on preventing the recurrence of meningiomas.
A phase II study in 2022 showed that pembrolizumab exerts
promising efficacy on a subset of recurrent and progressive grade
2 and 3 meningiomas (NCT03279692). This study reported a
lower PFS-6 rate of 0.48 and median PFS of 7.6 months for
higher-grade meningiomas compared to those in previous
studies (37). Masaki summarized several clinical trials
invest igat ing whether PD-1 might affect recurrent
meningiomas (100). In addition, the effect of IFN-a was
demonstrated in several highly vascularized tumors, such as
gliomas and meningiomas (32). A clinical trial of IFN-a-2B
found that it could improve the prognosis of grade I recurrent
meningiomas and induce disease stability (101).
CHROMOSOMAL ABNORMALITIES

Epigenomics studies have revealed that transcriptional and
epigenomic regulatory mechanisms occupy an important part
in recurrent and progressive meningiomas. Except for gene
mutations and some special molecules, chromosomal
abnormalities have been the hot topics these years. It was
reported that higher rates of copy-number alterations and
karyotypic abnormalities are linked to higher-grade
meningiomas (9). Chromosome 22 is the most commonly
reported abnormal chromosome in meningiomas. It shows
alterations in more than half of meningiomas, especially in
benign tumors, with a large proportion of deletions of
chromosome 22 occurring in the neurofibromatosis type 2
gene (NF2) region, which contributes to the development of
meningiomas (4, 102). NF2 promotes contact inhibition and
tumor suppression by inhibiting mitotic signaling in the cell
cortex (90). However, another study suggested that NF2 might
not be involved in meningioma progression (103). A study
including 775 samples revealed that the loss of NF2 or co-
occurrence with recurrent SMARCB1 mutations frequently
occurs in atypical meningiomas. SMARCB1, located on
chromosome 22, might induce the progress ion of
Frontiers in Oncology | www.frontiersin.org 6
meningiomas. In addition, NF2 alterations combined with
abnormalities in AKT1 and mTOR are associated with the
overgrowth of various tissues, which could be responsible for
the recurrence of meningiomas (104).

Strong expression of SSTR2A receptors, inhibition of the
osteoglycin/mTOR pathway, and activation of NF2 signaling
promote apoptosis in malignant meningioma cells (39, 105). A
recent phase II CEVOREM trial showed that the combination of
everolimus, an mTOR inhibitor, and octreotide, a somatostatin
agonist, has an antiproliferative effect on meningiomas
(NCT00972335) (39). Atypical NF2 mutants demonstrate
chromosomal instability, which might be related to tumor
invasiveness (106). Brigatinib, an inhibitor of multiple tyrosine
kinases, was capable of stopping the growth of NF2-deficient
xenograft meningiomas for the inhibition of multiple tyrosine
kinases, including EphA2, Fer, and focal adhesion kinase 1
(FAK1) (107). A FAK inhibitor (GSK2256098) was identified
to significantly improve the survival rates of patients with
recurrent or progressive NF2-mutated meningiomas
(NCT02933736) (108). Further, a phase II trial revealed
another MEK1/2 inhibitor, selumetinib, to have an effect on
NF2-related meningiomas (NCT03095248) (5, 38). These
advances on NF2-related meningiomas represent a major step
forward in therapeutics.

Except for chromosome 22, loss of chromosome 1p was
related to recurrent meningiomas, despite total resection and
was involved in the activation of the cell cycle (23, 109). Further,
the loss of chromosome 14q and complex karyotypes (multiple
chromosome mutations) have also been reported as independent
recurrence-specific prognostic indicators of meningiomas or
malignancy development (103, 106, 110–112). The genes
located on chromosome 1p include TP73, CDKN2C, RAD54,
EPB41, GADD45A, and ALPL, while the genes inactivated on
chromosome 14q are NDRG family member 2 and maternally
expressed gene 3 (113). Moreover, the loss of chromosomes 9p,
6q, 10, and 18q or the abnormal gain of 1q, 9q, 12q, 15q, 17q, and
20q has been recently reported (17, 96, 114).
DNA METHYLATION PATTERNS

In addition to those on the aforementioned mutations, studies
have been conducted in recent years to understand genetic and
epigenetic alterations in meningiomas. Researchers have
attempted to compare meningioma grading with DNA
methylation classification (MC) (6). Sahm et al. distinguished
six methylation classes among 479 patients and found that
these classes might predict more current clinical courses than
histology (115). DNA MC could finally prove superior to
traditional light microscopy in distinguishing recurrent or
progressive meningiomas. The DNA MC was divided into
two major epigenetic groups, including six subclasses, MC
benign 1–3, MC intermediate A and B, and MC malignant,
which did not correspond exactly to the WHO grade.
Interestingly, most NF2 mutations were observed in MC
benign-1 meningiomas, and other NF2 mutations were
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scattered in the different groups. Mutations in four main genes,
AKT1, SMO, KLF4, and TRAF7, were identified in MC benign-2
tumors. The frequency of CDKN2A and TERT mutations was
higher in MC intermediate-B and MC malignant groups. MC
benign-1 was related to the loss of chromosome 22q, MC
benign-3 was related to frequent mutations in chromosome 5,
and MC intermediates A/B and MC malignant were related to
the loss of chromosome 1p. The loss of chromosome 22q was
related to MC intermediate-B and MC malignant (116)
(Table 2). All of these mutations were found to be tightly
associated with the recurrent or progressive meningiomas
described previously herein, proving that DNA methylation
patterns are helpful for the risk stratification of meningiomas.
The authors also showed that DNA methylation patterns
provide a more precise prediction of progression-free survival
outcomes at 10 years of follow-up than does WHO grading. The
predictive power of single or combined DNA MCs was
determined to be stronger than that of WHO grades,
especially for meningiomas with a WHO grade I histology
and patients at a lower risk of recurrence among WHO grade II
meningiomas (p = 0.0096) from the Brier prediction test (115).
For those genes presenting with mutations associated with any
clinical courses, such as NF2, DNA methylation guides further
risk stratification compared to that with whole-genome
sequencing only. Nassiri et al. also found that DNA
methylation, combined with clinical factors, leads to a reliable
individualized estimation of the 5-year recurrence risk of
meningiomas (40). Moreover, DNA methylation patterns
could distinguish intracranial meningiomas from metastatic
meningiomas. A case report in 2020 showed that DNA
methylation clusters distinguished liver metastasis samples
from intracranial meningioma samples, indicating that DNA
methylation is also a robust method for diagnosing metastatic
lesions (117).

A 2022 study classified meningiomas into three methylation
groups, similar to the study by Sahm and co-workers (102), and
showed that DNA methylation is more accurate than
histopathology in identifying high-risk tumors and is closely
correlated with gene expression in meningiomas (118). This
study further compared the predictive accuracy of DNA
methylation with that of RNA-sequencing and cytogenetics
and found a strong concordance between these groups. The
authors also demonstrated that both DNA promoter methylation
and copy-number variability correlated with differential gene
Frontiers in Oncology | www.frontiersin.org 7
expression (118). Further, a recent study analyzed four types of
alterations together, namely DNA somatic copy-number
aberrations, DNA somatic point mutations, DNA methylation,
and messenger RNA abundance, and found that these could be
classified into four groups (M1–4) owing to distinct biology as
follows: immunogenic (M1), benign NF2 wild-type (M2),
hypermetabolic (M3), and proliferative (M4) (12) (Table 2).
Table 2 describes the different classifications of meningiomas.
From the authors’ perspective, the M2 group might be associated
with angiogenesis and vasculature development. Hypermetabolic
(MG3) meningiomas are enriched in protein pathways involved
in nucleotide and lipid metabolism and could be related to
degradation of the extracellular matrix and endothelial
proliferation. Moreover, proliferative (MG4) meningiomas are
enriched in proteins and genes regulating the cell cycle and
proliferation. Distorted DNA methylation processes can be
associated with the most aggressive molecular groups (M3–4).
Those patients with MG3 and MG4 meningiomas have
significantly shorter times to recurrence (log-rank test, P = 5 ×
10−15) (12). No other studies have discussed the direct
association between DNA methylation and biological
mechanisms. These data show that DNA methylation has a
powerful predictive value. The combination of DNA
methylation and other features might be a new direction for
identifying high-risk recurrent or progressive meningiomas. In
the future, classifications based on more molecular features
might be more accurate to predict the prognosis and guide the
treatment of meningiomas.
CONCLUSIONS AND PERSPECTIVES

Here, we reviewed the potential mechanisms underlying
recurrent and progressive meningiomas from focused
perspectives, specifically the excessive proliferation of tumor
cells, neo-angiogenesis, the inhibition of apoptosis, and genetic
alterations. We also describe some potential therapeutic targets
and prognostic biomarkers for meningiomas from these
perspectives. Although we discussed these pathological
processes separately, studies have shown that they do not
occur in isolation. The histological classification of tumors has
shown that those high-risk meningiomas often have the
following characteristics: abundant blood vessels, increased
nuclear mitosis, increased cell density, loss of tumor inherent
structure, blurred basement membrane, and cerebral invasion or
metastasis. In the final subsection, we also summarized the
chromosomal abnormalities associated with these recurrent or
progressive meningiomas, but research on the key biological
pathways and their characteristics is still limited. We briefly
compared the latest classification of meningiomas based on DNA
methylation with the WHO grade and showed that the DNA
methylation classification provides a more current prognosis,
which requires further confirmation. Because of the complex and
subtle changes caused by genetic abnormalities or other
undetected factors, the precise mechanism underlying the
pathology of meningiomas remains an enigma. Therefore, an
TABLE 2 | Overview of different classifications of meningiomas in latest studies.

DNA Methylation
Classification (MC)

WHO Grade Possible Biological
Group

MC Benign 1 (Mc ben-1) Grade I/II immunogenic
benign NF2 wild-type

hypermetabolic
proliferative

MC Benign 2 (Mc ben-2) Grade I
MC Benign 3 (Mc ben-3) Grade I/II
MC intermediate A (Mc int-A) Grade I/II
MC intermediate B (Mc int-B) Grade II/III
MC malignant (Mc mal) Grade II/III
(115) (12)
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in-depth understanding of the development of recurrent and
progressive meningiomas is further required to block the disease
process and improve the prognosis of the disease.
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