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Abstract

How to identify protein complex is an important and challenging task in proteomics. It would

make great contribution to our knowledge of molecular mechanism in cell life activities. How-

ever, the inherent organization and dynamic characteristic of cell system have rarely been

incorporated into the existing algorithms for detecting protein complexes because of the limi-

tation of protein-protein interaction (PPI) data produced by high throughput techniques. The

availability of time course gene expression profile enables us to uncover the dynamics of

molecular networks and improve the detection of protein complexes. In order to achieve this

goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects

protein-complex core comprising of continually expressed and highly connected proteins in

dynamic PPI network, and then the protein complex is formed by including the attachments

with high adhesion into the core. The integration of core-attachment feature into the dynamic

PPI network is responsible for the superiority of our algorithm. DCA has been applied on two

different yeast dynamic PPI networks and the experimental results show that it performs sig-

nificantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-

measure and statistical significance in biology. In addition, the identified complexes with

strong biological significance provide potential candidate complexes for biologists to

validate.

Introduction

Cellular functions are completed by protein complex formed by multiple proteins aggregating

together, rather than by individual protein. Identifying protein complex has significant impli-

cations in revealing the important principle of protein organization within cell [1, 2]. Protein

complexes can help us to predict the functions of protein [3]. Accumulated evidences suggest

that protein complexes are involved in many disease mechanisms [4]. Tracking the protein

complexes could reveal important insights into modular mechanisms and improve our under-

standing on the disease pathways [5].
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In proteomics, large-scale protein-protein interaction (PPI) data have being produced

along with high-throughput techniques such as yeast two-hybrid (Y2H) [6] and affinity purifi-

cation [7]. Typically, PPI data are abstracted to a complex network model in which protein

is regarded as node while interaction as edge. Such network is characteristic of modular struc-

ture and prompts the emergence of many computational approaches for detecting protein

complexes.

Most of current methods are based on solely network clustering[8–10] or integrated with

multiple biological data[11–16]. For example, Palla et al. proposed CPM (Clique Percolation

Method) algorithm to detect overlapping dense groups of nodes as protein complexes by con-

tinuously merging maximal connected sub graphs containing k vertexes in PPI networks[17].

Review articles [1, 2, 18] provide insight into the contributions of the areas, which have signifi-

cant meanings to reveal the important principles of protein organizations within cells.

We know that protein complex consists of highly connected proteins, but it is much more

than that. Literature [19] indicates that protein complex is characteristic of core-attachment

structure, which has given rise to many protein complex identifying algorithms based on such

theoretical principle. For instance, COACH [20], CoreAttach [21] and PCD-GED [22]

approaches. But they often neglect the inherent time sequential feature in cell life activities.

Cellular systems are highly dynamic and responsive to the stimulus from external environment

[23]. Han JD et al. has proved the dynamically organized modularity in yeast PPI network

[24]. Thus it has important implications in making a transition from the analyzing of static

PPI networks to dynamic networks[25].

In this paper, we propose a new algorithm, called DCA (Dynamic Core-Attachment), to

identify protein complexes by integrating their inherent organizations into dynamic PPI net-

work. Protein- complex cores are formed by continually expressed and highly connected pro-

teins. We subsequently generate protein complexes by appending attachments into the

protein-complex cores. The integration of core-attachment feature into the time-evolving PPI

network is responsible for the superiority of our algorithm. Experimental results using two PPI

data sets of Saccharomyces cerevisiae show that our DCA method outperforms existing compu-

tational methods in terms of prediction accuracy, hF-measure and statistical significance in

biology.

Materials and methods

To capture the dynamics of protein complex, time course gene expression data are integrated

into the original static PPI network and generate the dynamic PPI network with three sigma

method[26]. In brief it contains two steps. Firstly, for each gene at a time point, it is considered

to be active only if its expression value is greater than a given threshold which is calculated

based on three sigma principle. Secondly, the active proteins at this time point and their con-

nections in the static network constitute a sub-network. As a result, all the time series sub-net-

works behave as a dynamic network. Please refer to the literature [26] for more detail.

Our DCA algorithm operates in four phases based on the dynamic network. DCA first

identifies protein-complex cores and then applies an outward growing strategy to produce

protein complexes by including attachments into the protein-complex cores. We will first

briefly introduce some basic terminologies and then describe in detail our proposed method

for protein complex detection.

Preliminaries

Proteins in complex core that playing a central role are characteristic of highly connected,

sharing the functions of the same classification and relatively stable, which means that they
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have a relatively long duration for activity. Based on such an assumption, for one thing their

edges own higher edge clustering coefficient (referred as ECC, as shown in Eq (1)), for another

the stability of protein activity (referred as AT) here is defined as the time span between the

starting and ending time point of its active state. For example, suppose that one protein’s activ-

ity starts from time point 6 and it becomes inactive at time point 9, then its active time span

(AT) of course is 3. To characterize effectively those biological nature of protein complex, we

weight the PPI network by combining ECC and AT as shown in Eq (2):

ECCij ¼
Zij

minðki � 1; kj � 1Þ
ð1Þ

Wv ¼ a�
X

k2Nv

ECCvk þ ð1 � aÞ � AT ð2Þ

In Eq (1), Zij represents the number of common neighbors of the two interacting proteins i
and j, while min(ki-1, kj-1) equals to the theoretical maximum number of triangles containing

the two nodes. ECC ranges from 0 to 1 and the greater value shows the closer relationship

among the nodes and their neighbors. In Eq (2), Nv contains the neighbors of node v and AT
ranges from 0 to 1 after normalization. α controls the contribution proportion of ECC against

AT. They are complementary and consistent with each other. First, due to the false negatives

of protein interaction data, some of the interactions in protein-complex core will gain lower

ECC, so it is reasonable to increase the weight with greater AT. Instead, some interactions out-

size protein-complex core will gain higher weight because of the false positives of interactions,

then it is also reasonable to decrease the weight with lower AT. Second, the greater the value of

either ECC or AT, the greater the likelihood that they participate in central biological functions

in protein-complex core.

As for the attachments of protein-complex, they participate in different protein complexes

playing a variety of functions as a supporting role. Nevertheless, as a part of a whole protein

complex, they still have relatively closer relationship with the complex core. We define this

relationship as adhesion shown in Eq (3):

Adhs Core ¼
X

v2NS\Core

ECCsv ð3Þ

Where s is a neighbor of Core. Adhs_Core describes the closeness between a protein-complex

core and its neighbors, so we use it to measure the likelihood of that whether a protein should

be include into a core as its attachment.

DCA algorithm

As shown in Fig 1, based on each snapshot of the dynamic PPI network, DCA algorithm firstly

calculate the weight for each protein node according to its stability of activity and edge cluster-

ing coefficient (lines 3~6); Secondly, the nodes with weight greater than β are separately con-

solidated with their neighbors to form the protein-complex cores (lines 7~11). Thirdly, for

each protein-complex core we select reliable attachments cooperating with it to form a protein

complex (lines 12~19). Due to the periodic properties of gene expression data, the identified

protein complexes contain large number of approximate ones. The last step is the redundancy-

filtering procedure (lines 20~23). The computational complexity of DCA algorithm is O(N2)

under given parameters of α, β and γ, where N is the number of nodes in network.

Our DCA algorithm operates on time-evolving PPI network and takes its time sequential

feature into account. Besides, the predicted protein complexes may overlap with each other
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since the attachments typically participate multiple protein complexes to carry out specific bio-

logical functions.

Experimental data

In order to verify the validity of the proposed DCA algorithm, we use two PPI networks of

yeast: DIP [27] (Version of 20101010) and Krogan_extended [28] data sets. After filtering a

small number of proteins that do not express the spectrum, the former contains 24278 interac-

tions among 4969 proteins while the latter includes 12399 interactions among 3153 proteins.

Gene expression data over three successive metabolic cycles are available from GEO (Gene

Expression Omnibus) with accession number GSE3431[29]. This dataset includes the expres-

sion profiles of 9335 probes under 36 different time points. It is used to construct dynamic PPI

network by integrating into the static PPI network. The known protein complex set containing

Fig 1. DCA algorithm description.

https://doi.org/10.1371/journal.pone.0186134.g001
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349 complexes after removing the one that is not covered by the PPI network is derived from

CYC2008[30], which is widely used as a reference set of protein complexes to evaluate protein

complex prediction and allows precise standardized functional descriptions of genes.

Metrics for evaluating identified protein complexes

Three evaluating metrics, namely F-measure, GO enrichment analysis and hF-measure are

used in this paper to test the performance of DCA algorithm.

Overlapping Score (OS)[12] Eq (4) is usually used to assess the match score between a pre-

dicted protein complex pc and a known protein complex kc:

OSðpc;kcÞ ¼
jpc \ kcj2

jpcj � jkcj
ð4Þ

Where pc\kc represents the number of the proteins involved in both complexes pc and kc; |

pc| and |kc| represent the number of proteins involved in complex pc and complex kc respec-

tively. Two protein complexes are considered to be matched if their overlapping score is

greater than or equal to a given threshold, which is set to 0.2, the same as many other

researches[12]. Particularly, OS(pc,kc) = 1 indicates that the two complexes pc and kc match

perfectly.

The predicted protein complex sets identified by various algorithms are separately com-

pared against the known protein complex set, by which we can obtain the performance of algo-

rithms on Sensitivity (Sn) and Specificity (Sp). They are typically employed to evaluate the

identification of protein complexes. Let true positives (TP) denote the number of predicted

protein complexes that match with known complexes, false positives (FP) denote the number

of unmatched ones, and false negatives (FN) denote the number of known protein complexes

which match with none of the predicted ones, then Sn and Sp can be defined as Eq (5) and Eq

(6), respectively. The harmonic mean of Sn and Sp, also known as F-measure Eq (7), is often

used to assess the overall accuracy of various methods[12].

Sn ¼ TP=ðTPþ FNÞ ð5Þ

Sp ¼ TP=ðTP þ FPÞ ð6Þ

F � measure ¼
2� Sn� Sp
Snþ Sp

ð7Þ

Larger Sn to some extent indicates that more known protein complexes could be recog-

nized, while higher Sp shows that higher percentage of predicted protein complexes match

with known protein complexes.

To evaluate the statistical significance of the identified protein complexes, many researchers

annotate their main biological functions by using p-value formulated as Eq (8) [26]. Given a

predicted protein complex containing C proteins, p-value calculates the probability of observ-

ing k or more proteins from the complex by chance in a biological function shared by F

Table 1. The number distribution of proteins and interactions in the sub-networks of dynamic network.

Data set Proteins Interactions

DIP Ave = 599, SD = 223 Ave = 898, SD = 668

Krogan_extended Ave = 298, SD = 166 Ave = 427, SD = 530

https://doi.org/10.1371/journal.pone.0186134.t001
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Table 2. The basic results of various algorithms on two dynamic networks.

DIP Krogan_extended

Algorithms #AS #MS #MPC #PC #MKC #AS #MS #MPC #PC #MKC

DCA 8.2 47 515 885 118 8.7 35 558 818 90

DPC - - - 766[32] - - - - - -

TS-OCD 5.1 25 279 843 162 5.6 21 187 314 114

CAMSE 4.3 22 881 2433 215 5.4 25 627 1185 158

ClusterONE 3.8 20 564 1690 213 4.5 20 526 1309 179

CoreAttach 3.3 30 652 2935 282 3.3 26 456 1402 213

CPM 7.2 345 249 531 125 7.6 349 200 300 83

MCODE 6.2 43 147 309 82 5.8 51 192 272 76

SPICI 4.2 25 551 2089 197 4.3 21 399 1011 155

COACH 5.6 26 361 899 150 6.3 27 286 482 101

#AS: the average size of predicted protein complexes; #MS: the maximum size of predicted protein complexes; #MPC: the number of predicted protein

complexes matched by known protein complexes; #PC: the total number of predicted protein complexes; #MKC: the number of known complexes matched

by predicted protein complexes

https://doi.org/10.1371/journal.pone.0186134.t002

Fig 2. Performance comparison of DCA against other algorithms on static DIP network.

https://doi.org/10.1371/journal.pone.0186134.g002
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proteins from a total genome size of N proteins:

p � value ¼ 1 �
Xk� 1

i¼0

F

i

 !
N � F

C � i

 !

N

C

 ! ð8Þ

The lower the p-value is, the stronger biological significance the complex possesses, while

the complex with p-value greater than 0.01 is deemed to be meaningless at all. Generally speak-

ing, the larger protein complexes possess the smaller p-values.

HF-measure is a measurement to evaluate clusters more finely and distinctly[31]. It uses

functional annotation information in the GO database to measure the similarity between com-

ponents in protein complexes. There are two versions of this metric—the one is topology-free

measurement hF-measureTf, the other is topology-based measurement hF-measureTb. Unlike

F-measure, the new measurements of hF-measureTf and hF-measureTb can discriminate

between different types of errors.

Fig 3. Performance comparison of DCA against other algorithms on dynamic DIP network.

https://doi.org/10.1371/journal.pone.0186134.g003
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Results and discussion

For the gene expression data including 36 time points used in this paper, averagely there are

1043 (SD = 240) active proteins at each time point. By mapping them into the static PPI net-

works, the number distribution of proteins and interactions in sub-networks is shown in

Table 1.

Using two data sets, DIP and Krogan_extended, we have applied our DCA algorithm on

two yeast dynamic PPI networks constructed with three sigma method[26] to perform com-

prehensive comparisons among various existing competing algorithms including DPC[32],

TS-OCD[33], CAMSE[10], ClusterONE[9], SPICI[34], COACH[20], CoreAttach[21], CPM

[35] and MCODE[36]. For all these methods, the optimal parameters are set to default empiri-

cal values, while in DCA we recommend α = 0.60, β = 0.55, γ = 1.4. Table 2 shows the basic

information of predictions by various methods on the two dynamic PPI networks. On DIP

data, DCA predicted 885 complexes with average size of 8.2, of which 515 match 118 real com-

plexes; On Krogan_extended data, it predicted 818 complexes with average size of 8.7, of

which 558 match 90 real complexes.

Fig 4. Performance comparison of DCA against other algorithms on static Krogan_extended network.

https://doi.org/10.1371/journal.pone.0186134.g004
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Comparative sensitivity and specificity

Fig 2, Fig 3, Fig 4 and Fig 5 show the overall comparison in terms of Sn, Sp and F-measure. On

DIP data, the F-measure of DCA is 0.632, which is 23.2% higher than the next algorithm

CAMSE on static network and 23.7% higher than that on dynamic network. Similarly, on

Fig 5. Performance comparison of DCA against other algorithms on dynamic Krogan_extended network.

https://doi.org/10.1371/journal.pone.0186134.g005

Table 3. Statistical p-values of complexes predicted by DCA algorithm on DIP data.

Algorithms (0, 1e-15] (1e-15, 1e-10] (1e-10,1e-5] (1e-5, 0.01] >0.01

DCA 79(8.9%) 107(12.1%) 299(33.8%) 367(41.5%) 32(3.6%)

TS-OCD 22(2.6%) 54(6.4%) 204(24.2%) 510(60.5%) 53(6.3%)

CAMSE 74(3.0%) 125(5.1%) 449(18.5%) 1483(61.0%) 301(12.4%)

ClusterONE 40(2.4%) 73(4.3%) 313(18.6%) 1036(61.3%) 227(13.4%)

CoreAttach 34(1.2%) 45(1.5%) 293(10.0%) 2046(69.7%) 516(17.6%)

CPM 23(4.3%) 42(7.9%) 147(27.7%) 285(53.8%) 33(6.2%)

MCODE 4(1.3%) 32(10.4%) 98(31.7%) 155(50.2%) 20(6.5%)

SPICI 22(1.1%) 49(2.3%) 286(13.7%) 1504(72.0%) 227(10.9%)

COACH 44(4.9%) 58(6.5%) 246(27.4%) 508(56.5%) 43(4.8%)

https://doi.org/10.1371/journal.pone.0186134.t003
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Krogan_extended data, the F-measure of DCA is 0.683, which is 32.6% and 17.5% higher than

the next algorithm CAMSE on static and dynamic network, respectively. Our DCA method

can achieve the highest F-measure by providing the highest specificity and comparable sensi-

tivity, which shows that our method can predict protein complexes very accurately.

P-value analysis

To substantiate the biological significance of predicted protein complexes, we calculate their p-

values by the tool, SGD’s GO::TermFinder[37]. Table 3 and Table 4 show the distribution of p-

value. Using DIP data, 853 out of 885 (96.4%) complexes predicted by DCA are considered to

be significant with p-value� 0.01, and it predicts higher proportion of significant complexes

than other eight algorithms. Such as in the interval (0, 1e-15], DCA obtains 79(8.9%) com-

plexes while the other algorithms only achieve 4~74(1.1%~4.9%). This result is also consistent

with the results on Krogan_extended data where DCA achieves 119(14.6%) significant com-

plexes. Many of our predicted complexes are find to match well with the known complexes.

Due to the incompleteness of the benchmark, our non-matched predicted complexes, espe-

cially for those with low p-values, may provide potential candidate complexes for biologists to

validate.

HF-measure analysis

As shown in Table 5, although the hF-measure value of DCA algorithm is little less than

TS-OCD, it is 2.1%~12.4% higher than other seven algorithms on DIP dynamic network and

Table 4. Statistical p-values of complexes predicted by DCA algorithm on Krogan_extended data.

Algorithms (0, 1e-15] (1e-15, 1e-10] (1e-10,1e-5] (1e-5, 0.01] >0.01

DCA 119(14.6%) 122(14.9%) 272(33.3%) 266(32.6%) 38(4.7%)

TS-OCD 34(10.8%) 23(7.3%) 98(31.2%) 136(43.3%) 23(7.3%)

CAMSE 81(6.8%) 119(10.1%) 252(21.3%) 610(51.5%) 122(10.3%)

ClusterONE 31(2.4%) 50(3.8%) 257(19.6%) 819(62.6%) 151(11.5%)

CoreAttach 29(2.1%) 29(2.1%) 172(12.3%) 945(67.5%) 226(16.1%)

CPM 23(7.7%) 37(12.4%) 92(30.8%) 119(39.8%) 28(9.4%)

MCODE 14(5.2%) 35(12.9%) 95(35.1%) 90(33.2%) 37(13.7%)

SPICI 27(2.7%) 31(3.1%) 186(18.4%) 639(63.3%) 127(12.6%)

COACH 48(10.0%) 45(9.4%) 134(27.9%) 217(45.1%) 37(7.7%)

https://doi.org/10.1371/journal.pone.0186134.t004

Table 5. HF-measure comparison of various algorithms.

DIP Krogan_extended

Algorithms hF-measureTb hF-measureTf hF-measureTb hF-measureTf

DCA 0.324 0.341 0.350 0.362

TS-OCD 0.333 0.345 0.357 0.363

CAMSE 0.306 0.312 0.330 0.337

ClusterONE 0.314 0.323 0.321 0.328

CoreAttach 0.296 0.303 0.325 0.327

CPM 0.317 0.326 0.341 0.348

MCODE 0.310 0.320 0.311 0.316

SPICI 0.299 0.309 0.319 0.326

COACH 0.316 0.324 0.335 0.342

https://doi.org/10.1371/journal.pone.0186134.t005
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2.8%~14.5% on Krogan_extended dynamic network. Therefore, our DCA algorithm performs

significantly better than the most of state-of-the-art techniques. In addition, Table 6 and

Table 7 provide ten predicted protein complexes with high hF-measure and low p-value on

two dynamic PPI networks. The topology structure of the first complex in the two tables is

illustrated in Fig 6, whose GO terms are “tRNA transcription from RNA polymerase III pro-

moter |AmiGO” and “ncRNA transcription | AmiGO”, respectively. From the above analysis

we can see that our DCA algorithm detects many useful biological knowledge.

Fig 7 illustrates an example of predicted complex, whose core consists of eight proteins in

circle A. Separately, proteins in blocks B, C and D are the attachments of this complex under

different time points. It’s GO annotation is “3’-5’-exoribonuclease activity” (GO:0000175) with

p-value 6.93e-20 and hF-measureTb 0.64.

Conclusions

Protein complexes comprising of multiple highly related proteins are key molecular entities to

perform specific cellular functions. The increasing amount of protein-protein interaction data

have enabled us to identify protein complexes from PPI networks. However, current computa-

tional methods hardly take consideration of both the inherent organization and dynamics

within protein complex. This paper presents a new algorithm named DCA for mining protein

complex from dynamic PPI network. Its prominent advantage is combing the sequential fea-

ture of network with the characteristic of core-attachment structure in complex. The evalua-

tion and analysis of our predictions demonstrate the following advantages of our DCA

algorithm over the state-of-the-art completing approaches. First, our new method is funda-

mentally different from other approaches for its insight into the inherent dynamic organiza-

tion of protein complexes, which is often neglected in existing algorithms. The consideration

Table 6. Selected protein complexes predicted by DCA algorithm on DIP data.

ID Core component Attached

component

hfun hFTb p-value

11 ypr110c ypr190c ypr187w ypr032w ypr010c ypl235w ypl160w yor341w yor224c yor210w

yor207c yor151c yor119c yor116c ynr003c ynl308c ynl248c ynl229c ynl113w ymr285c ylr453c

ykl144c yjr063w yjl130c yjl011c yil128w yil035c yhr020w ygr229c ygr094w ygl016w ybr249c

ybr245c ybr154c ybr020w ybr019c ybl076c ybl039c

ynl151c ydl150w GO:0003899 0.521 7.55e-

34

55 yor116c ypr190c ypr187w ypr110c yor224c yor207c ynr003c ynl113w ykl144c yjl011c ygl070c

yfr037c ydr045c ybr154c

ydl150w ynl151c GO:0003899 0.612 7.95e-

34

39 yol135c yor174w ynr010w ynl189w ymr112c ylr071c ygr104c ygl151w ygl127c yfr019w yfr008w

yer022w ydr448w ydr443c ydl005c ybr253w ybr193c

ygl025c GO:0016455 0.683 3.94e-

32

62 yor116c ypr190c ypr187w ypr110c yor207c ynr003c ynl113w ykl144c yjl011c yfr037c ydr045c

ybr154c

ykr025w ynl151c

ydl150w

GO:0003899 0.583 1.94e-

31

65 ygr104c ypr168w ypr070w yor174w yol135c ynr010w ynl236w ylr071c yhr058c yhr041c

yer148w yer022w ydr308c ydl005c ybr279w

_ GO:0016455 0.687 6.72e-

31

67 ygr104c ypl248c yor174w yol135c ynr010w ynl025c ymr112c ylr071c ygl151w ygl127c yer022w

ydl005c ybr253w ybr193c

ygl025c GO:0016455 0.684 6.72e-

31

69 ybr253w ypr168w ypr070w ypl248c yol135c ynl236w ymr112c ygr104c ygl025c yer022w

ydr443c ydl005c ybr193c ybr081c

ycr081w GO:0016455 0.684 6.72e-

31

13 ypr110c ypr190c ypr187w ypl235w yor210w yor207c yor151c yor119c yor116c ynr003c

ynl308c ynl248c ynl229c ynl113w ymr285c ylr453c ylr238w ylr086w ylr058c ykl144c yjr063w

yjl011c yjl008c yil035c yer025w ydl155w ybr245c ybr154c ybr127c ybl076c ybl039c

ynl151c ykr025w

ydl150w

GO:0003899 0.507 1.38e-

30

53 ydl005c ypr168w ypr070w yor174w yol135c ynr010w ynl236w ylr071c yhr058c yhr041c ygr104c

yer157w yer022w ydl153c ycr081w ybr079c

_ GO:0016455 0.667 3.58e-

30

58 ybr253w ypl248c yor174w yol135c ynr010w ynl025c ymr112c ylr071c ygr104c ygl151w

yer022w ydr448w ydr443c ydl005c ybr193c

ygl025c GO:0016455 0.667 3.58e-

30

https://doi.org/10.1371/journal.pone.0186134.t006
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Table 7. Selected protein complexes predicted by DCA algorithm on Krogan_extended data.

ID Core component Attached

component

hfun hFTb p-value

8 ypr187w yor151c ypl129w yor210w yor116c ynl113w ypr110c ypr010c yor341w yor340c

yor207c yol021c ynl248c ynl151c yjr063w yjl168c yjl011c yil021w ygr063c ygl070c ydl150w

ybr154c ypr190c yhr143w-a ydr045c

ynr003c ydr404c

ykl144c

GO:0003899 0.800 3.96e-

51

1 ybr154c yol021c ynl151c ypr086w ypr010c yor207c yjr063w yjl168c yjl011c yfr037c ypr187w

ypr133c ypr110c ypl129w yor341w yor340c yor224c yor210w yor151c ynl248c ynl113w ylr200w

yil021w ygr063c ygr005c ygl070c ygl043w yfl023w ydr156w ydl150w ydr045c yhr143w-a

ynr003c ykl144c

ydr404c

GO:0003899 0.720 7.94e-

47

3 yor210w ypr187w ypr190c yor341w ypr110c ypr010c yor340c yor224c yor151c yor116c

ynl216w ynl113w ykl054c yhr143w-a ygr005c yer179w yor207c ynl248c yjr063w yjl168c yjl011c

yil021w ygl070c yfr037c yer162c ydr156w ydl150w ydl042c ybr279w ybr154c

ynr003c ydr404c GO:0003899 0.722 2.17e-

45

5 ypr110c ypr190c yor116c yfl023w yer162c yel048c ypr187w ynl113w yjr132w yjl076w yfl009w

ydl116w ypr010c yor341w yor340c yor210w yor207c yol021c ynl248c ynl186w ynl151c yjr063w

yjl011c yhr143w-a ydr156w ydl150w ydl042c ybr154c ydr045c

ynr003c ykl144c GO:0003899 0.667 4.12e-

40

24 ynl113w ypr190c ypr187w ypr010c yor116c ynr003c ynl151c ypr161c ypr110c yor341w yor340c

yor210w yor207c ynl248c ykl144c yjr063w yjl011c ydr156w ydr026c ydl150w ydl042c ybr154c

ynr003c ykl144c GO:0003899 0.704 1.25e-

39

10 ypr110c ypr190c yor116c yfl023w yel048c ypr187w ynl113w yjr132w yjl076w yfl009w yor340c

yor210w yor207c yol021c ynl248c ynl186w ynl151c ykr025w yjr063w yjl011c yhr143w-a

ydr156w ydl150w ybr154c ydr045c

ynr003c ydl042c

ykl144c

GO:0003899 0.667 8.83e-

39

18 yor210w ypr187w ypr190c ypr110c yor340c yor151c yor116c ynl113w yhr143w-a yor207c

ynl248c yml010w ykr025w yjr063w yjl168c yjl011c yil021w yfr037c ydr156w ydl150w ybr279w

ybr154c

ynr003c ydl042c GO:0003899 0.679 3.42e-

38

4 ybr154c yol021c ynl151c ypr086w yor207c ykr025w yjr063w yjl168c yjl011c ygr140w yfr037c

ypr187w ypr133c ypr110c ypl129w yor340c yor210w yor151c ynl248c ynl113w ylr200w yil021w

ygl043w yfl023w ydr156w ydl150w ydr045c ydl042c yhr143w-a

ykl144c ynr003c GO:0003899 0.635 2.38e-

37

20 ypr187w yor151c ypl129w yor210w yor116c ynl113w ypr110c yor340c yor207c yol021c ynl248c

ynl151c yjr063w yjl168c yjl011c yil021w ydl150w ybr154c yhr143w-a ydr045c

ydl042c ynr003c GO:0003899 0.667 1.54e-

36

45 yor207c ypr190c ypr187w ypr110c yor224c yor210w yor116c ynl113w yhr143w-a ydr045c

ybr154c yol021c ynl151c yjl011c ydr167w ydl150w ydl042c

ykl144c ynr003c GO:0003899 0.627 1.14e-

32

https://doi.org/10.1371/journal.pone.0186134.t007

Fig 6. Topology structure illustration of predicted protein complex.

https://doi.org/10.1371/journal.pone.0186134.g006
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of dynamics in cell system made the model simulation more closely to reality. Second, DCA

algorithm has achieved significantly higher F-measure than existing methods. Thus, our pre-

dicted complexes match very well with benchmark complexes. In addition, DCA also performs

very well in terms of other metrics such as p-value and hF-measure, indicating that our new

algorithm can predict protein complexes very accurately. Our identified complexes, therefore,

could be probably the true complexes to help the biologists to get novel biological insights.

Although the time sequential gene expression data have much help to explore dynamic protein

complexes, many factors need to be considered for deep research on living system, such as liv-

ing conditions and tissue specifics. The model integrated more dimensional biological data is

very important to uncover the mystery of life.
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