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Abstract

Shape analysis has been widely used in digital image processing and computer vision, but they 

have not been utilized to compare the structural characteristics of the human association pathways. 

Here we used shape analysis to derive length, area, volume, and shape metrics from diffusion MRI 

tractography and utilized them to study the morphology of human association pathways. The 

reliability analysis showed that shape descriptors achieved moderate to good test-retest reliability. 

Further analysis on association pathways showed left dominance in the arcuate fasciculus, 

cingulum, uncinate fasciculus, frontal aslant tract, and right dominance in the inferior fronto-

occipital fasciculus and inferior longitudinal fasciculus. The superior longitudinal fasciculus has a 

mixed lateralization profile with different metrics showing either left or right dominance. The 

analysis of between-subject variations shows that the overall layout of the association pathways 

does not variate a lot across subjects, as shown by low between-subject variation in length, span, 

diameter, and radius. In contrast, the area of the pathway innervation region has a considerable 

between-subject variation. A follow-up analysis is warranted to thoroughly investigate the nature 

of population variations and their structure-function correlation.
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1. Introduction

Deciphering the structural layout of the human brain has been a challenging goal to 

understand how structure defines the brain function (DeFelipe, 2010). The first connectome 

study identified structural connection using diffusion MRI fiber tracking (Sporns et al., 

2005) and formulated brain connections as a graph to reveal the network topology (Bullmore 

and Sporns, 2009). Further studies have correlated structural connectivity with brain 

function in the healthy population or disease population (Fornito et al., 2015). The network 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

frank.yeh@pitt.edu.
Credict author statement
FY conducted the analysis and wrote the manuscript.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2020.117329.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
Neuroimage. 2020 December ; 223: 117329. doi:10.1016/j.neuroimage.2020.117329.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/


analysis tackled the structure-function correlation from a panoramic view, but the shape 

characteristics and morphology of the connecting bundles were mostly ignored, particularly 

the association pathways in the human brain that control most of the cognitive functions. On 

the other hand, existing tractography studies only used basic shape features such as volume 

or size and discarded rich morphology information in the fiber pathways (Abhinav et al., 

2014 ; Huang et al., 2005 ; Lopez et al., 2013 ; Wolff et al., 2015). More advanced shape 

analysis focused on specific applications, (Bastin et al., 2008 ; Corouge et al., 2004 ; 

Glozman et al., 2018 ; Kitchell et al., 2018) and did not provide a comprehensive shape 

analysis to exploit the all morphology information. There is yet a comprehensive study 

utilizing shape analysis to investigate the structural characteristics of the human association 

pathways.

Here we aim to bridge this information gap by applying a comprehensive shape analysis, 

including length, area, volume, and shape metrics, to investigate the shape characteristics of 

the human association pathways. Shape analysis has been widely used in computer vision in 

a variety of applications to achieve imaging understanding of an object (Costa and Cesar Jr, 

2000 ; Russ, 2002). The analysis provides the “shape descriptor”—a quantitative 

measurement that describes one part of the shape characteristics as length, area, and volume. 

Leveraging shape analysis to investigate tractography, however, faces two technical 

challenges. First, the existing shape analysis is designed for 2D pixel-based or 3D voxel-

based images, whereas tractography is a set of coordinate sequences plotting the simulated 

routes of brain connections. The definition of shape descriptors, such as length, area, and 

volume metrics, requires a substantial revision to fit into the tractography context. Second, 

the reproducibility of tractography has long been an ongoing issue (Rheault et al., 2020). 

Without a reliable and reproducible tractography input, the result of shape analysis will be 

meaningless due to “garbage in, garbage out.”

In this study, we utilized “augmented fiber tracking” to tackle the reproducibility issue and 

to provide automatic track recognition. Augmented fiber tracking includes three strategies—

parameter saturation, atlas-based track recognition/filtering, and topology-informed pruning. 

“Parameter saturation” was done by tracking millions of tracks using a random combination 

of anisotropy threshold, step size, and angular threshold to saturate the parameter space. 

This approach explored millions of parameter combinations to maximize the mapping of 

fiber pathways. The generated tracks were further recognized and filtered using an expert-

vetted tractography atlas (Yeh et al., 2018). This automatic recognition method isolated 

target pathways and simultaneously excluded irrelevant or false connections that 

substantially deviated from the known trajectories. After recognition, we further applied 

topology-informed pruning (Yeh et al., 2019) to eliminate possible false connections. TIP 

used track density at each voxel to eliminate noisy tracks that failed to form a bundle. We 

integrated these three strategies to map 14 association pathways on a test-retest dataset from 

the human connectome projects (n = 44).

Then we introduced the shape descriptors for the tractography. Fig. 1 illustrates the 

calculation using the left arcuate fasciculus as an example. Fig. 1 a shows the quantification 

of the length metrics, including length, span, diameters of the bundle, and radius of the 

innervation regions. Fig. 1 b shows the area metrics, including the area of the entire track 
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surface and area of the two end surfaces. Fig. 1 c shows the volume metrics, including total 

track volume and trunk volume. Based on these metrics, we further derived “shape metrics,” 

which are unit free indices, including curl, elongation, and irregularity, to describe the shape 

characteristics of the association pathways. We examined the reliability of these metrics 

using the intra-class correlations (ICC). This reliability results allowed us to identify 

findings with poor reproducibility and to ensure the robustness of the results. Then we 

derived the distributions of shape descriptors to reveal their left-right asymmetry and 

between-subject variations to study the morphology of the association pathways.

2. Material and methods

2.1. MRI acquisitions

The test-retest diffusion MRI data were acquired from the Human Connectome Project 

database (WashU consortium)(Glasser et al., 2016). A total of 44 subjects had repeat 

diffusion MRI scans. 24 of them were female, and 20 of them were male. The age range was 

22- to 35-year-old, and the average age was 30.3. One subject was left-handed. The data 

were acquired using a multishell diffusion scheme with three b-values at 1000, 2000, and 

3000 s/mm 2. Each shell had 90 sampling directions. The spatial resolution was 1.25 mm 

isotropic. The acquisition parameters are detailed in the consortium paper (Glasser et al., 

2016).

2.2. Diffusion MRI fiber tracking

The diffusion data were first rotated and interpolated to the ICBM2009 T1W template at 1 

mm. Here the rotation used a rigid-body transformation without a nonlinear deformation so 

that the shape features were preserved. The b-table was also rotated accordingly. The 

purpose of this spatial transformation was to facilitate a direct comparison of the 

tractography between the repeat scans. The rotated data were then reconstructed using 

generalized q-sampling imaging (Yeh et al., 2010) with a diffusion sampling length ratio of 

1.7. The b-table was checked by an automatic quality control routine to ensure its accuracy 

(Schilling et al., 2019).

We mapped 14 association pathways, including the left and right arcuate fasciculus (AF), 

cingulum (C). frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus 

(UF). The SLF here included “SLF II” and “SLF III,” as they often form a continuous sheet 

structure together. “SLF I” was not included because it is often separated from the other two 

SLF bundles and closely sided with cingulum. The starting region of the fiber tracking 

(a.k.a. the seeding region) was defined using the corresponding white matter regions in the 

HCP842 tractography atlas (Yeh et al., 2018) (nonlinearly registered to the subject’s native 

space). To cope with the reproducibility problem in tractography, we saturated the tracking 

parameters using a random generator to select a combination of fiber tracking parameters 

within a working range. The tracking parameters included the anisotropy threshold, angular 

threshold, step size (a.k.a. the propagation distance). The anisotropy threshold was randomly 

selected between 0.5 and 0.7 of the Otsu’s threshold (Otsu, 1979). The angular threshold 

was randomly selected between 15 and 90°. The step size was randomly selected between 
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0.5 and 1.5 voxel distance. The random generator was based on a uniform distribution to 

select a value from the above parameter range. For each of the 14 association pathways, we 

initiated 5,000,000 tracking iterations, with each iteration having a unique sample of the 

parameter combination. The fiber tracking was conducted using a deterministic fiber 

tracking algorithm (Yeh et al., 2013).

2.3. Automatic track recognition

The generated 5,000,000 tracks were further filtered by automatic track recognition. The 

recognition was based on the shortest Hausdorff distance with the trajectories of the 

HCP842 tractography atlas (Yeh et al., 2018). For each track, we calculated its Hausdorff 

distance with each trajectory in the atlas (nonlinearly wrapped to the subject space), and the 

shortest distance will correspond to an atlas trajectory that allowed us to identify the 

anatomical nomenclature of the track. After recognition, we used 16 mm as the maximum 

allowed threshold for the shortest distance. This threshold will help to remove tracks with 

substantial deviation from the known atlas trajectories. In this study, the recognition did not 

find the right arcuate fasciculus in two subjects (both test and retest scans). Further 

investigations into these two subjects found that the initial fiber tracking did generate 

numerous pathways from the right arcuate fasciculus area, but subsequent tract recognition 

categorized them as right superior longitudinal fasciculus because the trajectories did not 

reach the right superior temporal lobe. The analysis of the right arcuate fasciculus in this 

study thus excluded these two subjects.

2.4. Topology-informed pruning

All recognized trajectories were then summed up and pruned by topology-informed pruning 

(Yeh et al., 2019). A total of 20 pruning iterations was conducted. The pruning method 

calculated the voxel-wise streamline density and used low-density voxels to identify noisy 

tracks. Since the white matter pathway tends to form a bundle or a sheet, removing noisy 

tracks could increase the accuracy of the overall tracking results. We pruned all association 

pathways except for the right arcuate fasciculus. In one subject, the right arcuate fasciculus 

was too thin, and the pruning iteration was reduced to 10 to avoid pruning out all tracks. 

After pruning, the shape characteristics were quantified using the following shape analysis.

2.5. Shape analysis

In computer vision, shape analysis quantifies 2D or 3D objects using shape descriptors such 

as curl, elongation, roundness for 2D or 3D shapes (Russ, 2002)(Page 513). Some of them 

can be directly translated to tractography, whereas others had to be modified to consider that 

tractography is a set of trajectories in the 3D space (Table 1). The following section details 

how each descriptor was calculated from tractography streamlines:

A fiber bundle is a set of streamline trajectories that can be represented as 3D coordinate 

sequences: {vi(t)|i = 1, 2, 3, … n}. Here n is the total number of tracks, vi(t) is a sequence of 

3D coordinates representing the trajectory of a track. t is a discrete variable from 1 to mi, 

where mi is the number of the coordinates. The length of a fiber bundle is thus defined as 

follows:
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lengtℎ = 1
n ∑

i = 1

i = n
∑
t = 1

t = mi − 1
vi t − vi t + 1 2 (1)

The span is defined as:

span = 1
n ∑

i = n

i = 1
vi(1) − vi mi 2 (2)

Following the conventional definition (Russ, 2002), curl is defined as:

curl = lengtℎ
span (3)

Curl has a range of [1, ∞). A track bundle with a big curl value tends to have a curvy shape, 

whereas a straight line has a curl value of 1.

Then we voxelized tracks to carry out further shape analysis. All trajectories were first 

resampled so that for any two consecutive coordinates in any track, their distance was 

smaller than the voxel size. This resampling allowed us to directly “voxelize” tracks by 

rounding up all coordinates and removing repeated coordinates. To minimize discretization 

error, we multiplied track coordinates by two before rounding up, and any further metrics 

calculation will consider this scaling effect. The voxelized tracks could be represented by a 

set of unique voxel coordinates denoted as T = {Vi|i = 1, 2, 3, … N}, where N is the total 

number of unique voxel coordinates. The total track volume could be estimated by the 

following:

volume = N × voxelsize (4)

Note that due to our previous scaling, the voxel size was 4 3 times smaller than the raw DWI 

voxel size. The bundle diameter was then approximated using a cylinder model:

diameter (mm) = 2 volume
π × lengtℎ (5)

The diameter can be used to calculate elongation as a shape metric:

elongation = lengtℎ
diameter (6)

This definition follows the one used in computer vision. To calculate track surface area, we 

converted the track voxel set T to a 3D volume V(x, y, z), whereas V (x, y, z) = 1 if V (x, y, 

z) ∈ T and 0 otherwise. This 3D volume enabled us to use morphology operation to identify 
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the “surface voxels, which had non-zero values and connected to at least one zero-valued 

neighboring voxel. The surface area was then estimated as follows:

surfacearea = numberof surfacevoxels × voxelspacing2 (7)

It is noteworthy that the surface area here will include the innervation area. Based on a 

cylinder model, we propose a new descriptor called “irregularity,” which is defined as

irregularity = surface area
π × diameter × lengtℎ (8)

Irregularity is conceptually similar to convexity and concavity. It is the opposite of 

compactness or roundness defined in computer vision (Russ, 2002). A surface area much 

larger than the expected cylinder surface suggests higher shape irregularity.

The rest of the shape analysis then utilized the two end surfaces of a track bundle. The end 

surfaces were determined by anisotropy and angular threshold used in the fiber tracking. 

One obstacle for end surface analysis was that the coordinates of a track could be sequenced 

in two opposite directions (antegrade or retrograde), and correctly grouping the endpoints 

into two “end surfaces” required additional clustering steps. To this end, we used k-means 

clustering algorithm with k = 2 and modified it to ensure that the two endpoints of the same 

track were placed in the different clusters. The clustering started with all vi(1) assigned to 

cluster 1 and all vi(mi) assigned to cluster 2. Then the mean coordinate for each cluster was 

computed, and we clustered the endpoints of each track again using their distance to the 

mean coordinates. The above steps were repeated until there was no cluster change for all 

the endpoints. This resulted in two sets of coordinates (one for each end surface). The 

coordinates of the clustered endpoints were then rounded up to remove repeat voxel 

coordinates. This generated two unique sets of discrete voxel coordinates: E1 and E2, each of 

them denoting the voxelized end surfaces of the track bundle. We further checked the mean 

coordinates of E1 and E2 and figure out which of the x-, y-, or z-dimension has the largest 

distance between the mean coordinates. Without loss of generality, we assigned E1 to be the 

end surface that had a larger coordinate value in at this dimension (posterior or superior end 

of a bundle). The area of E1 or E2 was then calculated as follows:

area of an end surface = (number of voxels in tℎe surface set)
× (voxel spacing)2 (9)

The area was calculated separately for each of the end surfaces. To quantify the extent of an 

end surface, we define a new descriptor called the radius, which was calculated by modeling 

the end surface as a circle. Assuming we have a uniform endpoint distribution in a disk, the 

mean distance to the center will be 2/3 the radius. Thus the estimated radius is 1.5 of the 

mean distance:

radius = 1.5 × (meandistance of voxels to tℎe center) (10)
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We also introduce irregularity for the end surface. The irregularity was calculated as follows:

irregularity of an end surface = π × radius2

area of tℎe end surface (11)

The irregularity of a circle will be 1, whereas any protrusion or intrusion will increase the 

irregularity. Last, the end surface coordinates were used to define the “trunk” of a bundle. 

We first converted E1 and E2 into two 3D volumes of 0–1 valued voxels, respectively. The 

converted volumes were then analyzed by 3D connected component analysis to isolate the 

largest region of the surface. The two generated regions were then used as two regions of 

interest to isolate the main trunk of the fiber bundle and calculate its volume.

For each shape descriptor, the test-retest reliability was calculated using one-way random, 

single measures intraclass correlation (ICC 1–1). The median value of descriptors from 14 

bundles was calculated as an overall indicator of the performance. The between-subject 

variations of each descriptor were quantified using the absolute deviation from the median 

further divided by the median to facilitate comparison.

2.6. Computation resources

The source code is available at http://dsi-studio.labsolver.org with documentation to ensure 

the reproducibility of this study. The analysis was conducted on the “Bridges” 

supercomputer at Pittsburgh Super-computing Center provided through the XSEDE resource 

(Towns et al., 2014). The Bridges supercomputer network has 752 computation nodes, and 

each node has two 14-core Intel Haswell CPU at 3.3 GHz. XSEDE is an NSF-funded (US) 

program providing supercomputer resources shared by multiple research groups. This study 

used start-up allocation to accomplish the computation task, and DSI Studio package was 

available through its “singularity” container (Kurtzer et al., 2017) by pulling the docker 

container at docker://dsistudio/dsistudio. The batch processing was realized using the 

command line interface (http://dsi-studio.labsolver.org/Manual/command-line-for-dsi-

studio). The computation time for each pathway in one subject was around 3~5 min. The 

data transfer time and the waiting time at job queues were substantially longer (hours to a 

day). The total size of the tractography generated (44 subjects × 14 pathways) was 168 GB 

(in trk.gz format).

3. Results

3.1. Augmented fiber tracking

Fig. 2a shows the tracking result of the first subject, including the arcuate fasciculus (AF), 

cingulum (C). frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), inferior 

longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus 

(UF) presented in the left, right, anterior, and superior views. Only the association pathways 

in the left hemisphere are shown here to facilitate comparison. The tractography matches the 

known anatomical trajectories of the human association pathways, suggesting the feasibility 

of the automatic track recognition to obtain clean results without manual intervention. Fig. 

2b further shows the left arcuate fasciculus of all 44 subjects, including their test-retest 
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results generated from automatic track recognition. The tractography of the repeat scan is 

placed immediately on the right of the first scan. The tracking results show C-shaped 

bundles that match the anatomy of the arcuate fasciculus. This qualitative evaluation 

suggests that the augmented fiber tracking could provide grossly consistent tractography 

results in test-retest scans.

Figs. 3a and 3b further present the test-retest results of the arcuate fasciculus tractography in 

more detail. We selected three best (Fig. 3a) and three worst (Fig. 3b) performers from our 

subject pool, as quantified by the differences in the volume between the test-retest scans. 

The tractography in Fig. 3a shows high consistency in the fiber trajectories. The topological 

pattern of the core bundle is almost identical, though minor differences can still be observed 

at the details. Fig. 3b shows tractography from the three worst performers in the test-retest 

scans. Although at their worst, the overall tractography still also presents decent consistency. 

Most of the differences are located in the branches, whereas the core trajectories are still 

highly consistent.

3.2. Test-retest reliability

Fig. 3c lists the intraclass correlation (ICC) of shape descriptors for each bundle. The shape 

descriptors can be categorized into length metrics (light gray), area metrics (gray), volume 

metrics (dark gray), and shape metrics (white). Good reliability (ICC≥0.75) is labeled by a 

green circle, and moderate reliability (0.75>ICC≥0.5) is labeled by a yellow circle. Poor 

reliability (ICC<0.5) is marked by red. Out of 210 bundle-descriptor entries, 120 of them 

(57.1%) have good reliability, 76 of them (36.2%) have moderate reliability, and 14 of them 

(6.7%) have poor reliability. More than 90% of the scenarios have moderate to good 

reliability, suggesting overall good reliability of the shape descriptors. All descriptors have a 

median ICC value greater than 0.5, and the length metrics perform the best, with a median 

value of ICC around 0.8. The area and volume metrics are the next, showing the median 

values of ICC around 0.7~0.8. The shape metrics moderate to good reliability, with curl and 

elongation performing the best, and irregularity the last. There are poor reliability scenarios 

in radius, trunk volume, and irregularity that requires precautions. These metrics can have 

outstanding reliability (ICC>0.9) for some bundles and poor reliability (ICC < 0.5) in the 

others. This indicates that the application of these three shape descriptors still requires 

additional precautions to avoid poor reliability conditions.

3.3. Normative distribution of shape descriptors and left-right asymmetry

Fig. 4a shows representative examples of large and small metrics values using the left 

arcuate fasciculus selected from the subject pool. The mean and standard deviation values of 

the shape descriptors are listed and color-coded in Fig. 4b. Only right-handed subjects were 

included in all the following analyses. In Fig. 4b, the red color represents a relatively higher 

value compared with other association pathways. For example, the length of the inferior 

fronto-occipital fasciculus (IFOF) is marked by red, suggesting their longest length among 

all association pathways. Similarly, the frontal aslant tract (FAT) has the largest diameters, 

and the left cingulum (C) has the largest surface area. The left superior longitudinal 

fasciculus (SLF) has the highest topological irregularity.
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We further plot the distributions of length metrics in Fig. 5 for each of the association 

pathways. The end surface 1 and 2 for each bundle are labeled on the tractogram to the top. 

In each of the box plot figures, the two circles on the right upper corner represent the test-

retest reliability of the measures, as listed in Fig. 3c. Green color indicates good test-retest 

reliability (ICC≥0.75), yellowish color indicates moderate reliability (0.75>ICC≥0.5), and 

red color indicates poor reliability (ICC<0.5). The distributions for the left side bundle are 

colored by blue, whereas the right colored by red. Paired t-tests were used to test the left-

right differences (null hypothesis: the left-right differences are zero). The p-value results are 

presented with significance marks (*<0.05, **<0.01, ***<0.001), and the percentage 

differences are also calculated by 100% × (a-b)/a, where a is the quantity of the dominance 

side.

The largest and most significant left dominance can be found in the arcuate fasciculus (AF) 

in the diameter and radius of its posterior end surface at the temporal lobe. On the next, 

superior longitudinal fasciculus (SLF), cingulum (C), and uncinate fasciculus (UF) show 

moderately left dominance at 10~20% in diameter. Superior longitudinal fasciculus (SLF) 

and cingulum (C) further shows significant left dominance in the radius of their innervation 

surfaces. The left frontal aslant tract (FAT) shows a slightly larger radius of the innervation 

region at the inferior frontal lobe. In comparison, the inferior fronto-occipital fasciculus 

(IFOF) and inferior longitudinal fasciculus (ILF) shows right-dominance only in the radius 

of the end surfaces with no significant difference in the diameter.

Fig. 6 further shows the distributions of area and volume metrics for the association pathway 

bundles. The arcuate fasciculus (AF) shows a large left-dominance in area and volume 

metrics greater than 50%. On the next, cingulum (C), and uncinate fasciculus (UF) show 

moderately left dominance at ~20% in area and volume. The frontal aslant tract (FAT) shows 

only a slightly larger volume in the left hemisphere (14.8%). In comparison, inferior 

longitudinal fasciculus (ILF) shows moderate right-dominance in the area with no significant 

difference in the volume. The inferior fronto-occipital fasciculus (IFOF) shows right-

dominance in the area of the posterior end surface. The superior longitudinal fasciculus 

(SLF) has a more complicated lateralization profile, with left dominance in tract area and 

right dominance at the anterior innervation region and trunk volume. Findings from Figs. 5 

and 6 show an overall trend of left-dominance in the arcuate fasciculus (AF), cingulum (C), 

frontal aslant tract (FAT), and uncinate fasciculus (UF), and right dominance in the inferior 

fronto-occipital fasciculus (IFOF) and inferior longitudinal fasciculus (ILF). The superior 

longitudinal fasciculus (SLF) has mixed lateralization with different metrics showing either 

left or right dominance.

Fig. 7 shows the distribution of shape metrics for the association pathways. The differences 

between left and right distribution are quantified using Cohen’s d. While all pathways 

present significant left-right differences in different shape metrics, the irregularity metric 

presents the most significant and largest left-right asymmetry. The arcuate fasciculus (AF), 

cingulum (C), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF) shows 

substantial left dominance in the irregularity (paired t-test p-value < 0.001, d > 1.5), while 

inferior longitudinal fasciculus (ILF) shows right dominance (paired t-test p-value < 0.001, d 
= 1.76).
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3.4. Between-subject variations

Fig. 8 shows the between-subject variations using the absolute deviation. The absolute 

deviation was calculated by the absolute difference from the median to evaluate the 

dispersion of the shape descriptors between subjects. The deviation was further divided by 

the median value of the bundle to facilitate comparison. Furthermore, the overall median 

value of all bundles is plotted by a blue vertical line, whereas the first and third quantiles are 

plotted by a red line. As shown in Fig. 8, the length, span, and diameters have small 

between-subject differences, mostly less than 10% deviations. The variations in diameter are 

larger for the right arcuate fasciculus (AF_R), likely due to its smallest diameter among all 

association pathways. The radius and surface also have a similar variation level, with the 

majority of the deviations lower than 20%. A much larger between-subject variation can be 

observed for the are of the end surfaces, mostly ranged between 10~40% in the absolute 

deviation. The overall results suggest that the “layout” of the association pathways seems 

not to vary a lot across subjects, as shown by low between-subject variation in length, span, 

diameter, and radius. In contrast, the innervation region has a considerable between-subject 

variation that may account for most of the individual differences in white matter structure.

4. Discussion

Here we conducted shape analysis on human association pathways and confirmed its 

reliability in a test-retest dataset. We derived the distribution of shape descriptors to 

elucidate lateralization and between-subject variations. The results revealed an overall left 

dominance in arcuate fasciculus, cingulum, uncinate, and frontal aslant tract, with the largest 

lateralization found in the arcuate fasciculus. Cingulum and uncinate fasciculus showed 

moderate lateralization in either diameter, area, or volume, while the frontal aslant tract 

showed small lateralization. Right dominance was found in inferior fronto-occipital 

fasciculus and inferior longitudinal fasciculus. Although there was a widespread left-right 

asymmetry in all association pathways, the detail lateralization profile varied substantially 

across bundles, and not all bundles share the same lateralization pattern.

The lateralization found in this study is not new to the neuroscience field. For example, 

studies have shown lateralization in the arcuate fasciculus (Lebel and Beaulieu, 2009; 

Vernooij et al., 2007) and the inferior longitudinal fasciculus (Panesar et al., 2018), yet our 

findings revealed a more sophisticated profile in lateralization. A bundle could have left 

dominance in one metric and right dominance in another, and a comprehensive profile 

covering all metrics is needed to investigate the asymmetry thoroughly.

In addition to lateralization, the between-subject variation quantified in this study gave us a 

glimpse into how white matter structures variate across the population. Our analysis showed 

that the between-subjects variation was small in length metrics such as length, span, 

diameter, and radius, whereas the area of the end surfaces had a much larger variation. While 

the length and span did not vary much (< 10% deviation), the area of the innervation region 

had a median deviation of 24%, implying a considerable variation in how white matter 

bundle innervates at the cortical surface.
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4.1. Technical challenges and limitations

This study still has limitations. Good test-retest reliability in shape analysis only implies the 

robustness of the algorithm. It does not necessarily guarantee that the results are always 

correct. The fiber tracking algorithm still has the issue of false-positive and false-negative 

results. For deterministic fiber tracking, false-negative results are more common, as the 

ability to capture more delicate branches depends on the spatial resolution and the sensitivity 

of the data acquisition. There are possibilities that a minor branch was left undetected in 

both test and retest scans due to the limitation of acquisitions. Another challenge is the 

accuracy of automatic track recognition. Several diffusion MRI tools are providing similar 

functionality using atlases, cortical regions, or bundle clustering (Garyfallidis et al., 2018; 

Warrington et al., 2020; Wasserthal et al., 2018; Watanabe et al., 2018; Yeatman et al., 

2012). The track recognition in this study used a tractography atlas as the only reference and 

did not use cortical regions as the inclusion or exclusion criteria. The purpose was to avoid 

issues related to cortical parcellations. Whether this approach provides better or worse 

performance requires further investigation. The shape descriptors quantified in this study can 

be further improved. The volume and area metrics calculated in this study were calculated 

using voxelization and thus subject to discretization error. A better quantification strategy is 

to use surface triangularization to achieve better accuracy in volume calculation. For the end 

surface of the bundle, the tract termination can be projected to the gyral surface to achieve a 

more robust quantification. Last, we only have 44 subjects included in the analysis because 

of the long computation time needed for automatic fiber tracking. To further investigate 

between-subject differences, we are planning a future population-based study to include all 

1065 HCP subjects and describe the normative variation of white matter structures.

Nonetheless, there are encouraging reproducibility achieved in this study. We showed that a 

combination of parameter saturation, automatic track recognition, and topology-informed 

pruning could provide good reproducibility. The derived metrics further achieved moderate 

to good test-retest reliability. By integrating with shape analysis, diffusion MRI has a new 

option for white matter analysis. It can be used in neurological, psychological, and 

psychiatric studies to investigate the correlation between white matter architecture correlates 

and abnormal brain functions, with a hope to decipher how structure defines brain functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Shape analysis of a bundle. (a) The length metrics include length, span, diameter, and radius 

of the innervation region. The length measures the length of the bundle trajectory, whereas 

the span measures the absolute distance between two ends of the bundle. The diameter 

estimates the average bundle diameter. The radius uses a circular model to estimate the 

coverage of the innervation regions. (b) The area metrics include total track surface area and 

area of the two end surfaces. Each fiber bundle has two end surfaces, and their area will be 

quantified separately. (c) The volume metrics include total volume and trunk volume.
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Fig. 2. 
Qualitative evaluation of association pathways generated using augmented fiber tracking. (a) 

Seven association pathways in the left hemisphere of a subject are automatically tracked. 

The tracking results seem to match well with the known neuroanatomical structures of the 

association pathways. (b) The result of arcuate fasciculus tractography of all test-retest scans 

(n = 44 × 2) mapped using augmented fiber tracking. All results show similar C-shaped 

bundles. The test-retest results are grossly consistent, suggesting the reliability of the method 

for high throughput analysis.
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Fig. 3. 
Reproducibility of tractography and reliability of the shape descriptors. (a) Three subjects 

with the best performing test-retest results are selected for their small differences in test-

retest volume. The tractography from test and retest scans is of high similarity, while the 

unique structural characteristics of each subject are preserved. (b) Three subjects with the 

worst performing test-retest results are selected as a comparison. Even at its worst, the fiber 

tracking still achieves decent consistency between test-retest scans and preserves the 

structural characteristics of each subject. (C) The test-retest reliability of the shape 

descriptors is quantified by intraclass correlation (ICC). The majority of the shape 

descriptors show moderate (>0.5) to good (>0.75) reliability. The median ICC values for all 
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descriptors are greater than 0.5, while poor reliability (<0.5) still presents in around 6% of 

the application scenarios.
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Fig. 4. 
(a) Representative cases of shape descriptors are shown using the left arcuate fasciculus as 

an example. (b) Mean values and standard deviations of shape descriptors are listed for each 

association pathway. The red colors are those with relatively large values in comparison with 

other pathways.
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Fig. 5. 
The distribution of the length metrics and their left-right differences in the association 

pathways. The location of the end surface 1 and 2 are annotated for each bundle. The 

association pathways present different significance level of the left-right differences (p-

value: *** < 0.001, ** < 0.01, * < 0.05). The test-retest reliability of the metrics for the left 

and right bundle is presented by colored circles (green: ICC≥0.75, yellow: 0.75>ICC≥0.5, 

red: ICC<0.5). AF, C, FAT, SLF, and UF present an overall left dominance in either the 

diameter or radius, whereas IFOF and ILF present right dominance.
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Fig. 6. 
The distributions of the area and volume metrics and their left-right differences in the 

association pathways. The location of the end surface 1 and 2 are annotated for each bundle. 

The left-right differences are tested (p-value: *** < 0.001, ** < 0.01, * < 0.05). The test-

retest reliability of the metrics for the left and right bundle is presented by colored circles 

(green: ICC≥0.75, yellow: 0.75>ICC≥0.5, red: ICC<0.5). AF, C, FAT, and UF shows 

significant left dominance in either area or volume metrics, whereas IFOF and ILF show 

significant right dominance. SLF presents a mixed lateralization profile with either right or 

left dominance in different metrics.
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Fig. 7. 
The distributions of the shape metrics and their left-right differences in the association 

pathways. The location of the end surface 1 and 2 are annotated for each bundle. The left-

right differences are tested (p-value: *** < 0.001, ** < 0.01, * < 0.05) and effect size 

(Cohen’s d) with test-retest reliability presented as colored circles (green: ICC≥0.75, yellow: 

0.75>ICC≥0.5, red: ICC<0.5). All pathways present significant lateralization at different 

shape metrics. The overall irregularity shows the large left-dominance at AF, C, SLF, UF, 

and right dominance at ILF, suggesting their prominent left-right differences in bundle 

topology.
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Fig. 8. 
Between-subject variations of the length, area, and volume metrics in the association 

pathways. The variations are quantified by absolute deviation. The blue vertical line marks 

the median of deviation values of all bundles, whereas the two red vertical line marks the 

first and third quantiles. The test-retest reliability is labeled by colored circles (green: 

ICC≥0.75, yellow: 0.75>ICC≥0.5, red: ICC<0.5). All length metrics have relatively smaller 

between-subject variation, and the area and volume metrics show a slightly larger between-

subject variation. The end surfaces show a greater deviation of more than 20%. The overall 

results suggest that the “layout” of the association pathways seems not to vary a lot across 

subjects, while the innervation region has a considerable between-subject variation.
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