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Abstract

Although the majority of late-onset Alzheimer's disease (AD) patients are labeled sporadic,
multiple genetic risk variants have been identified, the most powerful and prevalent of which

is the e4 variant of the Apolipoprotein E (APOE) gene. Here, we generated human induced
pluripotent stem cell (hiPSC) lines from the peripheral blood mononuclear cells (PBMCs) of

a clinically diagnosed AD patient [ASUi005-A] and a non-demented control (NDC) patient
[ASUI006-A] homozygous for the APOEA4 risk allele. These hiPSCs maintained their original
genotype, expressed pluripotency markers, exhibited a normal karyotype, and retained the ability
to differentiate into cells representative of the three germ layers.
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Resource utility

Polymorphisms in the Apolipoprotein (APOE) gene have been identified as the most
prevalent of the risk factors associated with sporadic Alzheimer's disease (AD). As such,
hiPSCs with various APOE genotypes will provide a valuable resource to study the
mechanisms by which this risk factor contributes to AD onset and progression.

Resource details

Genome-wide association studies (GWAS) studies have identified several risk factors
associated with increased probability of sporadic Alzheimer's disease (SAD) onset (Bettens
et al., 2010). Of these risk factors, polymorphism in the Apolipoprotein E (APOE) gene,

a lipoprotein transporter involved in cholesterol metabolism, is the strongest and most
prevalent (Hauser & Ryan, 2013). Compared to individuals with an APOE e3/3 genotype
(referred to as the ‘risk neutral’ allele), heterozygosity for the e4 allele increases AD risk
by 3 fold, and homozygosity for the e4 allele increases risk up to 12 fold (Wolf et al.,
2013). In this study, we report the generation of hiPSCs from two individuals from the
Arizona APOE Cohort (for which recruitment and enrolment strategies have been described
previously (Caselli et al., 2011)) that are homozygous for the APOE e4 allele— a clinically
diagnosed AD patient (ASUi005-A, Mini-Mental Status Exam [MMSE] score = Patient too
advanced to collect data.) who fulfilled published diagnostic criteria (McKhann et al., 2011)
and an age-matched non-demented control patient (NDC; ASUi006-A, MMSE score = 29)
(Table 1).

Peripheral blood mononuclear cells (PBMCs) were reprogrammed into hiPSCs using the
non-integrating CytoTune®-iPS 2.0 Reprogramming System (Thermo Fisher Scientific).
Several clones from each patient were isolated, expanded, and characterized by karyotyping
and flow cytometry. One clone was expanded and fully characterized for each line

(Fig. 1 and Table 2). The expanded hiPSC clones displayed a typical pluripotent stem

cell morphology (Fig. 1A). All expanded clones were confirmed to be negative for
mycoplasma (Supplementary Table 1). Sequencing analysis of the hiPSCs at the APOE
gene in exon 4 confirm homozygosity at the e4 allele, identical to the parental PBMCs

[Fig. 1B; Note: Human APOE has three major isoforms, ApoE2, ApoE3, and ApoE4,
which differ by two amino acid substitutions at residues 112 and 158 in exon 4—

ApoE2 (Cys112, Cys158), ApoE3 (Cys112, Argl58), ApoE4 (Argll2, Argl58)]. Expanded
clones maintained a normal euploid karyotype (Fig. 1C). Immunofluorescent staining (Fig.
1D) and flow cytometry (Fig. 1E) revealed that the hiPSCs expressed high levels of
pluripotency-associated markers NANOG, OCT4, SOX2, and SSEA-4. Absence of viral
transgenes in expanded clones was confirmed by RT-PCR (Fig. 1F). Finally, to verify
pluripotency, hiPSCs were spontaneously differentiated in vitro through embryoid body
(EB) formation. Immunofluorescence (Fig. 1G) and gene expression analysis (Fig. 1H) of
EBs revealed downregulation of pluripotency-associated markers (OCT4, NANOG, SOX2)
and upregulation of genes associated with endoderm (AFP, SOX17), mesoderm (ACTCL1,
ISL1, SMA, TBX3), and ectoderm (B3T, MAP2, NCAM, PAX6).
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Materials and methods

Reprogramming of PBMCs

Peripheral blood samples were collected in BD Vacutainer cell preparation tubes and
centrifuged for 30 min at 1800 RCF. Isolated PBMCs were cultured in expansion

medium (EM; QBSF-60 [Fisher Scientific] supplemented with 100 pg/mL Primocin
[Fisher Scientific], 1% penicillin/streptomycin [Thermo Fisher], 50 pg/mL ascorbic acid
[Sigma], 50 ng/mL SCF [R&D], 10 ng/mL IL-3 [R&D], 2 U/mL EPO [R& D], 40

ng/mL IGF-1 [R&D], 1 uM Dexamethasone [Sigma]). After 9-12 days of expansion,

2.5 x 10° PBMCs were resuspended in EM and transferred to a 12 well plate. Sendai
viruses (SeV: CytoTune®-iPS 2.0 Reprogramming Kit [Thermo Fisher]) were added at a
multiplicity of infection MOI of 10:10:6 for the hKOS:c-Myc:KIf4 Sendai viruses. Three
days after transduction, cells were cultured on hESC-qualified Matrigel® (Corning) in
TeSR-E7 medium for 7 days, and then switched to TeSR-E8 (E8) medium (STEMCELL
Technologies). After 21 days, individual hiPSC colonies were mechanically isolated and
expanded in a 37 °C incubator with 5% CO,. After mechanically passaging for the

first 3 passages, hiPSCs were non-enzymatically passaged using ReLeSR™ (STEMCELL
Technologies) at a split ratio of 1:4-1:6 and cryopreserved. For routine passaging of these
lines, Versene was used at a split ratio of 1:6 with 5 uM Rho kinase inhibitor (Y-27632;
Biogems). Mycoplasma testing was performed with the MycoAlert PLUS kit (Lonza) and
the Lucetta™ Luminometer (Lonza).

Quantitative RT-PCR (QPCR)

RNA was isolated from cells (NucleoSpin RNA Kit, Clontech) and reverse transcription
was performed (iScript RT Supermix, Bio-Rad). QPCR was carried out using SYBR green
dye on a CFX384 Touch™ Real-Time PCR Detection System. QPCR experiments run with
SYBR green dye were carried out using iTag Universal SYBR Green Supermix (Bio-Rad).
For gPCR experiments run with SYBR green dye, a 2 min gradient to 95 °C followed by

40 cycles at 95 °C for 5 s and 60 °C for 30 s was used. Primer sequences are provided in
Table 3. Gene expression was normalized to 18S rRNA levels. Relative fold changes in gene
expression were calculated using the 2 — AACt method.

SeV detection

After a minimum of 10 passages, RNA was isolated from cells (NucleoSpin RNA Kit,
Clontech) and reverse transcription was performed (iScript RT Supermix, Bio-Rad). RT-PCR
was run on a Bio-Rad CFX384 Real-Time System with the primers listed in Table 3 and the
following cycling parameters—a 2 min gradient to 95 °C followed by 20 cycles at 95 °C for
5 sand 60 °C for 30 s. The resulting products were then run on a 1% gel.

APOE genotyping

For APOE genotyping via Sanger sequencing, genomic DNA was isolated from cells using
the DNeasy kit (Qiagen). PCR was performed on a MultiGene OptiMax thermal cycler with
the primers list in Table 3 and the following cycling parameters—30 s at 98 °C followed

by 35 cycles at 95 °C for 15's, 62 °C for 30 s, and 72 °C for 30 s with a final extension
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of 10 min at 72 °C. The resulting PCR product was cleaned up using the PureLink™ PCR
Purification Kit (ThermoFisher). Sanger sequencing was performed on PCR products (ASU
CLAS Genomics Facility) uses Big Dye V3.1 chemistry with samples processed using an
Applied Biosystems 3730XL Sequence Analysis Instrument.

Karyotyping and STR analysis

Cytogenetic analysis was performed using standard protocols for G-banding (Baylor Miraca
Genetics Laboratories). For ASUiI005-A, cells were tested at passage 10, 20 metaphase cells
were counted, and 4 cells were karyotyped. For ASUI006-A, cells were tested at passage

8, 20 metaphase cells were counted, and 3 cells were karyotyped. Short tandem repeat
(STR) analysis was performed with Promega's PowerPlex® 16 multiplex STR system (Cell
Line Genetics). The following loci were tested: Amelogenin, CSF1PO, D13S317, D16S539,
D18S51, D21S11, D3S1358, D5S818, D7S820, D8S1179, FGA, Penta D, Penta E, THO1,
TPOX, VWA.

Flow cytometry

Cells were dissociated with Accutase for 10 min at 37 °C, triturated, and passed through a
40 um cell strainer. Cells were then washed twice with stain buffer (BD Biosciences) and
resuspended at a maximum concentration of 5 x 10° cells per 100 uL. Cells were fixed

for 30 min at RT with BD Cytofix Fixation Buffer (BD Biosciences). The cells were then
washed twice with stain buffer and permeabilized with BD Phosflow Perm Buffer 111 (BD
Biosciences) for 30 min on ice. Cells were then washed twice with stain buffer. Antibodies
were added at the dilution indicated in Table 3 in 100 uL of cell suspension. Cells were
stained with primary antibodies for 1 h on ice, washed, and resuspended in stain buffer. Cells
were analyzed by an LSR 1l flow cytometer (BD Biosciences). Gates were determined using
isotype only controls.

Immunofluorescence

Cells were gently washed twice with PBS prior to fixation. Cells were then fixed for 20
min at room temperature (RT) with BD Cytofix Fixation Buffer (BD Biosciences). Cells
were then washed twice with PBS and permeabilized with BD Phosflow Perm Buffer 111
(BD Biosciences) for 30 min at 40C. Cells were then washed twice with PBS. Primary
antibodies were incubated overnight at 4°C and then washed twice with PBS at RT.
Secondary antibodies were incubated at RT for 1 h. Antibodies and the concentrations that
were used are listed in Table 3. Nucleic acids were stained for DNA with Hoechst 33342
(2 pg/mL; ThermoFisher) for 10 min at RT and then washed twice with PBS. Imaging was
performed using an EVOS FL Cell Imaging System (ThermoFisher).

In vitro embryoid body (EB) formation

HiPSCs were harvested using ReLeSR™ (StemCell Technologies) and plated on low
attachment plates in E8 medium. The following day, the media was changed to
differentiation medium (DM; DMEM/F12, 20% FBS, 1% Pen/Strep). After 5 days, EBs
were plated on Matrigel-coated plates and cultured with DM. After 14 days, cells were
fixed, permeabilized, and stained for germ layer markers. In addition, cells were dissociated
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using Accutase, RNA was isolated (as described above for gPCR), and gPCR was performed
(as described above for gPCR) to assess expression of pluripotency and germ layer markers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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(A) Phase contrast images of hiPSC lines. (B) Sanger sequencing showing maintenance

of genotype at ApoE locus. (C) Karyotyping confirmed cells maintained a normal euploid
karyotype. (D-E) Immunofluorescent and flow cytometry analysis of pluripotency markers
(NANOG, OCT4, SOX2, SSEA4). (F) RT-PCR demonstrates absence of SeV vector. SeV
infected fibroblasts were used as a positive control. (G) Immunofluorescent staining and
(H) gene expression analysis of in vitro differentiated cells shows expression of markers
associated with endoderm (AFP, SOX17), mesoderm (ACTCL, ISL1, SMA, TBX3), and

ectoderm (B3T, MAP2, NCAM, PAX®6).
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