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Lung cancer has become the leading cause of cancer-related death worldwide. Oxidative stress plays important roles in the
pathogenesis of lung cancer. Many natural products show antioxidative activities in cancer treatment. Zi Shen decoction (ZSD)
is a classic prescription for the treatment of lung disease. However, its effect on lung cancer lacks evidence-based efficacy. In this
study, we investigated the anticancer effects of ZSD on lung cancer in vivo and in vitro. Our results showed that oral
administration of ZSD suppressed the Lewis lung cancer (LLC) growth in a subcutaneous allograft model and promoted
necrosis and inflammatory cell infiltration in the tumor tissues. Furthermore, ZSD not only inhibited tumor cell proliferation
and migration but also induced cell apoptosis in lung cancer cells. PI3K/AKT signaling is well characterized in response to
oxidative stress. The bioinformatics analysis and western blot assays suggested that ZSD decreased the enzyme activity of PI3K
and AKT in vivo and in vitro. We also found that the AKT/GSK-3β/β-catenin pathway medicated anticancer effect of ZSD in
lung cancer cells. In conclusion, we demonstrate for the first time that ZSD possesses antitumor properties, highlighting its
potential use as an alternative strategy or adjuvant treatment for lung cancer therapy.

1. Introduction

Lung cancer has been ranked first in morbidity and mortal-
ity among all malignant cancers worldwide. According to
global cancer statistics, there were 2 million newly diag-
nosed cases and 1.7 million death cases in 2018 [1, 2].
80% of lung cancer patients are inoperable at the time of
diagnoses. Although chemotherapy and molecular targeted
therapy are highly recommended, the efficacy of these treat-
ments is still limited by severe adverse effects and acquired
chemoresistance [3]. Therefore, there is an urgent need to
identify novel efficient agents for lung cancer treatment.
During recent decades, there has been increasingly more
attention in natural compounds and traditional Chinese
medicine (TCM) for cancer prevention and treatment.
Compared with chemotherapy and molecular targeted ther-
apy, TCM therapy showed a series of advantages in lung
cancer treatment, including improving long-term survival,

overcoming drug resistance, and alleviating the adverse
effects of chemotherapy [4–6].

Zi Shen decoction (ZSD) is a TCM formula derived from
Synopsis of Prescriptions of the Golden Chamber (JIN GUI
YAO LUE), which is compiled by Zhang Zhongjing in
Eastern Han Dynasty in China. ZSD is composed of Salvia
miltiorrhiza Bge. (danshen, salvia) and Glycyrrhiza uralensis
Fisch. (gancao, glycyrrhiza) and exhibits a remarkable effect
on lung disease such as cough and hemoptysis [7]. However,
the activity of ZSD in lung cancer has never been shown.
TCM theory holds that the deficiency of vital qi, phlegm,
and blood stasis are the main pathogenesis of lung cancer,
and ZSD possesses the function of strengthening the spleen
and lung to remove phlegm and promote blood circulation
to remove stasis. Modern pharmacological studies indicate
that both salvia and glycyrrhiza show potent anticancer and
antioxidative activities both in vitro and in vivo with repre-
sentative components [8–10]. Furthermore, our previous
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study found that Huoxue Yiqi recipe 2, which consists of sal-
via, glycyrrhiza, and panax ginseng, played an antilung
cancer effect [11]. These research suggested an extensive
clinical value of ZSD in lung cancer treatment, which has
not been investigated elsewhere.

Oxidative stress is involved in the initiation and progres-
sion of lung cancer and plays important roles in the patho-
genesis due to the accumulation of reactive oxygen species
(ROS) [12]. Excessive ROS may promote cell proliferation
and invasiveness and suppress apoptosis in cancer progress
via affecting different signaling pathways [13–15]. The
AKT/GSK-3β/β-catenin pathway is the “crosstalk” between
the PI3K/AKT and Wnt/β-catenin pathways, which is one
of the most studied pathways in cancer development.
AKT is a pivotal downstream effector of PI3K signal,
which can be activated by excessive ROS accumulation
or growth factors (EGF, FGF, and VEGF) and cytokine
(IL-3, IL-6, and IL-2) stimulation [16–18]. On the state
of the Wnt/β-catenin pathway, glycogen synthesis kinase-
3β (GSK-3β) can phosphorylate β-catenin, leading to the
ubiquitination degradation of β-catenin. This process can
be reversed by AKT-induced phosphorylation of GSK-3β at
serine 9, causing the accumulation of β-catenin in the cyto-
plasm and migration into the cell nuclei. β-Catenin in the cell
nucleus interacts with T cell-specific factor (TCF)/lymphoid
enhancer-binding factor (LEF) and coactivators to activate
transcription of downstream target genes, such as c-Myc,
cyclin D1, and E-cadherin, which induces growth and metas-
tasis of cancer cells [19–22]. Therefore, targeting AKT/GSK-
3β/β-catenin is a novel approach in cancer treatment.

Here, the present study identified the compound-target
network of ZSD and predicted the potential role in lung can-
cer treatment via network pharmacology analysis, and then,
the anticancer effects and the potential pathway of ZSD
against lung cancer were examined in vitro and in vivo. Our
research demonstrated, for the first time, that ZSD possessed
therapeutic effect on lung cancer and elucidated that the
AKT/GSK-3β/β-catenin pathway was partially involved in
its anticancer effect. Thus, these findings provide a new
insight for future lung cancer therapy.

2. Materials and Methods

2.1. Preparation of ZSD. Salvia miltiorrhiza Bge. (Salvia,
Batch No. 111117) and Glycyrrhiza uralensis Fisch. (glycyr-
rhiza, Batch No. 180720) were provided by Nantong Sanyue
Chinese Herb Pieces Co. Ltd. (Nantong, China) and identi-
fied by Prof. Weiping Chen (Nanjing University of Chinese
Medicine, Nanjing, China). Salvia (125 g) and glycyrrhiza
(47 g) were decocted with 1 L of distilled water for 2 h. The
water extract was concentrated to 1mg/mL. The supernatant
was taken after centrifugation, filtration with 0.22μm filter
membrane, and sterilization and stored at -20°C for long-
term use. High-performance liquid chromatograph (HPLC,
Thermo, MA, United States) with ODS-SP C18 column
(250mm × 4:6mm, 5μm) was applied to analyze the chemi-
cal components of ZSD aqueous extract. The mobile phase is
deionized water with 0.2% formic acid (A) and acetonitrile
with 0.2% formic acid (B) and gradient elution program

was as follows: 0-14min, 2-10% B (v/v); 14-29min, 10-12%
B; 29-52min, 12-15% B; 52-65min, 15-20% B; 65-70min,
20-30% B; 70-80min, 30-45% B; and 80-88min, 45%-88%
B. The HPLC results are shown in Figure S1 and a total of 4
components in ZSD were detected, namely, salvianic acid A,
liquiritin, salvianolic acid B, and salvianolic acid A, and the
concentrations were 2.33mg/mL, 0.14mg/mL, 4.48mg/mL,
and 0.83mg/mL, respectively.

2.2. Compound Collection of ZSD. All of the chemical ingre-
dients of salvia and glycyrrhiza were collected from the
Traditional Chinese Medicine Systems Pharmacology data-
base (http://lsp.nwu.edu.cn/tcmsp.php). Oral bioavailability
(OB) value represents the efficiency of drug delivery in phar-
macodynamics. Drug-like (DL) is an evaluating indicator in
drug design. Herein, we set OB ≥ 30% and DL ≥ 0:17 as the
inclusion criteria for the preliminary screening of the
collected compounds.

2.3. Corresponding Target Intersection of ZSD. The poten-
tial targets of the active compounds in ZSD were searched
from 3 databases, namely, Similarity Ensemble Approach
(SEA, http://sea.bkslab.org/), Bioinformatics Analysis Tool for
Molecular Mechanism of Traditional Chinese Medicine (BAT-
MAN-TCM, http://bionet.ncpsb.org/batman-tcm/), and the
Swiss target prediction (SIB, http://www.swisstargetprediction
.ch/).

2.4. Network Construction and Gene Ontology (GO) and
KEGG Pathway Enrichment Analysis. The common putative
targets from 3 databases were collected. The compound-
target network was imported into Cytoscape to show the
association between the targets and the active compounds.
Then, the gene ontology (GO) function enrichment and
KEGG pathway enrichment of those targets obtained from
databases were carried out by clusterProfiler, and the visual-
ization analysis was conducted by topGO. In the program-
ming language, p value cutoff = 0:05.

2.5. Molecular Docking. Key targets involved in the non-
small-cell lung cancer pathway and the corresponding com-
pounds were obtained. Molecular docking was performed
using the LibDock module of Discovery Studio 4.0. The
docking results are assessed by the LibDock score. The higher
LibDock score means the higher activity of the predicted
component binding to the target.

2.6. Chemicals and Antibodies. Antibodies against total AKT
and p-AKT, total GSK-3β and p-GSK-3β, β-catenin, cleaved
caspase-3, and GAPDH were purchased from Cell Signaling
Technology (Danvers, MA, USA). Antibodies specifically
against β-actin and Bax and Bcl-2 were purchased from
Abcam (Cambridge, UK). Dulbecco’s modified Eagle
medium (DMEM) and fetal bovine serum (FBS) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Roswell
Park Memorial Institute (RPMI-1640) was purchased from
HyClone (Logan, UT, USA). Dimethyl sulfoxide (DMSO),
trypsin, penicillin-streptomycin solution, and 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)
dye were from Solarbio (Beijing, China). RNAiso Plus,
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PrimeScript™ RT Master Mix (Perfect Real Time), and SYBR
Green® Premix Ex Taq™ II (Tli RNaseH Plus) were purchased
from Takara (Kusatsu, Shiga, Japan). Phenylmethanesulfonyl
fluoride (PMSF), protease inhibitor cocktail, phosphatase
inhibitor cocktail, and lane marker loading buffer were from
Beyotime (Shanghai, China). Glycine, Tris Base, multicolor
protein marker, Tween 20, and sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) were pur-
chased from Solarbio (Beijing, China). Polyvinylidene fluoride
membranes (PVDF) were purchased from Millipore (Milli-
pore, Bedford, MA, USA), and the ECL reagent was purchased
from ComWin (Beijing, China). BSA was purchased from
Aladdin (Shanghai, China). SC-79 was from MedChemEx-
press (Shanghai, China). All buffers and solutions were
prepared with water obtained from the Milli-Q Synthesis
water purification system (Millipore, MA, USA).

2.7. In Vivo Tumor Growth. Four-week-old male C57BL/6
mice were purchased from Zhao Yan (Suzhou) New Drug
Research Center Co., Ltd. (Suzhou, China). Mice were main-
tained in specific pathogen-free (SPF) environment with
standard rodent chow and water and light-dark cycles every
12 h with constant room temperature before the experiment.
LLC cells (3 × 106 cells in 100μL PBS) were subcutaneously
injected into the skin over the right shoulders of the mice.
The mice were randomly divided into four groups (n = 6
per group): model group (normal saline (NS): 0.2mL/10 g/d);
HSOL group (hui-sheng oral liquid: 0.585mg/kg/d); ZSD
low-dose group (ZSDL: 11.18 g/kg/d); and ZSD high-dose
group (ZSDH: 44.7 g/kg/d). Normal saline, ZSD, and HSOL
were administered to mice every day for 21 days via intra-
gastric administration. The body weight of mice and volume
of the tumors were measured every 3 days. Finally, the ani-
mals were sacrificed with cervical dislocation and tumors
were harvested for further analyses. All animal experiments
were approved by the Institutional Animal Care and Use
Committee of the Nanjing University of Chinese Medicine
(201809A020).

2.8. Cell Lines and Cell Culture. The human normal lung epi-
thelial cell line (BEAS-2B), human NSCLC cell lines (A549,
H1975), and mouse LLC cell line were obtained from Shang-
hai Institute of Biochemistry and Cell Biology. Human
NSCLC cell line (H1299) was purchased from Jiangsu Key
GEN Bio TECH Corp. BEAS-2B and A549 cells were cul-
tured in DMEM medium supplement with 10% FBS and
1% PS. H1299 and H1975 cells were cultured in RPMI-
1640medium supplement with 10% FBS and 1% PS. All these
cell lines were maintained in a humid atmosphere with 5%
CO2 at 37

°C.

2.9. Cell Viability Assay. The variation of cell viability affected
by different treatments was measured by MTT assay. Briefly,
cells (5000 cells/well) were seeded in a 96-well plate over-
night, and then, different doses of ZSD were added into each
well. After treatment, 20μL of MTT (5mg/mL) solution was
added to each well. Afterwards, the 96-well plate was
incubated at 37°C for 4 h, and then, formazan crystals were
dissolved by 150μL DMSO. Finally, the absorbance was mea-

sured at 490nm by using a microplate reader. The values
acquired from three independent experiments were used to
calculate IC50 values using GraphPad Prism 8.

2.10. Clone Formation Assay. 200 cells/well were seeded to
six-well plates and treated with different concentrations of
ZSD (0, 0.25, 0.5, 1.0, 2.0, and 4.0mg/mL). The medium
was replaced with fresh culture medium every 3 days. After
2 weeks of culture with drug medium, the colony is clearly
visible. Subsequently, the colonies were fixed with methanol,
stained with crystal violet, photographed, and counted using
the ImageJ software.

2.11. Wound-Healing Assay. Wound-healing assay was per-
formed to determine the effect of ZSD on migratory ability
of cells. H1299, H1975, A549, and BEAS-2B cells were seeded
in 6-well plates with culture medium containing 1 × 105 cells
in each well and allowed to grow to 90% density. Cell mono-
layers were wounded by scratching with a 200μL pipette tip
and then washed lightly with PBS three times. Then, the cells
were exposed to various concentrations of ZSD for 48 h. The
wound gap was observed and images were obtained at 0 h,
24 h, and 48 h with an inverted fluorescence microscope
(×100 magnification), and the average distance of cell migra-
tion was measured using ImageJ software.

2.12. Transwell Migration Assay and Invasion Assay. Briefly,
to measure cell migration, 2 × 105 cells were plated on the
upper 24-well transwell chambers (8μm pore size, Millipore)
in 200μL serum-free media with or without ZSD. The lower
chambers were filled with 600μL medium containing 10%
FBS. For the invasion assay, 50μL of Matrigel (BD Biosci-
ences, Franklin Lakes, NJ, USA) was added to the chambers,
and 2 × 105 cells were seeded into the chamber with 100μL of
serum-free medium. Then, the 24-well transwell chambers
were incubated at 37°C for 24 h. After incubation, the
medium was discarded and cells were removed by a cotton
swab softly. Migrated or invaded cells in the lower chamber
were fixed with methanol and stained with 0.5% crystal vio-
let. The images were taken with an inverted microscope
(×100 magnification), and the number of cells was counted
using ImageJ software.

2.13. Quantitative Real-Time PCR. Total RNA was isolated
from NSCLC cells or mice tumor tissues with RNAiso plus
reagent. 500 ng of RNA was converted into cDNA using Pri-
meScript™ RT Master Mix according to the manufacturer’s
instructions. SYBR Green® Premix Ex Taq™ II was used for
the amplification in the real-time Q-PCR system (Applied
Biosystems, Foster City, CA, USA). The cDNA of reverse
transcription was used to conduct Human Signal Transduc-
tion Pathway Finder RT2 Profiler™ PCR Array and qPCR
assay. The mRNA levels of PI3K, AKT, GSK-3β, β-catenin,
caspase3, Bax, and β-actin in tumor samples and lung cancer
cells were accessed. The sequences of these primers are
showed in Table S1.

2.14. Flow Cytometry Analysis. Cell apoptosis was analyzed
by Annexin V-FITC/Propidium Iodide (PI) Apoptosis
Detection Kit according to the manufacturer’s protocol
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(Sigma-Aldrich, Sigma Chemical Co., St. Louis, MO, USA).
Briefly, H1299 cells were seeded in 6-well plates at a density
of 1 × 104 cells/well and then treated with ZSD (4mg/mL)
for 12, 24, and 48 h, respectively, or different doses of ZSD.
Then, cells were collected and centrifuged and resuspended
in binding buffer. Afterwards, 5μL Annexin V-FITC and
5μL PI were added at room temperature for 15min. Finally,
apoptosis cells were analyzed by a flow cytometer (FACSC,
BD Instruments Inc., USA) and FlowJo 7.1.0 software (Tree
Star, Ashland, OR, USA).

2.15. Western Blot. The total protein was extracted from the
ZSD-treated H1299 cells and in vivo cancer tissues by using
RIPA cell lysis buffer supplemented with PMSF, proteinase,
and phosphatase inhibitors. BCA protein assay kit was used
to determine the protein concentration according to the
manufacturer’s instructions. Equal amounts of protein sam-
ples (40μg) were loaded and separated in SDS-PAGE. After
transferring onto the PVDF membrane, the proteins were
blotted with 5% BSA, followed by probing with primary
antibodies and then incubated with goat anti-rabbit or goat
anti-mouse secondary antibodies. Finally, the membranes
were visualized with enhanced chemiluminescence.

2.16. Hematoxylin and Eosin Staining. The tumor tissues
were fixed with formalin, dehydrated by ethanol and placed
in xylene, and then embedded in paraffin wax and sliced.
The sections were baked at 70°C for 4 h, dewaxed, hematox-
ylin stained for 15 minutes, decolorized with hydrochloric
acid alcohol solution for 5 seconds, stained with eosin for 2
minutes, routinely dehydrated, and then mounted in neutral
gel. The tumor tissue sections were observed under a
microscope.

2.17. Statistical Analysis. All statistical analyses were per-
formed using GraphPad Prism 8.0 software. Results are
expressed as mean ± SD. Compared to that of the control
group, the difference analysis of the treatment groups was
accessed by using one-way analysis of variance (ANOVA).
The significance of differences is indicated at ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001.

3. Results

3.1. Network Pharmacology Analysis of ZSD. As shown in
Figure 1(a), 135 compounds of ZSD satisfying the criteria
were retrieved from TCMSP, and the compound information
was queried and standardized in PubChem database. All
compounds were listed with CAS number or PubChem ID.
Then, 589, 210, and 364 targets of all these compounds were
collected from BATMAN-TCM, SEA database, and SWISS
database, respectively. By intersecting these databases, 28
targets were identified as putative therapeutic targets of
ZSD. Then, the compounds and 28 targets were applied to
construct the compound-target (C-T) network using Cytos-
cape 3.6.0 software (Figure 1(b)). The gene ontology (GO)
enrichment analysis of the 28 targets was performed to ana-
lyze relative biological functions, including biological pro-
cess, cell components, and molecular functions (Table S2).
The top 10 significantly enriched terms were listed based

on biological process (Figure 1(c)). The results suggest that
these targets may exert therapeutic effects by regulating cell
response to steroid, transcription initiation from DNA poly-
merase II promoter, DNA-templated transcription, and intra-
cellular receptor signaling pathways. Then, pathway enrich-
ment analysis of the 28 targets was performed (Table S3) and
the top 20 is shown in Figure 1(d), suggesting that ZSD may
interfere with cancer-related pathways, including the acute
myeloid leukemia pathway, breast cancer pathway, and non-
small-cell lung cancer pathway. Furthermore, the targets in
non-small-cell lung cancer pathway were docked with the
corresponding compounds and the results showed that 2-
(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)
chromone-4-one and quercetin had good docking ability
with AKT1, EGFR, and ALK protein (Figures 1(e)–1(h)).
Noteworthily, the consistency of the molecular docking
results with the network pharmacology screening results
indicated the potential effect of ZSD on lung cancer
treatment. To prove if this is the case, we next validated the
antitumor effect of ZSD in vitro and in vivo.

3.2. ZSD Suppresses the Tumor Growth of LLC-Allograft
Mouse Model. We first investigated the antitumor effect of
ZSD in vivo with an LLC-allograft model in C57BL/6 mice
as described [23]. Hui-sheng oral liquid (HSOL), which has
been used in clinical treatment of primary lung cancer and
liver cancer for years, was used as a positive control drug
[24, 25]. As shown in Figure 2(a), there was no significant dif-
ference in body weight among the model, HSOL, and the
ZSD treatment groups, suggesting that ZSD treatment was
well tolerated. The representative images of the mice and
tumors in each group showed that HSOL and ZSD remark-
ably suppressed tumor growth in mice after three weeks of
treatment (Figures 2(b) and 2(c), p < 0:05 and p < 0:01).
Meanwhile, compared with the model group, the tumor
weight in the HSOL and ZSDH groups was significantly
reduced but not in the ZSDL group (Figure 2(d)). The H&E
staining showed that the ZSDH treatment group exhibited
increased inflammatory cell infiltration and necrosis in
tumor tissues (Figure 2(e)). Interestingly, we also found that
mice in the ZSDH and HSOL groups showed higher thymus
index than those in the model group (Figure S2). These data
suggest that ZSD could be an effective anticancer drug for
lung cancer without serious toxicity.

3.3. ZSD Inhibits the Proliferation of Lung Cancer Cells In
Vitro. To further investigate the antiproliferative effect of
ZSD on cancer cells, MTT assay was performed on cell lines
from four types of cancer with high mortality or morbidity,
including hepatocellular carcinoma (HepG2, SMMC-7721),
breast cancer (MCF-7), colorectal cancer (SW620), and lung
cancer (H1299, A549, H1975), and along with human nor-
mal lung epithelial cell BEAS-2B. In response to various con-
centrations of ZSD for 48 h, ZSD displayed a preferential
inhibitory effect on the proliferation of lung cancer cells
(H1299, H1975, and A549) with lower semi-inhibitory
concentrations (IC50). However, the IC50 of BEAS-2B was
much higher than that of lung cancer cell lines (Figure 3(a)),
indicating that ZSD might exhibit specific inhibitory effect
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on lung cancer cells, so the dose-dependent viability studies
were further performed. As shown in Figures 3(b)–3(e), ZSD
inhibited the growth of H1299, H1975, and A549 cells in a
time- and dose-dependent manner (p < 0:05; p < 0:01; p <
0:001), but had little toxicity on BEAS-2B cells (p < 0:05). At
the concentration of 4mg/mL, ZSD showed slight inhibitory
effect on the proliferation of BEAS-2B cells, which was far less
than that of lung cancer cells (Figure 3(f)). In addition, we also
compared the inhibitory effect of ZSD with its single compo-
nent (salvia and glycyrrhiza) on H1299 cells and found that
the proliferation inhibition ratio of salvia and glycyrrhiza
on H1299 was lower than that of ZSD at the same concentra-
tion (p < 0:01, p < 0:001; Figure S3), indicating that ZSD
showed superior inhibitory effect on lung cancer cells to
single component. Moreover, long-term cell viability assays
(colony formation assays) showed that treatment with ZSD
remarkably reduced the ability of lung cancer cells to form
colonies, but had little effect on BEAS-2B cells (p < 0:01,
p < 0:001; Figures 3(g) and 3(h)). These data showed that
ZSD significantly decreased the viability of lung cancer
cell lines in a time- and dose-dependent manner.

3.4. ZSD Inhibits the Migration and Invasion of Lung Cancer
Cells. Since metastasis constitutes the primary cause of poor
clinical outcome, we wondered whether ZSD possessed anti-
cancer function on tumor metastasis. The effect of ZSD on
migration and invasion of H1299, A549, H1975 and BEAS-
2B cells was evaluated by using wound-healing and transwell
assays. As shown in Figures 4(a) and 4(b), the wound area

was larger in the ZSD-treated group compared to the ZSD-
free group, while it had no effect in BEAS-2B cells, suggesting
that ZSD notably decreased the motility of H1299, A549, and
H1975 cells in a dose-dependent manner (p < 0:05; p < 0:01;
p < 0:001). Likewise, in the transwell assay, the numbers of
migrating and invading cells were significantly reduced after
treatment with ZSD in a concentration-dependent manner
(p < 0:05, p < 0:01, and p < 0:001; Figures 4(c)–4(f)). Only a
small number of BEAS-2B cells migrated or invaded to the
lower chamber in transwell assay, and ZSD showed no effect
on the migrating and invading BEAS-2B cells. These data
demonstrated that ZSD might possess antimetastasis func-
tion in lung cancer cells.

3.5. ZSD Induces Apoptosis of H1299 Cells Partially by
Regulating AKT/GSK-3β/β-Catenin Signaling. To gain
insight and determine the underlying regulatory mechanisms
involved in the ZSD anticarcinogenic effect, we conducted
Human Signal Transduction Pathway Finder RT2 Profiler™
PCR Array with RNA isolated from H1299 cells after ZSD
treatment for 24h. The PCR Array identified 4 upregulated
genes (fold change ≥ 2) and 16 downregulated genes (fold
change ≤ 0:5) in the ZSD treatment group (Table S4).
Among them, antiapoptosis factor Bcl-2 was the most
significant downregulated gene (fold change = 0:11). Next,
we used flow cytometry to study deeply the apoptosis-
inducing effect of ZSD. As shown in Figure 5(a), ZSD
treatment (4mg/mL) significantly increased the apoptosis
rate of H1299 cells in a time-dependent manner (p < 0:05).

(e) (f)

(g) (h)

Figure 1: The network pharmacology analysis of ZSD. (a) The flowchart of the network pharmacology. (b) Compound-target network: the
red diamond nodes represent compounds of ZSD. The blue circle nodes represent corresponding targets. (c) GO enrichment analysis of the
candidate targets of ZSD. (d) KEGG pathway enrichment analysis of candidate targets of ZSD. (e) Molecular docking process of 2-(3,4-
dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl) chromone-4-one with AKT1. (f) Docking process of quercetin with AKT1. (g)
Docking process of quercetin with EGFR. (h) Docking process of quercetin with ALK.
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Then, H1299 cells were treated with different concentrations
of ZSD and the results showed that ZSD could induce
apoptosis of H1299 cells in a dose-dependent manner
(p < 0:05, p < 0:01; Figure 5(b)). Through PCR array
detection, biological processes and pathways of the genes
were analyzed. This information was introduced into
FunRich for enrichment analysis and plotted by “ggplot2”

package in R software (Figure 5(c)). Pathways were mainly
enriched in TRAIL, glypican, IL-3, focal adhesion kinase,
mTOR, PI3K/AKT, and IFN-γ signal events, which are
closely related to the AKT/GSK-β/β-catenin pathway. Our
results showed that ZSD treatment led to a dramatic
decrease in the transcription of PI3K, AKT, and β-catenin
(p < 0:05, p < 0:01; Figure 5(d)) and an increase in that of
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Figure 2: ZSD suppressed growth of LLC-allograft tumors. (a) The body weight of mice in each group. (b) Images of mice injected
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Figure 3: Continued.
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caspase-3, Bax, and GSK-3β (p < 0:01, p < 0:001). These
data suggested that AKT/GSK-3β/β-catenin signaling was
involved in ZSD-induced apoptosis of lung cancer cells.

3.6. ZSD Inhibits the AKT/GSK-3β/β-Catenin Pathway in
Lung Cancer Cells and Tumor Tissues. GSK-3β/β-catenin is
considered to be an important downstream cascade of AKT
in regulating cancer metastasis; thus, we investigated if ZSD
inhibited growth and metastasis in lung cancer by modulat-
ing AKT/GSK-3β/β-catenin signaling. Our results showed
that the protein level of p-AKT, p-GSK-3β, β-catenin, and
Bcl-2 was markedly reduced in H1299 cells with ZSD treat-
ment for 12h, 24h, and 48h, while the level of cleaved
caspase-3 and Bax was evidently increased compared to the
control group (p < 0:05, p < 0:01, and p < 0:001; Figure 6(a)).
Consistently, the samples from in vivo assay also showed that
the protein expression of p-AKT, p-GSK-3β, β-catenin, and
Bcl-2 significantly decreased (p < 0:01, p < 0:001), while the
level of cleaved caspase-3 and Bax increased in the ZSD and

HSOL treatment groups compared with the model group
(p < 0:05, p < 0:01; Figure 6(b)). Furthermore, in the isolated
allograft tumors, the mRNA expression level of PI3K, AKT,
and β-catenin in the ZSD and HSOL treatment groups was
downregulated compared with that in the model group,
whereas that of GSK-3β, caspase-3, and Bax was upregulated
(Figure S4). These findings indicated that ZSD may induce
apoptosis and inhibit metastasis by blocking the AKT/GSK-
3β/β-catenin pathway.

3.7. AKT/GSK-3β/β-Catenin Pathway Medicated the
Anticancer Effect of ZSD in Lung Cancer Cells. To verify the
role of AKT/GSK-3β/β-catenin in the anticancer effect of
ZSD, we treated H1299 cells with ZSD and/or SC-79. SC-79
is a unique specific AKT activator, which effectively activates
the phosphorylation of AKT [26]. Results in Figure 7(a)
showed that SC-79 effectively promoted the protein expres-
sion of p-AKT and its downstream p-GSK-3β and β-catenin,
which were significantly downregulated by ZSD. However,
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Figure 3: ZSD inhibited the proliferation of lung cancer cells in vitro. (a) Calculated IC50 of different cancer cells and normal human BEAS-
2B cells. The cells were treated with various concentrations of ZSD (0.25, 0.5, 1, 2, and 4mg/mL) for 48 h and IC50 was calculated. (b–e) ZSD
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the pretreatment of SC-79 ameliorated the inhibition effect of
ZSD on the expression of p-AKT, p-GSK-3β, Bcl-2, and β-
catenin. In addition, the effect of ZSD on promoting the
expression of apoptosis-related proteins (Bax, cleaved cas-
pase-3) was reversed by pretreatment of SC-79 as well, com-
pared with ZSD alone treatment. Furthermore, we also found
that the migration rate of H1299 cells and migrated/invaded
cell numbers in the ZSD and SC-79 cotreatment group were
increased, compared with those in the ZSD alone treatment
(Figures 7(b) and 7(c)), suggesting that activation of AKT
weakened the ability of ZSD to inhibit metastasis. These
results suggested that AKT/GSK-3β/β-catenin mediated
anticancer effect of ZSD on lung cancer.

4. Discussion

Currently, although incremental progress has been made in
the treatment of lung cancer, it remains a leading cause of
human mortality. Surgical and chemotherapy treatment are
the major treatment modalities for lung cancer patients.
However, since chemotherapeutics have the insurmountable
problems, such as drug resistance and systemic toxic effect,

more effective therapeutic measures with little side effect
are therefore required for the treatment of patients. The
application of TCM is attracting more and more attention
in the treatment of cancer for the advantages in improving
quality of life, enhancing immune function, and reducing
side effects of chemotherapy [27]. However, the TCM for-
mula is a complicated system, and multicomponents and
multitargets are the main characteristics. Therefore, elucidat-
ing the underlying therapeutic mechanisms is still a chal-
lenge. As network pharmacology provided an excellent
method in collecting active ingredients and pharmacological
actions of herbs or TCM formula [28], here, we integrated
network pharmacology analysis and experimental validation
to probe the effect of ZSD on lung cancer.

In this study, a total of 135 ingredients from ZSD were
selected from the TCMSP database. Then, we identified 28
common targets from BATMAN-TCM, SEA, and SWISS
databases. The GO function analysis showed that 28 poten-
tial targets are enriched for various biological processes,
including cell response to steroid and transcription initiation
from RNA polymerase II. Furthermore, KEGG pathway
analysis found that ZSDmay affect various cancers, including
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Figure 4: ZSD inhibited the migration and invasion of lung cancer cells. (a, b) ZSD inhibited mobility of lung cancer cells and had no effect on
BEAS-2B cells in wound-healing assay. Scale bar: 200μm. (c, d) ZSD inhibited migration of lung cancer cells in a dose-dependent manner and
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non-small-cell lung cancer pathway, acute myeloid leukemia
pathway, and breast cancer. The three key targets in the
NSCLC pathway were docked with the compounds, and
the results showed that the compounds could be attached
to the active pocket of the three key proteins. Next, we

explored the effect of ZSD on lung cancer in vitro and
in vivo.

The LLC subcutaneous transplantation model in
C57BL/6 mice is a recognized classic lung cancer transplanta-
tion model with the advantages of high tumor formation rate

Biological pathway enrich
Pa

th
w

ay

Rich factor
0.0412 0.0414 0.0416 0.0418

1.218539e-19

9.267750e-20

6.350106e-20

3.432463e-20

5.148188e-21

55.0
54.5

54.0
53.5
53.0

TRAIL signaling pathway
Glypican pathway

IL3-mediated signaling events
Arf6 downstream pathway

mTOR signaling pathway
Arf6 signaling events

Class I PI3K signaling events
EGF receptor (ErbB1) signaling pathway

PDGFR-beta signaling pathway

Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling
Signaling events mediated by VEGFR1 and VEGFR2

Signaling events mediated by hepatocyte growth factor receptor (c-Met)
IGF1 pathway

Nectin adhesion pathway

GMCSF-mediated signaling events
Insulin pathway

PDGF receptor signaling network
Internalization of ErbB1

IFN-gamma pathway

Signaling events mediated by focal adhesion kinase

Gene number

p value

0.0410

(c)

8

6

Th
e r

ela
tiv

e m
RN

A
 ex

pr
es

sio
n

4

2

0

H1299

Ctrl
ZSD 24 h

PI
3K

A
KT

G
SK

-3
𝛽

𝛽
-c

at
en

in

ca
sp

as
e-

3

Ba
x

⁎ ⁎

⁎⁎

⁎⁎⁎

⁎⁎

⁎⁎⁎

(d)

Figure 5: ZSD induced the apoptosis of H1299 cells partially by regulating AKT/GSK-3β/β-catenin signaling. (a) ZSD induced the apoptosis
of H1299 cells after treatment with ZSD (4mg/mL) for 12 h, 24 h, and 48 h. (b) ZSD induced apoptosis of H1299 cells in a dose-dependent
manner. (c) Pathway enrichment analysis of the genes in Human Signal Transduction Pathway Finder PCR Array. (d) The mRNA expression
of AKT/GSK-3β/β-catenin signal cascades in H1299 cells after treatment with ZSD (4mg/mL). ∗p < 0:05 and ∗∗p < 0:01 vs. the control group.
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and good repeatability [23]. Our results discovered for the
first time that ZSD suppressed the tumor growth in vivo
and high dose of ZSD exerted more prominent effect than
HSOL treatment, which was used as an anticancer drug in
clinics for years. Encouragingly, during the three-week
period of ZSD and HSOL treatment, the mice showed no
weight loss, decreased activity, or anorexia, implying ZSD
can offer a safe treatment strategy for lung cancer. Com-
pared with the model group, the ZSDL group showed no sig-
nificant difference in the inhibitory effect, which is probably
due to the large variance within the group or insufficient
dose of ZSD.

Besides these observations, ZSD also played an active role
in suppressing the proliferation and vitality, colony forma-
tion, migration, and invasion of lung cancer cells (A549,

H1299, and H1975), but had no significant toxicity to normal
lung epithelial cell (BEAS-2B). To further explore the antil-
ung cancer mechanism of ZSD, we conducted Human Signal
Transduction Pathway Finder PCR Array and found that
TRAIL, glypican, IL-3-mediated signaling, Arf6 and mTOR
signaling, and PI3K/AKT signaling pathway were mainly
enriched (Figure 5(a)). Studies have shown that TRAIL
and IL-3 signaling are involved in cell survival and prolifer-
ation via regulating the PI3K/AKT pathway [29–31]. Then,
glypicans and Arf6 may promote tumor cell migration and
metastasis through affecting the degradation of β-catenin in
the Wnt pathway [32–34]. Thus, we paid more attention to
the PI3K/AKT and Wnt/β-catenin pathways. AKT/GSK-
3β/β-catenin is the “crosstalk” between the PI3K/AKT
and Wnt/β-catenin pathways. It has been reported that
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Figure 6: ZSD inhibited the AKT/GSK-3β/β-catenin pathway in lung cancer cells and tumor tissues. (a) Western blot analysis was used to
assess the expression of multiple proteins involved in the AKT/GSK-3β/β-catenin pathway in lung cancer cells after ZSD treatment for 12 h,
24 h, and 48 h. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group. (b)Western blots showing the protein expression of AKT, p-AKT,
GSK-3β, p-GSK-3β, β-catenin, cleaved caspase-3, and Bax and Bcl-2 in isolated tumor tissues. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the
model group.
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activation of the GSK-3β/β-catenin pathway promotes the
cell proliferation and leads to development of lung cancer
[35, 36]. Our results showed that ZSD treatment signifi-
cantly decreased the expression level of p-AKT, p-GSK-
3β, and β-catenin and increased that of ROS-induced
mitochondria-dependent apoptosis Bax/Bcl-2 and cleaved
caspase-3 in lung cancer cells both in vivo and in vitro,
indicating that ZSD treatment may induce cancer cell apo-
ptosis via the AKT/GSK-3β/β-catenin pathway. Then, the

activation of the AKT/GSK-3β pathway by SC-79 partially
abolished the effect of ZSD on inducing apoptosis and on
suppressing cell migration and invasion in lung cancer cells.
These phenomena confirmed the critical role of the AKT/
GSK-3β/β-catenin pathway in ZSD against lung cancer.

In the C-T network and KEGG pathway analysis, the tar-
gets enriched in the NSCLC pathway were AKT1, EGFR, and
ALK. The molecular docking results revealed that bioactive
components from ZSD have good affinity with these targets.
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Figure 7: The AKT/GSK-3β/β-catenin pathway medicated anticancer effect of ZSD in lung cancer cells. H1299 cells were treated with ZSD
and/or SC-79 for 24 h. (a) Representative western blots and quantitative analysis of the AKT/GSK-3β/β-catenin pathway related proteins. (b)
The mobility of H1299 cells was detected by wound-healing assay. (c) The migration and invasion abilities of H1299 cells were detected by
transwell assays. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group.
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Both EGFR and ALK can directly activate the PI3K/AKT
pathway and the downstream effector GSK-3β/β-catenin
[37–39]. The targets predicted by bioinformatics were consis-
tent with our experiment results. Hence, our findings also
provided a basis for mining the specific antitumor compo-
nents of ZSD against lung cancer in follow-up work.

5. Conclusions

Taken together, our experimental results showed for the first
time that ZSD exerted specific anticancer activity in lung can-
cer cells partially through inhibition of the AKT/GSK-3β/β-
catenin signaling pathway in vitro and in vivo. These findings
provide new evidence that ZSD has therapeutic potential in
the treatment of lung cancer and uncover the potential mech-
anism by which ZSD inhibits human lung cancer cell growth.
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