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Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every
year and 1.8 million deaths worldwide. Although many infants are vaccinated at birth
with BCG (an attenuated M. bovis), this does not prevent infection or development of
TB after childhood. Immune responses necessary for prevention of infection or disease
are still unknown, making development of effective vaccines against TB challenging.
Several new vaccines are ready for human clinical trials, but these trials are difficult
and expensive; especially challenging is determining the appropriate cellular response
necessary for protection. The magnitude of an immune response is likely key to
generating a successful vaccine. Characteristics such as numbers of central memory
(CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also
correlated with protection. Promising vaccines against TB contain mycobacterial subunit
antigens (Ag) present during both active and latent infection. We hypothesize that
protection against different key immunodominant antigens could require a vaccine that
produces different levels of EM and CM for each Ag-specific memory population. We
created a computational model to explore EM and CM values, and their ratio, within what
we term Memory Design Space. Our model captures events involved in T cell priming
within lymph nodes and tracks their circulation through blood to peripheral tissues. We
used the model to test whether multiple Ag-specific memory cell populations could be
generated with distinct locations within Memory Design Space at a specific time point
post vaccination. Boosting can further shift memory populations to memory cell ratios
unreachable by initial priming events. By strategically varying antigen load, properties of
cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of
multi-subunit vaccines, we can generate multiple Ag-specific memory populations that
cover a wide range of Memory Design Space. Given a set of desired characteristics for
Ag-specific memory populations, we can use our model as a tool to predict vaccine
formulations that will generate those populations.
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INTRODUCTION

An estimated 9 million new cases of tuberculosis (TB) are
reported annually (WHO, 2014). This number could be an
underestimate by a factor of almost 2 due to difficulties
diagnosing individuals with latent infection and those living in
remote areas of developing countries (WHO, 2014). In addition
to a clear demand for more practical and reliable diagnostic
methods and more effective regimens of chemotherapy, there
is a desperate need for a better vaccine for TB. BCG, the
only vaccine currently approved for use, is somewhat effective
in children, but loses its protective effects as individuals enter
adolescence (Colditz et al., 1994; Ottenhoff and Kaufmann,
2012; Pitt et al., 2013; Kaufmann, 2014). Vaccines are a critical
component of the effort to stop TB due to the asymptomatic
nature of latent infection and that initial symptoms of active
diseases are shared by many pulmonary infections. By the time
an infected individual was diagnosed and starts treatment, s/he
has likely been contagious for several weeks (Mehra et al., 2013;
WHO, 2014). An ideal vaccine, therefore, would either prevent an
initial infection from taking hold or would prevent existing latent
TB infections from progressing to active disease, reducing risk of
reactivation (Karp et al., 2015).

Recently a renewed focus on TB has led to several promising
vaccine candidates reaching clinical trials. However, their efficacy
in humans is difficult to predict because there is much work
remaining to identify immunological correlates of protection
(Lin et al., 2015). Mycobacterium tuberculosis is an intracellular
pathogen, and thus protection requires cell-mediated immunity
(Seder and Hill, 2000; Woodland, 2004; Sallusto et al., 2010;
Chanzu and Ondondo, 2014), i.e., populations of memory T cells
that recognize specific TB antigens (Ags). Because individuals
infected with HIV are many times more likely to have a latent TB
infection reactivate to active disease, CD4+ T cells are strongly
implicated in protection (Nunes-Alves et al., 2014). Many of the
recently developed vaccines have focused on generating large
populations of CD4+ memory T cells capable of mounting a
strong Th1 response (Karp et al., 2015), but recent failures of
vaccines that provide this type of response (Tameris et al., 2013;
Kaufmann, 2014) together with other recent results (Mittrücker
et al., 2007; Kagina et al., 2009) suggest that there is more to the
story.

In addition to the quantity of T cells that can recognize an
infectious agent, their quality is key (Nunes-Alves et al., 2014).
In order for a memory T cell to be effective, it must have the
right function(s), in the correct location, at the moment it is
needed (Hikono et al., 2007). Therefore, it is critical to consider
subtypes of memory T cells, both CD4+ and CD8+, and how
they are generated. In 2004 Sallusto and Lanzavecchia delineated
two subtypes of memory T cells (Sallusto et al., 2004). Central
memory (CM) cells are long-lived and circulate through lymph
nodes (LNs) while effector memory (EM) cells circulate through
blood and peripheral tissues. This division mirrors the two major
functional roles of memory T cells: CM cells are primed in LNs
and rapidly expand into a large population of effector cells that
quickly respond to infection, while EM cells are available to
recognize and act against invading pathogens at peripheral sites.

Due to the myriad ways pathogens have evolved to infect and
propagate within their hosts, the optimal subtype composition
of T cell memory populations varies across infections. We can
conceptualize memory as a plot of EM vs. CM, for either
CD4+ or CD8+ T cells, at a particular time point (Figure 1A).
Protective vaccines against smallpox (Vaccinia virus) produce T
cell populations that are comprised of slightly more EM than CM
T cells (Miller et al., 2008), whereas protection against Listeria
requires more CM (Busch and Pamer, 1999; Pamer, 2004; Wong
et al., 2004). Natural infection with M. tuberculosis can lead to
active disease, characterized by a memory cell population that
is skewed toward EM in one study (Goletti et al., 2006; Wang
et al., 2010). In the majority of cases, however, infection can
be controlled (otherwise known as latent TB infection), and
TB-specific memory populations are roughly balanced between
EM and CM levels (Wang et al., 2010). Interestingly, T cells
generated as a result of BCG vaccination have a very similar
memory composition to active disease (Fletcher, 2007; Soares
et al., 2008; Adekambi et al., 2012), but the new vaccine candidate
H56 generates memory populations with approximately equal
amounts of EM and CM T cells, similar to latent TB infection
(Luabeya et al., 2015).

TB is a disease that typically lasts the lifetime of the host, and
infection may lie on a spectrum from a truly latent infection to
active disease. A host likely experiences several points on this
spectrum over the timeframe of the disease, from early to later
stages of infection. We theorize that an optimal memory cell
subtype composition is different at each infection stage, as has
been considered for other infections (Jiang et al., 2007). For
example, T cells specific to antigens from the early phase of
M. tuberculosis infection may be most effective as EM T cells,
whereas Ag-specific populations associated with later stages may
need to be skewed toward CM T cells to be effective. If so, an
ideal vaccine would induce multiple Ag-specific populations of
memory T cells, each with a distinct composition of CM and EM
cells.

In order to achieve this, we consider immune mechanisms
occurring within LNs that affect T cell priming in an Ag-specific
manner. These mechanisms may be inherent to the specific
interactions between T Cell Receptors (TCRs) and peptide-MHC
complexes (pMHC) displayed on Dendritic Cell (DC) surfaces
or they may be mechanisms that have different effects across
Ag-specific populations. We are interested in general features
intrinsic to a host’s immune response (e.g., length of time TCR
binds pMHC (León et al., 2014) and vaccine delivery (e.g.,
dose and timing of stimulations), and specific features of the
relevant antigens under studywithin a vaccine and how presented
antigens interact with their cognate T cell (e.g., probability of
TCR/pMHC binding).

Of the 100s of potential epitopes comprising a single invading
pathogen, only a few tend to dominate the immune response
that is mounted (Sant et al., 2005). Factors that determine this
immunodominance hierarchy have been extensively investigated
in vivo and in vitro for many pathogens, but remain poorly
understood for TB. The frequency of naïve precursor T cells
in a host is a strong predictor of response magnitude (Moon
et al., 2007; Obar et al., 2008), but this is likely host-specific and
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FIGURE 1 | Computational model system for predicting cell-mediated immune responses in Memory Design Space for multiple Ag specificities.
(A) Known cell-mediated immune responses generated by vaccine or natural infection to various infections. Reported relative numbers of central memory (CM) and
effector memory (EM) T cells following vaccination are shown for smallpox in humans (6 months post-vaccination) (Miller et al., 2008) and listeria in mice (day 35)
(Busch and Pamer, 1999; Pamer, 2004; Wong et al., 2004). Similarly, memory T cell populations generated following human vaccination with BCG (10 weeks)
(Fletcher, 2007; Soares et al., 2008), MVA85A boosting BCG (24 weeks (Beveridge et al., 2007) or 56 days (Scriba et al., 2010)), and H56 (100 days after the 2nd of
two boosts (Luabeya et al., 2015) are plotted, as well as T cells generated as a result of natural infection (marked by asterisks) with M. tuberculosis in patients with
active TB disease (Goletti et al., 2006; Wang et al., 2010), latent TB infection (LTBI) (Wang et al., 2010), or successfully treated TB (1 month post-treatment) (Wang
et al., 2010). We refer to a plot EM and CM T cells remaining in blood and peripheral tissues after infection has cleared and memory is established (time point t = 30
days) as Memory Design Space. Both the size and skew of the memory population can be easily visualized in Memory Design Space. (B) Schematic of computational
model. Our 3-compartment hybrid model comprises an agent-based model of the lymph node and systems of ordinary differential equations representing blood and
peripheral tissues. Ag-specific naïve T cells (N) in the LN may be primed by dendritic cells (DCs) and differentiate (graded arrows) to memory subtypes. In blood, cells
may die, transit to other compartments, and some EM cells convert to CMs. Effector cells (E) and EMs that enter peripheral tissues do not reenter circulation.
(C) Model quantities capturing antigen presentation. DCs display piMHCs from several antigens (shown by different shapes). The number of pMHC complexes
displayed on each Ag-bearing DC that enters the LN is Ptot, the number of complexes for each antigen (piMHC) is xi and the fraction of total complexes for each
antigen is mi. (D) Binding probability, Pi (bind) describes the probability that a DC with an available pMHC receptor will bind a T cell in its neighborhood. This depends
on xi, the number of piMHC displayed that match the T cell’s specificity, and ai , the number of piMHC necessary to achieve a 50% binding probability according to
the equation: Pi(bind) = 1

1+e
− (xi −ai )

bi

, as was developed for previous versions of the model (Riggs et al., 2008; Linderman et al., 2010).

difficult to affect with exogenous intervention. The probability
of a binding event occurring between cells − a pMHC complex
on the surface of an Ag-presenting cell and its cognate TCR on a
naïve precursor T cell − is also strongly correlated with numbers
of T cells generated (Busch and Pamer, 1998; Zehn et al., 2009;
Bergsbaken and Bevan, 2015). Binding affinity and duration, for
example, could potentially be altered, especially in the context of
a subunit vaccine containing several antigenic peptides from the
pathogen each of which can be manipulated independently.

The natural immunodominance hierarchy is convenient
because it narrows the number of antigens in focus, but it
may also be true that it is not the ideal hierarchy for fending
off infection. Subdominant Ag-specific T cells could be more
adept in controlling infection. In this case, we would desire a
vaccine that could induce memory T cells that do not obey
the natural hierarchy. Experimental evidence has shown that
the natural immunodominance hierarchy can be disrupted by
providing a second stimulation (boost) (Belz et al., 2000; Crowe
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et al., 2003; Jabbari and Harty, 2006; Kastenmuller et al., 2007;
Handel and Antia, 2008) or by artificially forcing the system to
over- or under- display certain antigens (Luciani et al., 2013;
Woodworth et al., 2014). These perturbations have also been
shown to affect the types of memory T cells that are generated
following stimulation. For example, increasing the number of
boosts can push the memory populations heavily toward EM T
cell phenotype (Masopust et al., 2006; Wirth et al., 2010), while
lowering the amount of total antigen presented (and thus the
strength of signal) can cause the system to favor CM T cell
generation (Kaech and Cui, 2012; Zehn et al., 2012; Gong et al.,
2014).

In order to generate testable hypotheses regarding memory,
and to account for combinatorial populations of T cells and
interdependent mechanisms affecting their differentiation, we
adopted a computational modeling approach. We updated our
existing model of T cell priming and differentiation in LNs
(LymphSim) to account for multiple Ag-specific populations of
CD4+ and CD8+ T cells. This model also includes circulation of
T cells between LN and blood (Gong et al., 2014). We extended
this to include a compartment representing peripheral (non-
lymphoid) tissues where T cells do not return to circulation once
they leave (Figure 1B). We use this 3-compartment model to
explore how both Ag-specific and Ag-independent mechanisms,
some of which are specific to antigens and their cognate T cell
populations and others of which apply to all cells in the LN
equally, affect the numbers and types of memory T cells generated
across several Ag-specific populations, focusing on CM and EM
T cells. Recently a third T cell memory subtype has become
recognized: resident memory T cells home to peripheral sites but
do not reenter circulation (Mueller et al., 2013). It is thought that
this subtype preferentially localizes to the initial infection site to
act as sentinels (Masopust and Schenkel, 2013). Though distinct
in their migratory patterns, some consider resident memory
T cells to be a subset of EM T cells (Farber et al., 2014).
In addition, specific markers and dynamic information about
resident memory cells are currently lacking. Thus, in our studies
we only focus on EM and CM subtypes, assuming that resident
memory T cells are a subset of EMs.

As a simple way to distinguish Ag-specific immune cell
populations with various compositions of CM and EM T cells,
we conceived of Memory Design Space. As demonstrated in
Figure 1A, each Ag-specific population is represented as a single
point on an x−y plane, measured at a time after the acute immune
response has cleared and only memory T cells remain, which
we define as the memory time point. Numbers of CM T cells at
the memory time point are plotted on the x-axis, and likewise
the numbers of EM cells are plotted on the y-axis. Examining
the plot of memory design space leads to two obvious measures:
(1) The overall size of the memory population is represented by
length of a line connecting the point to the origin; (2) The skew
of the memory population, or the ratio of EM to CM cells, can be
visualized by the angle created between this line and the x-axis.
By plotting populations in Memory Design Space, we can easily
visualize and compute the difference between several Ag-specific
populations and thus assess how simulated conditions affect the
amount and types of memory cells generated.

In this work, we use our computational model to explore
how properties of LN environmental conditions, T cells, and
antigens affect the amounts and types of memory T cells, i.e.,
location in Memory Design Space, generated from a virtual
vaccine. We then ask how second or third rounds of vaccination
(boosting) can influence these relationships. Given a target
memory composition for each antigen and predictions generated
by plotting model outputs in Memory Design Space, we believe
it will be possible to harness relevant mechanisms to drive the
outcomes in a desired direction. This can help improve efficacy
of vaccines that induce cell-mediated immunity, especially those
requiring protection by several Ag-specific populations like TB.

MATERIALS AND METHODS

Interpreting Memory Populations
Reported in Literature
Memory T cell population sizes reported in the literature were
culled from multiple independent studies for specific pathogens,
with priority given to studies in humans, non-human primates,
and mice in that order (Busch and Pamer, 1999; Goletti et al.,
2006; Miller et al., 2008; Petruccioli et al., 2013; Luabeya et al.,
2015). All data were taken from FACS analysis of whole blood
when available, or spleen. In some cases, the only counts
of memory T cells available were from cytokine-producing
cells, via intra-cellular cytokine staining. In these cases, we
summed together the subpopulations (defined by combinations
of cytokines produced) that authors identified as either EM or
CM cells. Because of this and the disparate sources of data, we
focused on the relative amounts of EM and CM T cells detected,
rather than absolute counts.

Hybrid Agent-Based Model of T Cell
Priming and Differentiation
Agent-based models (ABMs) simulate stochastic processes
evolving in both space and time. In our model, LymphSim, T
cells and Dendritic Cells (DCs) are represented as discrete agents
that move and interact on a three-dimensional grid representing
a LN. The rules that govern cell behavior are defined over short
distances and small time steps, and are probabilistic in nature.
However, patterns of behavior can emerge on much larger scales
of space and time. The cell interaction rules specified by this
model lead to T cell priming and differentiation resulting from an
infection or vaccine. Model rules are available in the supplement
and are briefly summarized below.

In this work we built upon our previously developed model
of T cell priming and differentiation in LN and circulation via
blood (Gong et al., 2014). The LN compartment is represented
with a 3-dimensional hybrid ABM, called LymphSim. The grid
spaces (cubes of side length 20 μm) are arranged in a truncated
cone, which represents approximately 1/200th of a LN. T cells and
Dendritic Cells (DCs) are the model agents: DCs move randomly
on the grid and T cells move in a persistent random walk at
rates calibrated to intravital 2-photon microscopy experiments
(Miller et al., 2004; Gong et al., 2013). T cells and DCs enter and
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exit the grid at locations designated as high endothelial venules
and efferent lymphatics, respectively. These ports connect the
LN to the blood compartment (Figure 1B), which is represented
by ordinary differential equations (ODEs) that are described
in a following section. The LN and blood compartments share
information and update at the end of every ABM time step (25
simulated seconds), an important step because cells that will
enter the LN are recruited at rates dependent on their blood
concentrations, and cells that have exited the LN contribute to
blood concentrations.

The rules for LymphSim have been published and are available
at http://malthus.micro.med.umich.edu/lab/movies. Briefly, T
cell – DC binding is permitted to occur when the two cells are
in neighboring grid compartments and there is open space on
surface of the DC to accommodate the T cell. Once bound, a T
cell accumulates stimulation from the DC at a rate proportional
to the total number of pMHC displayed on that DC (Gett and
Hodgkin, 2000; Gong et al., 2014; Moreau and Bousso, 2014). The
amount of accumulated signal is used to determine whether the
T cell will ultimately differentiate into an EM or CM T cell, or
whether it will return to its naïve resting state.

Accumulated signal is the main factor determining T cell
fate after unbinding from a DC. Mechanisms that determine
accumulated signal for each DC-T cell interaction may either
be independent of the antigen (Ag) involved, affecting all
interactions equally in the LN, which we term Ag-independent,
or what we term Ag-specific, i.e., uniquely specified for each
population of cognate T cells and their interactions. DCs in
the model are promiscuous, displaying more than one antigen
at a time as they do in nature. The total number of pMHC
displayed per DC, Ptot , is an Ag-independent property because
of this lack of Ag-specificity and because all Ag-bearing DCs
(AgDCs) entering the LN have the same initial Ptot . This quantity
serves as a proxy for the overall activation state of a DC, as DCs
displaying higher numbers of total pMHC (having a higher Ptot)
pass more stimulation signals to their bound T cells. Ag-specific
properties include the binding kinetics of a T cell Receptor (TCR)
to the peptide-MHC complex displaying its cognate antigen
i (piMHC), which are discussed in detail below. Additionally, the
presence and quantity of an antigen being presented by DCs can
be controlled independently for each antigen, simulating varying
dose and number of rounds of vaccination.

An important distinction between differentiated T cell subsets
is their migration patterns: only Naïve and CMT cells may enter a
LN, whereas after emerging from the LN, Effector and EM T cells
circulate through blood and may enter peripheral tissues, from
which they do not return (Mueller et al., 2013). Additionally, CM
activation upon antigen re-encounter happens more readily than
Naïve cell activation, and as reported in the literature, CM cells
accumulate signal from DCs more efficiently (Byrne et al., 1988;
Bachmann et al., 1999).

Multiple Antigen-Specific T Cell
Populations in the LN
For this work, we expanded our model of T cell priming and
differentiation (LymphSim) to account for multiple Ag-specific T

cell populations as described in the Model Rules (Supplementary
Data S1). Briefly, The TCR of each T cell agent recognizes only
its cognate piMHC complex. For the simulations shown here, we
used five Ag-specific T cell populations (i = 1,2,. . .,5) for each of
CD4+ and CD8+ T cells, a total of ten Ag-specific populations.
We assume that the vast majority of dynamics within the LN are
similar across all Ag-specific T cell populations, but, as has been
reported in the literature, certain properties differ between Ag-
specific populations. These include precursor frequency (Moon
et al., 2007; Obar et al., 2008), number of piMHC displayed on
a DC (Borghans et al., 1999; Gonzalez et al., 2005; Baumgartner
et al., 2010; Huang et al., 2013), and TCR-piMHC binding
probability (Kotturi et al., 2008; Chervin et al., 2009; Irving et al.,
2012). In our model, precursor frequency is a single parameter
specified independently for each population of Ag-specific CD4+
and CD8+ Naïve T cells. The number of piMHC displayed
per DC is specified as a fraction of total pMHC-I or pMHC-II
displayed per DC (mi) (Figure 1C).

When a T cell comes within the binding radius of a DC, the
probability of a binding event occurring, Pi(bind), is determined
by the number of cognate piMHC displayed on the DC. The
binding probability equation was developed previously (Riggs
et al., 2008; Linderman et al., 2010) and here is updated to
represent Ag-specific binding reactions when more than one
Ag-specific population of T cells is present:

Pi(bind) = 1

1 + e−
(xi−ai)

bi

where xi represents the number of piMHC displayed on the
DC, ai represents binding threshold, and bi is binding slope
(Figure 1D). While binding probability Pi(bind) depends only
on the cognate piMHCs, stimulation signal accumulated by
bound T cells depends on the level of DC activation, which is
approximated in our model by the total pMHC (Ptot) displayed
regardless of Ag-specificity.

Each T cell-DC binding event in LymphSim represents the
sum of several serial bindings between a T cell and several DCs
in a real LN. Data suggest that the binding time for each event in
the series is a function of several Ag-independent mechanisms
including crowding, DC activation state, T cell stimulation
experience, and other conditions in the LN combined with Ag-
specific properties: a T cell’s binding affinity to its cognate piMHC
and the number of cognate piMHCdisplayed (Bousso and Robey,
2003; Celli et al., 2005, 2007, 2008, 2012; Garcia et al., 2007;
Henrickson et al., 2008; Moreau and Bousso, 2014). We use
binding time to refer to the Ag-independent conditions that affect
the total time a T cell collects stimulation from DCs while it
is in the LN. We do not explicitly model Ag-specific DC-T cell
binding affinity, but Ag-specific binding probability influences
overall stimulation collected by modulating whether or not an
Ag-specific T cell will bind its cognate piMHCwhen in proximity
of a DC.

After exiting the LN, CMs (that may later reenter and bind
another DC) retain the accumulated stimulation signal they
received. This so-called “stimulation history” is one mechanism
by which CMs are more easily primed than their naive
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counterparts (Byrne et al., 1988; Bachmann et al., 1999). Because
stimulation history depends on Ag-specific interactions, the
amount of stimulation signal accumulated is another Ag-specific
property. While in the LN, each CM cell tracks its own amount of
accumulated stimulation. In the blood, where cells are not tracked
individually but as a population (see next section), the mean and
standard deviation of stimulation on CMs in each Ag-specific
population is updated each time a new CM exits the LN. CMs
returning to the LN are assigned a value of accumulated signal
that is sampled from the normal distribution defined by their
population’s mean and standard deviation.

Multiple Antigen-Specific T Cell
Populations in Peripheral Tissue and
Blood
The blood compartment is represented by ODEs that track
concentrations (cells/μL) of subtypes of CD4+ and CD8+ T
cells (naïve, effector, CM, EM). The equations include terms that
account for homeostatic proliferation and/or death rates, egress
to peripheral tissues, and a source of new naïve cells generated in
the thymus. To track Ag-specific populations, we generated a new
instantiation of the base blood ODE model for each Ag building
on our previous published version (Gong et al., 2014). The
equations and parameter values are the same for each, but each
population is updated independently as cells exit and enter the
blood compartment. Essentially, the blood compartment model
is comprised of six parallel, independent sets of ODEs: one for
each of five Ag-specific population of T cells and one for all other
(non-cognate) T cells.

We added an additional ODE compartment representing
peripheral non-lymphoid tissues (“NLT” in the equations
below; Figure 1B). This compartment represents tissues where
infections are likely to occur, such as lungs, but keeps the model
formulation general enough that we can consider a generalized
infection scenario and still explore the role of trafficking patterns
between compartments. Only effector and EM T cells may enter
peripheral tissues, and no cells exit. Cell population dynamics are
tracked as an exponential decline of both effector and EM cells.
Similar to the blood compartment, both CD4+ and CD8+T cells
of each TCR type are described by their own set of equations
so that the dynamics are tracked separately for each Ag-specific
population. The equations representing dynamics of one Ag-
specific population (Ag1-specific T cells) for CD4+ and CD8+
T cells are shown here:

dE4,1,NLT
dt

= ξE4,1E4,1,B − δE4,1,NLTE4,NLT

dEM4,1,NLT

dt
= ξEM4,1EM4,1,B − δEM4,1,NLTEM4,1,NLT

dE8,1,NLT
dt

= ξE8,1E8,1,B − δE8,1,NLTE8,1,NLT

dEM8,1,NLT

dt
= ξEM8,1EM8,1,B − δEM8,1,NLTEM8,1,NLT

where ξE4,1 and ξEM4,1 are rates of Ag 1-specific CD4+ effector
(E4,1) and EM (EM4,1) being recruited from blood to peripheral

tissues; δE4,1,NLT and δEM4,1,NLT are the death rates of Ag 1-
specific CD4+ effector and EM in the peripheral tissues and
the terms for Ag 1-specific CD8+ T cells follow the same
conventions. The linked LN, blood, and peripheral tissue models
formed by ABM and ODE models, together constitute a hybrid
ABM that is used for simulations of T cell priming and
differentiation.

Parameter Estimation
Because most processes described by model parameters were
unchanged by the addition of multiple antigen specificities and
a peripheral tissue compartment, most baseline parameter values
were not varied from the values in the single antigen version
of the model (Gong et al., 2014). However, we confirmed
that the numbers and dynamics of T cells exiting the LN
were also unchanged. We compared the qualitative dynamics
of T cells in the blood following antigen presentation (e.g.,
Figures 2B,C) to data from mouse spleens presented in (De
Boer et al., 2001, 2006; Antia et al., 2003; Ganusov and De
Boer, 2007). We expected to see a large peak of effector T cells
that reached its maximal value 7−10 days post-infection and
quickly declined and memory T cells that reach lower peaks
but declined more slowly, especially for CM. We also used
the mouse data as a lower bound for the numbers of T cells
generated. To facilitate comparison to data, T cells from the
model are reported as absolute numbers: total cells in the blood
and peripheral tissues. In addition, we verified that the size of the
memory populations generated by the model were approximately
5−10% of the peak of the effector response generated, as has
been reported widely in the literature (De Boer et al., 2001;
Badovinac et al., 2003). The simultaneous priming of multiple
antigen specificities did not interfere with T cell dynamics or
population sizes generated per antigen for the parameter ranges
tested here.

Baseline values of Ag-specific parameters such as precursor
frequencies and binding parameters were previously estimated
for a single antigen, and many remained unchanged (Gong
et al., 2014), but are now specified for five distinct populations.
For the five Ag-specific populations in our model, we set each
mi ≤ 0.2 so that their sum is less than 1; presumably other
pMHC complexes not relevant to the infection of interest also
are present and would constitute the balance. All baseline
parameter values for Ag-specific and Ag-independent parameters
are listed in Supplementary Table S1. If values are used for
parameters other than those listed, we give them in the Figure
legends.

Uncertainty and Sensitivity Analyses
We used uncertainty and sensitivity analysis to identify
correlations between model parameters and memory population
size and/or EM/CM ratio. To do this, we used the skew in
Memory Design Space to indicate the ratio of EM to CM, and
distance in Memory Design Space to indicate size of the memory
population. Latin Hypercube Sampling (LHS) was used to
efficiently sample parameter space, generating 50 parameter files
that were each simulated 20 times with a unique random seed.
Correlations between parameter values and skew/distance were

Frontiers in Microbiology | www.frontiersin.org 6 January 2016 | Volume 6 | Article 1477

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Ziraldo et al. Strategic Vaccines for TB Memory

FIGURE 2 | Antigen specific characteristics affect Memory Population Size and antigen independent mechanisms affect EM/CM ratio for CD4+ T
cells. (A) Simulation set-up: Ag-specific mechanisms have varying affects on Ag-specific T cell populations (numbered circles) within a single LN. Ag-independent
mechanisms, here conceptualized as three different LN environments, cause variations in cells from the same Ag-specific population. (B) Binding probability affects
the number of CD4+ T cells generated in LN. y-axis: total numbers of T cells in blood and peripheral tissue. x-axis: days post-vaccination. CD4+ T cell populations
were assigned increasing binding thresholds (ai ) from low (Ag1-specific T cells) to high (Ag5-specific T cells) such that the binding probability, Pi (bind), of Ag1-specific
T cells was highest, followed by Ag2-specific T cells, and so on with Ag5-specific T cells having a very low chance of binding their matching piMHC presented on the
surface of a DC. All parameters were at baseline values, except binding thresholds, which were set at 30, 90, 150, 200, 300 for Ag1-Ag5, respectively. (C) Binding
time affects amount of CM, but not EM, generated. Numbers of CD4+ T cells in blood and tissue are plotted post-vaccination for 3 simulations, with DC-T cell
binding time (max binding time Naïve) increasing from LN 1 (4 h) to LN 2 (8 h) to LN 3 (12 h). (D) Memory T cell populations at 30 days post-vaccination
corresponding to time courses in panel B are plotted in Memory Design Space. Colors show binding probability from low (blue) to high (red) and correspond to
graphs in Panel B. Error bars represent SEM (n = 10). (E) T cell populations measured 30 days post-vaccination in blood and peripheral tissues corresponding to
time courses in panel C are plotted in Memory Design Space. Purple: LN 1, Red: LN 2, Orange: LN 3. Error bars represent SEM (n = 10). See Supplementary Figure
S1 for statistical analysis of change in skew.
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estimated with Partial Rank Correlation Coefficients (PRCC;
Marino et al., 2008). To determine statistical significance of the
PRCC correlations, we performed a pairwise Z-test between all
PRCCs.

Multiple Vaccination Events
We simulated two types of vaccination events: prime, where
the vaccine is introduced into a naïve host with no previous
antigen exposure, and boost, where the system has previously
encountered the same antigens that are being presented. To
simulate priming, the model is run for 2 days to allow initialized
populations to reach steady state, and antigen presentation begins
on day 3. Vaccination is captured in our computational model by
the entry of AgDCs into the LN. AgDCs are recruited steadily
for two days as space permits. DCs do not exit LNs, but their
lifespan is 3−5 days (Kamath et al., 2002), and therefore the
antigen presentation period naturally resolves within 7 days for
a 2-day recruitment period.

We simulated boosts in two ways: either by extending priming
simulations for several weeks beyond the initial memory time
point and reintroducing antigen for an additional identical
round of antigen presentation, or by setting initial conditions to
represent a boost scenario, with Ag-specific memory populations
already present in blood and LN before a simulation begins. To
do this we had to endow CM T cell populations with stimulation
signal, indicating the average stimulation history for each Ag-
specific population (see above). This information is represented
by amean and standard deviation for eachAg-specific population
of CMs in the blood.

Generating Desired Responses for TB
Infection Studies
To demonstrate that diverse T cell populations could be
generated with our computational model, using a reverse
engineering approach we identified “desired responses”
of varying size and EM/CM ratio and then performed
simulations designed to generate T cell populations that
met our specifications. Our choices of desired responses were
guided by EM/CM ratios and T cell numbers reported in
literature (Goletti et al., 2006; Fletcher, 2007; Soares et al.,
2008; Wang et al., 2010; Adekambi et al., 2012) (Luabeya et al.,
2015; Figure 1A). From our previous analyses we knew that
low binding time led to high numbers of CM relative to EM
(Figure 2C) and likewise, high CM efficiency generated the
opposite (Table 1). Furthermore, as demonstrated in Figure 2D,
binding threshold is anti-correlated with population size, and
number of boosts is correlated with both size and EM/CM ratio.
Therefore, we reasoned, there should exist some combination
of those parameters that allows us to reach almost any region
in Memory Design Space. We varied parameters simultaneously
using LHS and selected parameter sets that generated memory
populations most closely matching the previously defined
desirable responses. To determine the best matching simulations,
we required that the skew be within 22.5◦ (π/4 radians) of the
desired response and the population size be within a window of
±20%.

Model of Granuloma Formation and
Function in TB
The immune response to M. tuberculosis infection typically
results in the formation of cellular structures termed granulomas
in the lung. Granulomas serve to physically contain and
immunologically restrain bacteria over months to years of
infection. If granulomas cannot contain the infection, active
TB results. We use our well-established computational model
of granuloma formation and function, GranSim, to capture
the dynamics of infection with M. tuberculosis in the lung
(Segovia-Juarez et al., 2004; Fallahi-Sichani et al., 2011; Cilfone
et al., 2013, 2015; Pienaar et al., 2015). Briefly, the model, a
hybrid ABM, describes cellular behavior, including recruitment
to the lung, changes of state (activation, infection, etc.), and
movement. Cells (agents) are macrophages and T cells (CD4+,
CD8+, and regulatory T cells) that can have multiple states
and phenotypes (e.g., infected, activated). Three populations
of bacteria (intracellular replicating, extracellular replicating
and extracellular non-replicating bacteria) are represented as
continuous functions in the extra- or intra-cellular environment.
Probabilistic interactions between immune cells and bacterial
populations are described by a well-defined set of rules
between immune cells and M. tuberculosis in the lung that
are continuously updated based on new biological data.
We describe the diffusion of relevant chemokines, cytokines,
and other soluble ligands (e.g., anti-TNF antibodies) by
solving the relevant partial differential equations. All rules for
GranSim are available at http://malthus.micro.med.umich.edu/
lab/movies. Each granuloma simulation follows events over
several hundred days, building over time to track 1000s of
individual cells. In the simulations used here, we capture a
600 μm2 cross-section of lung tissue.

T Cell Immunity for Preventing TB
Infection and Enhancing Granuloma
Clearance
Model System
To see the impact of a pool of memory T cells during a long
time course of M. tuberculosis infection, we used GranSim, our
computational model that captures dynamics of TB granuloma
formation in lungs, and interfaced it with two other physiological
compartments represented by ODEs describing blood and LNs
(Linderman et al., 2015). Briefly, in this model implementation,
T cells are recruited to the lung in proportion to their
concentrations in blood. These concentrations are determined by
LN output following antigen presentation.

Vaccination
Memory T cells may be present in blood because of a previous
infection or a vaccine. We simulated vaccination with TB-
specific antigens by specifying non-zero initial concentrations
of TB-specific memory T cell in the blood ODEs of GranSim.
Next, Mtb infection was simulated in the lung, and granuloma
formation was followed for 300 days to test whether there
was increased protection when compared to simulated natural
infection (without vaccination). H56 is a multi-subunit TB trial
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TABLE 1 | Sensitivity and uncertainty analysis for skew and population size.

Ag 1 Ag 2 Ag 3 Ag 4 Ag 5

CD4+ T CELL EM/CM RATIO

CD4+ prob Effector Memory (EM) +++ +++ ++ ++ ++
CD4+ median effector prob − + − − −
CD4+ efficiency Central Memory (CM) +++ +++ +++ +
CD4+ cm binding Time ++ + +
Initial pMHC MDC (Ptot ) ++ ++
CD4+ median priming prob ++ + +
CD4+ max binding time Naive ++ ++
CD8+ T CELL EM/CM RATIO

CD8+ max binding time Naive +++ +++ +++ +++ ++
CD8+ median effector prob −−− −−− −−− −− −
CD8+ median priming prob ++ ++ ++ ++ +
CD4+ max binding time Naive − − − −
CD4+ median priming prob − − − −
Initial pMHC MDC (Ptot ) ++ +
CD4+ MEMORY POPULATION SIZE

CD4+ median priming prob −−− −− −− −− −
CD4+ median effector prob +++ +++ +++ ++ ++
CD4+ max binding time Naive −− −− −−− −−− −
Max Number DCs ++ ++ ++ ++ ++
Initial pMHC MDC (Ptot ) −−− −− ++ +++
CD4+ efficiency CM −−− −−− −−
CD4+ cm binding time −− −
CD8+ MEMORY POPULATION SIZE

Max number DCs ++ ++ ++ ++ +++
CD8+ median priming prob −− −− −− − −
CD8+ max binding time Naive −−− −−− −− −
CD8+ median effector prob ++ ++ ++ +
Initial pMHC MDC (Ptot ) − ++ +++
p-values:

0.05 > p > 0.001 +/−
0.001 > p > 10e-6 ++/−−
10e-6 > p > 0 +++/−−−
As described in section “Materials and Methods,” uncertainty and sensitivity analysis was performed by calculating Partial Rank Correlation Coefficients over simulations
with parameter values sampled by Latin Hypercube Sampling. Pluses and minuses indicate p-value ranges as indicated; parameters with p-value < 0.05 are included for
each outcome. Parameter definitions and ranges of all parameters varied are found in Supplementary Table S1. Binding thresholds (ai ) for each Ag-specificity are: 30, 90,
150, 200, 300 for Ag1−Ag5, respectively.

vaccine containing antigens specific to both early and late stage
infection (Aagaard et al., 2011; Lin et al., 2012). We implemented
this concept in our simulations by introducing a second (late-
associated) Ag-specific population of T cells; i.e., at a chosen time
point we allow a specified number of non-cognate memory T cells
to convert to cognate memory cells and then continue to allow
granuloma formation and function to evolve.

Outcomes were defined with respect to number of
M. tuberculosis according to the following criteria: (1) If the
number of bacteria dropped below 1 by day 10, the granuloma is
categorized as never having formed, “No Infection Established;”
(2) If the number of bacteria in the granuloma dropped below
1 by day 300, the granuloma is categorized as “Cleared”; (3)
if the number of bacteria at day 300 was greater than 2000,
the granuloma was categorized as “Disseminating infection”;
(4) otherwise, the granuloma was categorized as “Contained.”
If a granuloma was contained (stable) and was perturbed to

dissemination, we say that granuloma reactivated. Outcomes
were examined with and without vaccine, and with and without
anti-tumor necrosis factor (anti-TNF). Anti-TNF reduces the
inflammatory response and is known to cause reactivation TB
in both experiments and our simulations (Lin et al., 2010, 2012).
Note that the outcome measures are not at the host scale, but at
the granuloma scale.

We wanted to assess protective qualities of memory T cells
against (a) establishing infection and (b) reactivating latent
infection. In all cases, M. tuberculosis was given at day 0. Two
control groups were used: Group 0 received no vaccine and no
anti-TNF while Group T0 received no vaccine, but was treated
with anti-TNF 200 days post-infection. To estimate the benefit
of vaccination, two experimental groups were compared to each
control. Groups 1 and T1 received memory T cells prior to
infection on day 0. These CM and EM CD4+ and CD8+ T
cells represent a vaccine with antigen specific to early stages of
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M. tuberculosis infection. Groups 2 and T2 received the early
specific memory cells at day 0, and also received an additional set
of memory T cells on day 150. This simulated a second memory
T cell population specific to later phases of infection and also
included both CD4+ and CD8+ CMs and EMs. Groups T1 and
T2 received anti-TNF on day 200 to test the protective effects of
T cells against reactivation, while groups 1 and 2 did not so as to
be comparable to Group 0.

We hypothesized that size and skew of memory populations
would affect infection control and reactivation. Accordingly,
we used uncertainty analysis by applying an LHS to vary
numbers of CD4+ and CD8+ CM and EM T cells initialized
in the blood at days 0 and 150, generating 50 unique vaccine
formulations, each consisting of four Ag-specific memory
populations (CD4+ Early, CD8+ Early, CD4+ Late, CD8+ Late)
with a unique EM/CM ratio and size. We defined a baseline
(natural infection) parameter set to be one that consistently
led to containment without further intervention (Group 0) and
consistently reactivated upon TNF inhibition (Group T0). Using
the same baseline parameter file, we simulated each of the 50
vaccine formulations by initializing early specific T cells in the
blood at day 0 (Groups 1, 2, T1, and T2) and for Groups 2 and
T2, initializing additional late-specific T cells at day 150. We
compared outcomes to Groups 0 or T0: in Groups 1 and 2 we
determined formulations that led to high levels of clearance, and
in Groups T1 and T2 formulations that increased containment
over the respective controls. The five formulations with the most
improved outcomes were simulated 100 times per group and the
most successful formulation is shown in the results.

Model Implementation
Our hybrid models are implemented in C++with Boost libraries
(distributed under the Boost Software License – available at www.
boost.org). Each model can be run with or without graphical
user interface (GUI) visualization and can be run on Linux, Mac
OS, and Windows platforms. The GUI for GranSim was built
using the Qt framework (open-source, distributed under GPL –
available at qt.digia.com), which allows us to display, track and
plot different readouts of the in silico simulation in real-time.
For LymphSim, a forward Euler method is used to solve the
ODEs. Each time step of the LN ABM simulation is divided
into 100 pieces (step size of 0.25 s) to reduce error. On the
XSEDE Stampede system at University of Texas, each LymphSim
simulation of 30 days (LN sub-model is active for ∼20 days) takes
12−20 h to run and each GranSim simulation (including LN and
Blood ODEs) of 300 days takes ∼30−45 min to run.

RESULTS

In these studies, we captured T cell priming and differentiation
dynamics and the status of memory cell levels following
vaccination. We performed two types of studies (Figure 2A). In
the first, we simulated generation of five Ag-specific populations
of T cells simultaneously in a LN (Figure 2A, left), varying
only Ag-specific parameters in the LN (Ag-specific versus Ag-
independent parameters are identified in Supplementary Table

S1). We asked which properties intrinsic to those antigens are
important in determining amounts and types of memory T cells
generated, i.e., location in Memory Design Space. In the second,
we varied Ag-independent characteristics, e.g., DC Activation
(Ptot), DC - T cell binding time, and priming threshold, to name
a few, in simulations with five Ag-specific populations, to ask
which Ag-independent characteristics of a LN affect location in
Memory Design Space. These studies allowed us to apply the
model to address questions related to TB vaccine development.
We then performed analysis to determine which features of the
model control differences in memory cell generation and applied
our knowledge to explore TB vaccination strategies.

T Cell-pMHC Binding Probability
Correlates with Size of Memory
Populations Generated
We first asked how Ag-specific parameters determine EM/CM
ratio (skew) and overall size of Ag-specific memory populations
(Figure 2A). We varied the binding probability between an
Ag-specific T cells and a DC presenting cognate antigen by
assigning different binding threshold (ai) values to 5 Ag-
specific populations. All other parameters were held constant
at baseline values, whether they were Ag-specific or Antigen
independent. Figure 2B shows time courses of all Ag-specific
CD4+ T cells in the blood (including peripheral tissues); CD8+
dynamics are not shown, but similar. The dynamics of each
cell type in the blood are similar across Ag-specific populations:
effector T cells enter by day 5, peak by day 10, and soon
die off, leaving behind EM and CM CD4+ T cells. However,
the size of the response decreased with decreasing binding
probability (increasing binding threshold, Figure 2B). To assess
the characteristics of the memory populations generated, we
measured the number of each memory CD4+ T cell subtype
remaining in blood and peripheral tissues at 30 days post-
vaccination, our memory time point, long after the immune
response has waned and plot these in Memory Design Space
(Figure 2D). The size of the memory populations decreased
with decreasing binding probability, as expected. Interestingly,
the skew in Memory Design Space was not affected by varying
binding probability: a relatively constant ratio of EM to CM
T cells is generated across all Ag-specific populations despite
dramatically different total numbers of Ag-specific memory
CD4+ T cells.

DC-T Cell Binding Dynamics Correlate
with Ratio of EM to CM Cells Generated
To examine how Ag-independent mechanisms affect EM/CM
ratio and memory population size, we compared how a
single Ag-specific population of T cells fares across multiple
LN environments with varying Ag-independent characteristics
(Figure 2A). As an example of an Ag-independent mechanism,
we varied DC-T cell binding time (max binding time Naïve
in Supplementary Table S1), a parameter that represents the
dwell time of a T cell across what might be several DC binding
events (see Materials and Methods). While both Ag-specific
and Ag-independent properties have been attributed to binding
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time in the literature (Moreau and Bousso, 2014), here we
capture the Ag-specific portion of binding time with binding
probability, and binding time refers to the Ag-independent
effects that affect the total time a T cell collects stimulation
from DCs while it is in the LN. Time courses of CD4+ T
cell effector, CM, and EM generation across three different LN
that have differing binding environments (i.e. different binding
times) are shown in Figure 2C; the patterns hold across Ag-
specific populations with different binding probabilities and also
in CD8+ populations. Interestingly, while the number of CM T
cells generated decreases with binding time, the number of EM T
cells generated is not correlated with binding time (Figure 2E).
This is due to a process described in section “Materials and
Methods”: T cells bound to DCs accumulate stimulation, which
decreases the likelihood that they will differentiate into a CM
T cell as opposed to an Effector T cell, some which may later
become EM T cells. This trend remains true at the memory
time point (day 30), so we see that both the skew and size of
the memory population are affected (Figure 2E). This means
that LNs whose Ag-independent factors induce longer T cell-
DC binding times can generate memory T cell populations
with a greater proportion of EM T cells when compared to
Ag-independent factors that lead to short T cell-DC binding
times. Thus, we have identified an Ag-specific mechanism that
primarily affects the size of the memory population (binding
probability) and an Ag-independent mechanism that affects both
the skew and size (binding time). Is it possible to simultaneously
affect both across Ag-specific populations? If so, multiple Ag-
specific memory populations with diverse skew and size could be
generated from the same vaccination.

LN Environmental Conditions Influence
EM/CM Ratio and Size of Ag-Specific
Memory Populations
To determine which Ag-independent mechanisms significantly
influence memory population size, skew in Memory Design
Space, or both, we performed a sensitivity and uncertainty
analysis. Table 1 lists the parameters most significantly correlated
with size and EM/CM ratio (skew) for five Ag-specific
populations of both CD4+ and CD8+ memory T cells.
Interestingly, binding time is correlated with skew for CD8+
but not CD4+ T cells. In our model, we assume that CD8+
T cells are only able to be primed by Licensed Dendritic Cells
(Wiesel and Oxenius, 2012), which means that they are able
to receive more stimulation per time step once bound. This
increase in efficiency contributes to the difference in significance
between these two cell types. Indeed, other parameters governing
priming efficiency (e.g., CM efficiency and DC activation level)
are significantly correlated with skew in Memory Design Space
for CD4+ T cells. Effector Threshold (median Effector Prob),
which governs primed cell differentiation into either Effector
(including EM precursors) or CM, is negatively correlated with
skew in Memory Design Space for both CD4+ and CD8+ T
cells. A higher threshold indicates a higher probability of CM cells
being produced, which translates to a smaller skew in Memory
Design Space. This parameter is also significantly correlated with

size in Memory Design Space. As the threshold increases, more
CMs are produced, which increases the pool of cells that can
be primed. In general, each mechanism correlates with either
EM/CM ratio or memory population size, but not both.

Identifying a Broad Range of EM to CM T
Cell Ratios Across Ag-Specific T Cell
Populations with Different Binding
Probabilities
We hypothesize that it would be advantageous to harness
mechanisms that allow generation of a wide range of EM/CM
ratios and memory population sizes, i.e., covering as much of
Memory Design Space as possible, to fight various infections.
We plotted every memory T cell population that resulted
from the thousand simulations used for our sensitivity and
uncertainty analysis (Table 1) in a single Memory Design Space.
Figure 3A shows the regions of Memory Design Space reachable
by CD8+ populations when varying Ag-independent and Ag-
specific mechanisms together. CD4+ populations covered a
similarly shaped region, but fewer round of Effector proliferation
led to less coverage of the y-axis for these populations (not
shown). Even with CD8+ populations, we were unable reach
the upper left corner of Memory Design Space, especially when
compared with Figure 1A. Even so, we wanted to know the how
much of Memory Design Space could simultaneously be reached
with different antigens (e.g., present within a single vaccine). So,
we asked which Ag-independent parameters could have unequal
effects across Ag-specific populations with varying binding
probability (Figure 3B). From our sensitivity analysis (Table 1),
Ptot (initial pMHCMDC), a parameter combining multiple terms
representing DC activation and amount of stimulation T cells
receive, was significantly correlated with size of both CD4+ and
CD8+ T cell memory populations, but the sign and strength of
correlation changed with binding probability. For both CD4+
and CD8+ T cells with high binding probability (Ag1, Ag2), Ptot
was negatively correlated to memory population size, whereas
at low binding probabilities (Ag4, Ag5), Ptot was positively
correlated with size of memory T cell populations in Memory
Design Space.

If the effects of changing Ptot vary across Ag-specific
populations, we reasoned, then there must be some LN
environmental conditions (specific Ptot levels) for which binding
probability affects more than the total number of cells generated.
We show results from CD8+ T cells here, but CD4+ T cells had
similar patterns. We plotted numbers of each memory subtype
generated from LNs with low, medium and high Ptot for T cells
with high binding probability (Figure 3C, left). Increasing Ptot
correlated with a decreased number of both CM and EMT cells in
blood. This is again related to amount of stimulation cells receive
while bound: stronger activated DCs (with higher Ptot) in our
model pass on stronger stimulation to their bound T cells (Gett
and Hodgkin, 2000). In the corresponding Memory Design Space
interpretation, cells from LN environmental conditions that have
the lowest Ptot generated the largest total number of memory
cells, driven by a large CMT cell population, and as Ptot increased,
size in Memory Design Space decreased.
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FIGURE 3 | Antigen independent mechanisms can have varying affects across antigen specific CD8+ T cell populations, producing memory
populations with a range of characteristics. (A) A single LN, wherein all Ag-independent parameters are constant, can generate a variety of EM/CM ratios and
memory population sizes across Ag-specific T cell populations. Shaded area represents region of CD8+ Memory Design Space reached after simulating parameter
sets sampled by sensitivity analysis. (B) Ag-independent mechanisms may have differing affects across Ag-specific populations. We can compare differences in
Ag-specific responses across LNs or Ag-independent responses from distinct LNs across Ag-specific populations. (C) Ag-specific binding probability can influence
the direction of correlation with Ptot. For CD8+ T cell populations with high binding probability Ptot is anti-correlated with EM/CM ratio. Leftmost panel plots
Ag-specific memory populations in Memory Design Space. Each T cell population simulated had high Pi (bind) with binding threshold ai = 30, and was generated
from one of five LNs, with increasing Ptot (light to dark). All error bars represent SEM (n = 10). For T cells with medium binding probability (ai = 150, middle panel,
blue), Ptot is positively correlated with both EM/CM ratio and size of memory population. As on left, each population was generated from a separate LN with
increasing Ptot, but Ag-specific populations with medium Pi (bind) are shown here. For T cells with low binding probability (ai = 300, right panel, purple), Ptot is
positively correlated with EM/CM ratio and size of memory population. For all panels, Ptot values were 100, 200, 300, 400, 500. (D) With all Ag-independent
parameters held constant, the parameter set that generated the greatest diversity of EM/CM ratios across Ag-specific populations is plotted in Memory Design
Space. Pi (bind) varied from high to low across T cell populations (purple = low, green = high). Error Bars represent SEM (n = 10).
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We then plotted the memory CD8+ T cells from medium
(Figure 3C, middle) and low (Figure 3C, right) binding
probability populations produced from the same LN
environment, under the same Ag-independent conditions.
With low Pi(bind), we noticed the opposite trend: increased
activation correlated with increased numbers of memory cells
generated, especially EM T cells. In Memory Design Space,
this translated to populations that move up along the y-axis,
each with a different size and skew. This occurred as Ptot has a
secondary effect: DCs with high Ptot display more antigen and
thus yield higher Pi(bind) for all Ag-specific T cells than their
lower Ptot counterparts. Therefore, for Ag-specific T cells with
low binding probability, increasing Ptot increased the number of
cells that bind, and for theses cells this effect was stronger than
the difference in CM versus EM T cell differentiation that we
observed for populations with higher binding probabilities.

At the highest level of Ptot tested, we found that Ag-specific
populations did not have the same EM/CM ratio (Figure 3D).
Binding probability still correlated with size, but for lower
binding probability populations, there was a slight skew toward
EM T cells and thus a higher EM/CM ratio (i.e., greater skew in
Memory Design Space). As we observed in Figure 3A, a single
priming event using our model was unable to generate the full
range of EM/CM ratios with populations of equal sizes. To cover
more of Memory Design Space, we needed to increase the size
of EM-skewed populations, so we considered how additional
vaccinations via boosting.

Boosting Once Increases the Size of the
Memory T Cell Population; Boosting
Twice Additionally Changes the Skew
Many vaccines require more than one dose to reach their full
potential (Woodland, 2004). Several studies have shown that
additional stimulation events (boosting) can increase the number
of memory T cells, enhance their avidity, and even change the
memory subtypes that are generated (Busch and Pamer, 1999;
Masopust et al., 2006; Wirth et al., 2010; Khanolkar et al., 2013;
Martin and Badovinac, 2014). Therefore, we investigated the
effects of a second stimulation (boost) event on memory T cell
generation, i.e., location in Memory Design Space. The boost
was given at 60, 100, or 300 days after priming, with the same
stimulus and conditions as the first stimulation. In agreement
with literature (Woodland, 2004) and previous versions of our
model (Gong et al., 2014), a boost at 60 days generated more
effector CD4+ T cells and more memory T cells than the initial
stimulation (Figure 4A). This translated to a greater memory
population size, but no significant change in EM/CM ratio
(Figure 4B). CD8+ T cells showed similar dynamics, but we
only show CD4+ T cells here. There is little difference between
boosting at 60 or 100 days, but a decrease in the total number of
memory cells generated after a much later boost (day 300). This
is expected because the number of memory cells remaining after
the prime decreases slowly over time. Boosts result in a change in
memory population size but not skew (Figure 4B).

To control how much stimulation a T cell receives
independent from other Ag-specific populations, the most direct

way is to control the number of stimulation events each
population receives. Therefore, we simulated a time course of
three stimulation events: a prime followed by a boost 60 days
later and a second boost 60 days after that (Figure 4C). After
the second boost, the population shifts up the y-axis in Memory
Design Space (Figure 4D), indicating a large number of newly
generated EM T cells. This result agrees with experimental
results (Masopust et al., 2006) wherein increasing the number of
stimulation events caused memory T cell populations that had
been stimulated to skew toward EM. Comparisons of skew of
memory populations following each stimulation event are shown
in Supplementary Figure 2.

A Full Range of EM/CM Ratios and
Memory Population Sizes can be
Achieved by Varying Binding Probability,
DC Activation, and Number of Vaccine
Doses
To determine the range of EM/CM ratios and sizes of memory
populations that the model is able to generate following
boosting events, we performed simulations over a range of
Ag-independent and Ag-specific parameters, and plotted the
resulting populations in Memory Design Space (Figure 5A). For
comparison to Figure 3A, we again show CD8+ populations;
CD4+ T cells followed similar patterns. As we observed
earlier, a single boost is able to increase the number of
cells produced (especially if given within a few months after
prime), but not the proportion of EM cells remaining after
prime. A second boost, however, not only further increases the
number of memory cells, but also shifts the population toward
EM. These mechanisms, coupled with the Ag-independent
and Ag-specific mechanisms that determine the amount and
type of memory cells generated after prime allow us to reach
most regions of Memory Design Space up to very high
numbers of Memory T cells. The model mechanisms that
govern position in Memory Design Space are summarized in
Figure 5B.

To design a vaccine, one might desire to produce a memory T
cell population with a specific size and skew. To demonstrate this
concept, we chose three desired points in Memory Design Space
and used our model to generate Ag-specific T cell populations
near those points. To simulate a vaccine intended to prime Ag-
specific T cell populations with distinct memory characteristics,
we chose the set of points to vary in skew in Memory Design
Space have population sizes greater than 106. In Figure 5C,
the shaded regions in Memory Design Space represent desired
memory populations. For each scenario, we plot three memory
CD4+ T cell populations with distinct EM/CM ratios and sizes
within an acceptable range of the target population size. We
found that very similar parameter combinations worked for
CD4+ and CD8+ populations, but CD8+ populations reached
higher numbers due to more rounds of proliferation. Figure 5D
notes the parameter values and vaccination schedules that we
used to reach the desired memory population sizes and skew, and
the memory populations generated by the model using the stated
parameters.
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FIGURE 4 | Boosting increases the size of memory populations and can shift EM/CM ratios. (A) Time courses of CD4+ T cells in blood and peripheral
tissues after prime and boost (purple: boost at day 60, red: boost at day 100, orange: boost at day 300). (B) Memory populations corresponding to time series from
Panel A are plotted in Memory Design Space. CD4+ T cells in blood and peripheral tissues are counted at 30 days following each prime or boost. Error bars indicate
SEM (n = 10). (C) Additional boosts increase number of CD8+ CM and EM T cells generated over time. (D) A second boost increases EM/CM ratio. Memory
populations corresponding to time series from C and measured 30 days following a prime and two boosts are plotted in Memory Design Space. Error bars indicate
SEM (n = 10). See Supplementary Figure S2 for analysis of change in skew.

In a Simulated M. tuberculosis Infection,
Two Ag-Specific Memory T Gell
Populations can Prevent Granuloma
Establishment or Protect Against
Reactivation
Protection from TB can be assessed by asking whether a vaccine
improves clearance rates from a new infection and/or whether it
reduces the probability of a latent infection reactivation relative
to an unvaccinated case. One recently promising TB vaccine is
H56, a multi-subunit vaccine containing antigens specific to both
early and later phases of infection (Aagaard et al., 2011). Non-
human primates (NHPs) vaccinated with H56 did not progress
to active disease after infection with M. tuberculosis; all either
cleared the infection or contained the bacilli within granulomas
(Lin et al., 2012). Furthermore, when the H56-vaccinated NHPs
were given an anti-TNF antibody known to induce reactivation

(Adalimumab), a significant proportion (50%) were protected
and did not reactivate (Lin et al., 2012). H56 is a subunit vaccine
containing five antigens, one of which is associated with late
phases of infection (Aagaard et al., 2011) and correlated with
shifted M. tuberculosis metabolism (Voskuil et al., 2004), while
some other antigens in H56 are associated with earlier stages
(Aagaard et al., 2011).

To assess the effects of different Ag-specific memory T cell
populations as a vaccine strategy, we designed a virtual vaccine-
challenge experiment using our existing three-compartment
model of M. tuberculosis infection at the granuloma scale,
GranSim, which includes lung, blood, and LN physiological
compartments (Linderman et al., 2015). Since the sites of
infection for TB are lung granulomas, and vaccination usually
is administered in blood, we place representative memory T
cells specific to early and late phase TB antigens in the blood
when we are administering a virtual vaccine (simulation protocol
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FIGURE 5 | A range of CM/EM ratios and memory population sizes can be reached following prime and boost. (A) Shaded region represents EM/CM
ratios and memory population sizes achieved at the memory time point, 30 days after priming event (cyan, same data as Figure 3A), prime and boost (blue), or
prime and two boosts (black) for CD4+ memory T cells. (B) Summary of mechanisms affecting EM/CM ratio (red arrow) and memory population size (blue arrow) as
determined by sensitivity analysis. (C) Generating memory populations with specific sizes and EM/CM ratios (skew). We identified three desired memory populations
(I, II, and III and gray circles). We then designed vaccination simulations to generate these desired memory populations ratios and sizes. Simulated T cell populations
representing the closest match for each desired memory population are plotted in Memory Design Space, on the same axes for comparison: blue dots (desired
population I), red squares (population II), and orange triangles (population III). Error bars represent SEM (n = 10). (D) Summary of approximate parameter values to
achieve specified positions in Memory Design Space. The Ag-specific and Ag-independent parameters noted here were varied simultaneously to achieve desired
populations. The ranges over which each parameter was varied are as follows: CM efficiency 0.1−10, EM to CM conversion in BL 0−0.188 (baseline value), binding
threshold: 30-300, number of boosts: 0−2. For each of the desired memory population, three independent parameter sets that generated populations with desired
characteristics were identified. Exact parameter values are given in Supplementary Table 2.

in Figure 6A). These T cells are available to be recruited to a
granuloma site much sooner than in a naïve system in which Ag
presentationmust drive priming in the LN, followed bymigration
back to the granuloma site. We explored multiple configurations
of memory populations in the blood by varying the amount of
EM and CM for CD4+ and CD8+ T cell populations specific
to both early and late antigens. We then initiated infection in
the lungs by introducing M. tuberculosis at time zero. We also
simulated a typical in vivo protocol for inducing reactivation,
treating the virtual granuloma with anti-TNF antibodies. This
leads to reactivation in a NHPmodel of latent TB (Lin et al., 2012)
and allows us to test whether the granuloma that forms is stable,

i.e. able to maintain control of infection or whether it progresses
to dissemination (growing larger in both size and bacterial load).

For each protocol, we assessed granuloma outcomes at day 300
after a simulated infection as described inMethods. Six simulated
groups, each of 100 granulomas and infected withM. tuberculosis
at day 0, were examined (Figure 6A). Group 0 received no vaccine
and no anti-TNF. Group T0 received no vaccine but was treated
with anti-TNF on day 200 p.i. Group T1 received a vaccine
containing only T cells specific to early phases of infection at
the same time as M. tuberculosis infection on day 0, followed by
anti-TNF on day 200. Group T2 received a vaccine with T cells
populations specific to antigens in both early and latency phases
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FIGURE 6 | Vaccinating with early and late-infection stage specific antigens improves protection from TB infection and prevents reactivation of
contained granulomas. (A) Simulation Protocol. Four groups received a combination of three treatments over a 300-day experiment. All experimental groups were
infected with M. tuberculosis on day 0. Prior to infection, groups 1, 2, T1, and T2 received T cells specific to early infection antigens on day 0. On day 150, groups 2
and T2 received an additional bolus of T cells, simulating specificity to late antigens. Anti-TNF treatments were administered to groups T0, T1, and T2 on day 200
(hence the T label). All outcomes were scored on day 300 post-infection. (B) Simulation results for each group (100 simulations each). Outcomes are defined as
described in section “Materials and Methods.” (C) Representative snapshots from day 300 p.i. from granuloma model simulations. Colors represent cell types. Green:
resting macrophages, blue: active macrophages, red: chronically infected macrophages, tan: infected macrophages, pink: IFN-γ-producing T cells, purple: cytotoxic
T cells, pink: regulatory T cells, beige/cream: caseated/ necrotic tissue. (D) To achieve the benefits of vaccination observed in panel B, we used uncertainty analyses
and tested 50 configurations of memory populations specific to early and late TB antigens. The number of CD4+ and CD8+ EM and CM T cells administered as a
vaccine at either day 0 (“Early Ag-Specific”) or day 150 (“Late Ag-Specific”) that yielded the results from (B) are plotted in Memory Design Space in (D).

of infection concurrent with M. tuberculosis challenge on day 0
and anti-TNF on day 200. Groups 1 and 2 received the same
vaccines as Groups T1 and T2, respectively, but did not receive
anti-TNF.

With no virtual vaccination or anti-TNF treatment,
M. tuberculosis infections were contained in 99% of cases,
and in one case out of 100, did not establish infection (Group
0, Figure 6B). Vaccinating with either an early antigen alone
(Group 1) or both early and late antigens (Group 2) prevented
infection from establishing in 34% of simulations and caused
5% of granulomas to clear. Compared to Group 0, adding
anti-TNF antibodies at day 150 to induce reactivation (Group
T0) increased the number of disseminating granulomas from 0 to
85%. Granuloma group T1, which was vaccinated with an antigen
that is specific to early stage TB infection and given anti-TNF

antibodies, had 50% of granulomas disseminate, all of which
were contained when anti-TNF was spared (Group 1). In Group
T2, which was vaccinated with both early and late antigens
and treated with anti-TNF, fewer granulomas reactivated
(44%), suggesting that presence of memory T cells specific
to late-stage Ag is beneficial to protect from reactivation of a
stable granuloma to a disseminating one. Example granuloma
simulation snapshots at day 300 are shown in Figure 6C.

The size and skew of CD4+ and CD8+ memory T cell
populations used in our virtual vaccine trial (Figures 6A,B)
are plotted in Figure 6D. These choices were determined
via uncertainty and sensitivity analyses over 50 parameter
combinations to identify concentrations of each set of TB-specific
CM and EM T cells that would give tangible benefits in both
controlling infection and preventing reactivation (Figure 6B). It
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is notable that each Ag-specific population has a unique skew
and size, with the early specific populations having a larger
skew than late-specific memory T cells, and CD4+ populations
much larger than CD8+. It is precisely this design strategy
that can be used to design vaccine outcomes for complex
infections such as TB. Here we reverse-engineered desired
vaccine outcomes by screening for successful combinations
of T cell concentrations. However, GranSim and LymphSim
are independent of each other, suggesting that it is possible
to identify desired regions in Memory Design Space, design
vaccines to reach those regions, and demonstrate the effect of
the vaccine in a virtual vaccine trial, at least at the granuloma
level.

DISCUSSION

Historically, it has been difficult to create vaccines that generate
cell-mediated immunity, and attention has focused instead
on antibody-mediated responses. Despite modern advances
to induce large and long-lasting populations of antigen-
specific memory T cells, there is no efficacious vaccine against
M. tuberculosis or several other infections requiring cell-mediated
immunity. Furthermore, especially for TB, it is becoming
increasingly clear that quality and specificity of those cells
is just as important of a feature as quantity of memory T
cells. The TB Vaccine Initiative has identified top priorities
in adopting a more rational approach to vaccine design
(TBVI, 2014), and the recent goals and achievements cited
by Aeras (Aeras, 2014), an independent organization that also
develops TB vaccines, are aligned. Those priorities include
novel immunization strategies, optimization of immunogenicity,
and identifying a model with great relevance to clinical
efficacy.

Our work facilitates the next step in rational vaccine design.
But it must be clear that this virtual vaccine study examines
only events at a single granuloma scale and much work needs
to be done to extend this to results at the whole host. Our
computational model represents a framework in which new
vaccination protocols, delivery routes, and other strategies can
easily be tested and compared at a granuloma scale. Mechanisms
that are key to protection can be identified, and the consequences
of modulating vaccine properties can be examined. Thus
computational modeling, while not replacing in vivo studies,
offers a complementary tool that allows integration of knowledge
from in vitro, ex vivo, and in vivo experiments across multiple
organ systems to help narrow the vaccine design space. This
work must be extended now to the entire host where many
other factors such as adjuvants, multiple antigens, multiple LNs,
and their locations each add to the complexity. With a much
larger possible number of replications, simulated vaccine trials
could be used to bolster results from animal studies with low
power by recapitulating and explaining seemingly anomalous
outcomes that actually represent significant results. Furthermore,
simulated vaccine trials could represent cost and time savings by
ferreting out strategies that have otherwise unforeseen pitfalls,
e.g., a recent group of failed vaccine trials that were derived

solely from mice studies (Tameris et al., 2013; Hawn et al., 2014;
Kaufmann, 2014).

One frustration in identifying correlates of protection against
TB is that it is not currently well-understood whether the
protective Ag-specific memory T cell populations are being
identified and thus targeted, or, as many suspect, whether
some functional property of memory populations needs to be
modulated. Memory Design Space is a framework to separate
these two issues visually. Each Ag-specific population may
confer protection from a different region of Memory Design
Space. If, as we hypothesize, the EM/CM ratio of memory
T cells generated is crucial to protection, especially if the
crucial ratio varies across multiple Ag-specific populations
required for protection, our computational model of the lymph
node, LymphSim, could be used to design a vaccination
strategy that would strategically produce the desired memory
populations in the appropriate quantity, with the right EM/CM
skews.

Using LymphSim, we showed how both Ag-specific and Ag-
independent properties influence location in Memory Design
Space. Notably, Ag-specific properties in our model all influenced
the amount of memory cells generated, but not the type (or
their ratio). Ag-independent properties, on the other hand,
had a stronger effect on the types of memory generated
rather than the amounts. Antigens with identical characteristics
that were involved in priming in LNs with different Ag-
independent properties yielded memory T cell populations
of similar sizes but different memory subtype composition.
However, after a single round of vaccination (priming) the
range of EM/CM ratios was still narrow. Providing additional
rounds of vaccination (repeated boosts) achieved a full range
of EM/CM ratios. In agreement with the literature, increasing
the number of boosts increased the EM proportion of the
memory populations. We also showed that by combining
strategies that modify Ag-specific and Ag-independent properties
in combination with vaccine delivery schedules we are able
to generate memory T cell populations specific to multiple
antigens with a large variety of EM/CM ratios and population
sizes.

As a preliminary test of our vaccine system, we considered a
two-antigen system for TB. Using our computational model of
M. tuberculosis infection in the lung (GranSim), we demonstrated
how T cell populations generated from vaccination could be
evaluated in an infection scenario at the level of a single
granuloma. We introduced two populations of memory T cells
into the blood compartment of the infection model, as if they
had been conferred by a vaccine. The first population was
specific to an antigen present during early stages of infection
and granuloma formation whereas the second was specific to
late phases of infection, when bacterial metabolism has shifted.
We showed that presence of both populations of memory T
cells with specific subtype compositions led to better granuloma
outcomes than with one population. We identified the positions
of each T cell population in Memory Design Space that led
to beneficial outcomes, and showed earlier how we could use
our LN computational model to design a vaccine that could
simultaneously generate all of the populations used in this study.
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In future studies, exploration of host-level outcomes (multiple
granulomas are present in a single host (Marino et al., under
review) and the role of adjuvants will be important. Thus, we
have provided a road map for using Memory Design Space to
characterize T cell populations resulting from vaccines and then
relating outcomes of vaccination back to position in Memory
Design Space. This provides an objective comparison across both
inputs and outputs of a virtual vaccine trial.

In a more comprehensive study, our model could be used to
find regions of Memory Design Space representing memory T
cell populations that confer protection across a wide variety of
simulated granulomas that will allow extension to the whole host
disease picture. Validation of this work could be accomplished
using NHP studies after model parameters governing timing
of Ag expression, processing, and display were experimentally
measured and calibrated to measurements of the granulomas
and then scaling to whole host outcomes in some fashion.
Furthermore, the results of such a study could elucidate
which model mechanisms make the best targets for preventing
infection, contributing to our understanding of correlates of
protection against TB. EM/CM ratio, stage of infection targeted,
amount of cytokines produced, and several other mechanisms
could prove to be (or not be) important. Our model framework
provides an advantage over in vivo or in vitro experiments since it
is inexpensive to run replicates of almost infinite combinations of
T cells; for several antigens simultaneously allowing a narrowing
of the vaccine design space for going to trials.
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