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Abstract
White-nose syndrome (WNS), an emerging disease of hibernating bats, has rapidly

spread across eastern North America killing millions of bats. Pseudogymnoascus
destructans (Pd), the sole etiologic agent of WNS, is widespread and persistent in bat

hibernacula. Control of Pd in the affected sites is urgently needed to break the transmis-

sion cycle while minimizing any adverse impact on the native organisms. We isolated a

novel strain of Trichoderma polysporum (Tp) from one of the caves at the epicenter of

WNS zoonotic. Detailed experimental studies revealed: (1) TpWPM 39143 was highly

adapted to grow at temperatures simulating the cave environment (6°C-15°C), (2) Tp
WPM 39143 restricted Pd colony growth in dual culture challenges, (3) TpWPM 39143

caused four logs reduction of Pd colony forming units and genome copies in autoclaved

soil samples from one of the WNS affected caves, (4) TpWPM 39143 extract showed spe-

cific fungicidal activity against Pd in disk diffusion assay, but not against closely related

fungus P. pannorum (Pp), (5) TpWPM 39143 extract retained inhibitory activity after expo-

sure to high temperatures, light and proteinase K, and (6) Inhibitory metabolites in Tp
WPM 39143 extract comprised of water-soluble, high polarity compounds. These results

suggest that TpWPM 39143 is a promising candidate for further evaluation as a biocontrol

agent of Pd in WNS affected sites.

Introduction
White-nose Syndrome (WNS), caused by Pseudogymnoascus destructans (Pd), has devastated
bat populations across eastern North America for almost a decade [1–7]. A number of bat
species are affected with the most vulnerable being little brown bats (Myotis lucifugus), Indi-
ana bats (M. sodalis), northern long-eared bats (M. septentrionalis), and tricolored bats (Peri-
myotis subflavus) [5, 8]. Pd invades the skin of hibernating bats including muzzles, ears, and
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wings. The affected animals are noticeably emaciated, and many fail to survive hibernation
[9–11].

The underlying mechanisms of Pd infectivity and its precise ecological niche are largely
unknown. Historically, Pd appears to be well established in European caves, and European bats
harboring the fungus exhibit pathology similar to that seen in North American bats, with no
recorded mass mortality [12–14]. To date, all investigations of Pd indicate that it is well
adapted to cold conditions and has a clonal population in the US [15, 16]. Several DNA and
culture based studies have revealed wide distribution and persistence of Pd in sediment and
swab samples from bat hibernacula [12, 17–19]. Other published cave fungal surveys indicate
that Pd could survive and persist in bat hibernacula for prolonged periods, and this has a dra-
matic impact on both disease management and epidemiology [19]. Recently, a mycobiome
study found a diversity of fungi inhabiting WNS caves and mines and signs of local adaptation
by Pd [20]. Further studies are needed to understand the pathogenesis of WNS and to develop
control strategies that include alleviation or remediation of Pd to break the transmission cycle,
especially by reducing the fungal burden available for new infections. Recently, some bacteria
have been proposed as biocontrol agents, including naturally occurring bacteria [21] or vola-
tiles produced by bacteria [22, 23].

There is a vast volume of literature on the biocontrol potential of Trichoderma spp. and sev-
eral highly effective preparations incorporating these fungi are now approved for commercial
use for the biocontrol of agriculture pests in the US and other parts of the world [24, 25]. The
most important biocontrol agents against plant pathogenic fungi are Trichoderma virens von
Arx, Beih [26, 27], T. harzianum Rifai [28, 29], T. viride Pers:Fr [30], and T. atroviride sc1 [31].
Optimum growth temperatures differ among Trichoderma spp. and previous studies have
largely focused on mesophilic groups (22°C~35°C) [24, 32–34]. It has been found that Tricho-
derma spp. did not protect germinating seeds from soil-borne diseases caused by cold-tolerant
phytopathogenic fungi during cold and wet autumn and spring seasons [35, 36]. To date, there
is relatively little information available about psychrotolerant Trichoderma spp. and their bio-
control potentials. Trichoderma polysporum was shown to have biocontrol activity outside of
caves against a variety of other fungi including Armilaria gallica, Fomus annosus, and Cerato-
cystis paradoxa [37–39].

The present study describes a psychrotolerant strain of Trichoderma polysporum (Tp) WPM
39143, which was isolated from a cave at the epicenter of the WNS zoonotic. Since T. poly-
sporumWPM 39143 grew relatively well at low temperatures common in the cave environment
[40], the objective of this investigation was to determine if it exerted inhibitory activity against
Pd in laboratory media and soil matrices.

Materials and Methods

Fungal strains and media
Trichoderma polysporum (Tp), recently isolated from air sample 39143 fromWilliam Preserve
Mine (WPM), NY [20], Trichoderma harzianum (Th) Rifai strain T22 purchased from Bio-
Works, Inc. Victor, NY, USA, T. atroviride (Ta) obtained from ARS fungal collection, Cornell
University, NY, USA, Pseudogymnoascus destructans (Pd) M1379 and Pseudogymnoascus pan-
norum (Pp) M1372 [41] were part of this investigation. All fungi were maintained on potato
dextrose agar (PDA, Difco) slants at 15°C. Fungal cultures were also stored in 15% glycerol at
-70°C. Other media used were Sabauraud dextrose agar (SDA) with or without cycloheximide
(400 μg/ml), rice fermentation medium (100 g rice in 150 ml of distilled water) [42], and yeast
extract peptone dextrose (YPD) agar. All the experiments were performed in the biosafety cabi-
net 2.
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Phylogenetic analysis of TpWPM 39143
Genomic DNA from TpWPM 39143 was extracted using thermolysis phenol extraction proto-
col as described in a published study [43]. In brief, approximately 5x5 mm of fungal culture
was removed from the agar surface, placed in 300 μl of modified genomic DNA extraction
buffer (100 mM Tris [pH 8.0], 10 mM EDTA, 2% SDS, 1.4 M NaCl, 1% CTAB, 0.4 μg/ml pro-
teinase K), and the mixture incubated at 65°C for 1 h followed by chloroform:isoamyl alcohol
(24:1) extraction, precipitation with isopropanol and washing with 70% ethanol. The precipi-
tated DNA was centrifuged at 12,000 RPM and the resulting pellet was dried and finally dis-
solved in 50 μl of Tris-EDTA (TE) buffer. The extracted DNA was amplified for the internal
transcribed spacer (ITS) and D1/D2 regions of the ribosomal gene with primer set ITS1-ITS4
and NL1-NL4, respectively [44]. The PCR was performed with proof reading KlenTaq DNA
polymerase (Sigma-Aldrich, St. Louis, MO, USA) with initial denaturation at 95°C for 3 min,
followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min, and exten-
sion at 68°C for 2 min and the final extension at 68°C for 10 min. The PCR amplicons were
sequenced, assembled, and edited using Sequencher 4.6 software (Gene Codes Corp., Ann
Arbor, MI, USA) and BLAST searched against two databases: GenBank (www.ncbi.nlm.nih.
gov/) and CBS-KNAW (www.cbs.knaw.nl/).

Multiple alignments of ITS and D1/D2 sequences of TpWPM 39143 and selected GenBank
sequences were done using the CLUSTALX 1.81 [45] and MAFFT programs [46]. A phyloge-
netic analysis of the aligned sequences was done using the neighbor-joining (NJ) method with
1,000 bootstrap replicates using MEGA 5.1 [47]. The Dictionary of the Fungi and UniProt
(http://www.uniprot.org/taxonomy/) served as the source of taxonomic references for fungal
species [48].

Growth optima of TpWPM 39143
In order to assess the biocontrol potential, we first compared the growth temperature range of
TpWPM 39143 with that of two well -characterized biocontrol fungi Th and Ta. These strains
were point inoculated on the center of PDA and YPD agar plates, and cultures were incubated
at 6, 10, 15, and 22°C. The diameter of the fungal colony was measured at 9 and 20 days post-
incubation.

Dual culture challenge studies of Pd and TpWPM 39143
The dual challenge experiments were performed on the laboratory medium (PDA) and soil
matrices. Approximately 15 μl of Pd conidial suspension (107 conidia/ml) was inoculated close
to the edge on one side of a PDA agar plate. Following incubation for 10 days at 15°C, approxi-
mately 15 μl of conidial suspension (105 cells/ml) of TpWPM 39143 was placed on the oppo-
site side of the plates. Similarly, a conidial suspension of Th (105 cells/ml) was also placed on
the opposite side of the Pd culture plate in a separate experiment. The interactions between Pd
and Tp or Th were assessed at 2 and 4 weeks post-inoculation at 15°C. The Pd culture alone
served as a control.

For the dual challenge experiment simulating a natural setting, one soil sample (dark black
in color with fine granular consistency) collected from Aeolus Cave on September 18, 2013,
was used. In brief, the soil sample was weighed, and 3 grams placed into sterile 10-ml screw
capped Econo Glass VialsTM (PerkinElmer, Waltham, MA, USA). Vials were autoclaved at 15
psi for 30 min. The pH of the autoclaved samples was determined by pulverizing the soil sam-
ple with 10 ml of sterilized distilled water and placing a drop of this suspension on to pH indi-
cator strips ranging from pH 0–6 and pH 5–10. A loopful of autoclaved soil sample was
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streaked onto YPD agar plates, and the plates were incubated at 15°C for one week to confirm
sterility.

Three vials, each containing 3 g of soil sample, were inoculated with 100 μl of Pd conidial
suspension (3×105 conidia/ml) to get final conidia counts of 1 x 104 conidia/g of soil. The con-
tents of the vials were thoroughly mixed with a sterile spatula, and these vials were incubated
for one week at 15°C. Following incubation, each Pd-containing vial was seeded with either
100 μl of TpWPM 39143 or Th conidial suspension (3×105 conidia/ml) to get final conidia
counts of 1 x 104 conidia/g of soil. One Pd-containing vial was also inoculated with 100 μl of
sterile distilled water, which served as a control. All the vials were incubated at 15°C for an
additional 35 days.

Recovery of Pd from dual culture challenge
Following incubation, approximately 1 g of soil sample was removed from each vial, trans-
ferred to an autoclaved mortar and pestle and mixed gently to get a homogenous mixture. The
samples were weighed, and approximately 100 mg aliquots of homogenous soil sample were
transferred into six 2-ml screw cap vials. Three vials each were processed for Pd recovery by
culture-dependent (CD) and culture-independent (CI) methods as shown in the flowchart
(S1 Fig).

For the CD method, the content of each vial was mixed with 500 μl of sterile distilled water,
vortexed vigorously for 2 minutes and the tubes were left in an up-right position for 5 minutes
to allow settling of soil particles. Approximately, 200 μl of supernatant from each vial was
removed and transferred to a new sterile vial. Ten-fold dilutions of the supernatant were pre-
pared, and 100 μl of each dilution was inoculated on to SDA plates with or without cyclohexi-
mide in triplicates for the recovery of Pd, TpWPM 39143, and Th. The culture medium
selection was based upon our preliminary experiments wherein Pd was found to be resistant to
cycloheximide while TpWPM 39143 and Th showed 100% growth inhibition (details not
shown). All the plates were incubated at 15°C for 7 to 30 days. The Pd colonies were counted,
and results were expressed as log colony-forming unit (CFU) per gram of soil. The percent Pd
growth inhibition by TpWPM 39143 or Th was calculated as: 1-(Pd CFU experiment/Pd CFU
control) x 100.

For the CI method, the remaining three vials, each containing 100 mg of soil sample with
Pd alone or Pd with TpWPM 39143 or Th, were subjected to genomic DNA (gDNA) extrac-
tion using SoilMasterTM DNA Extraction Kit (Epicentre, Chicago, IL, USA). The autoclaved
pre-treated soil sample was also processed for DNA extraction to assess if it contained any Pd
gDNA. The extracted DNA from all sample types was suspended in 30 μl of Tris-EDTA (TE)
buffer and Pd gDNA in these samples were quantitated using real-time PCR assays targeting
alpha-L-rhamnosidase gene (ALR) and intergenic spacer region (IGS) of the rRNA gene com-
plex in an IQ5 real-time PCR detection system (Bio-Rad, Hercules, CA), as described previ-
ously [49, 50]. In brief, each reaction mixture contained 1× LightCycler Fast Start DNA master
hybridization probe mix (Roche Applied Science, Indianapolis, IN, USA), 4 mMMgCl2, 1 μM
concentration of each primer, 0.25 μM concentration of each probe, and 2 μl of soil DNA in a
final volume of 20 μl. The soil sample was also checked for PCR inhibitors by spiking with 1 ng
of Pd gDNA. The PCR cycling conditions were 10 min at 95°C followed by 15 s at 95°C and 60
s at 60°C for 40 cycles. Each sample was tested in triplicate, and the results were averaged to
obtain the cycle threshold (Ct)—i.e., the point at which sample fluorescence rises above the
background level. A Ct value of>40 was considered negative while a Ct value of�40 was con-
sidered positive. Each sample was also run with a non-DNA template (NTC) as a negative con-
trol. The dilution series of gDNA from a pure culture of Pd (M1379) was used for the
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generation of standard curve. The average Ct counts equivalent to DNA quantity was extrapo-
lated from the standard curve, and then Pd genome copies was calculated using formula:

(copies = DNA quantity (ng)x(6.022x1023)/genome length (bp)x(1x109)x650 in which the
6.022x1023 molecules/mole is Avogadro's number, average weight of a base pair (bp) is 650
Daltons and Pd genome length is 30.49 Mb. More details of the formula used are available
online (http://cels.uri.edu/gsc/cndna.html). The Pd genome copies obtained was calculated per
gram of soil. Since IGS rRNA gene complex in fungi is a multi-copy gene [51, 52] and IGS PCR
was 100 fold more sensitive than the single copy ALR PCR [50], the IGS was arbitrarily calcu-
lated as 100 copies per Pd genome. The autoclaved pre-treated soil sample was weakly positive
for Pd gDNA (mean Ct = 38.58) by IGS real-time PCR assay.

Extraction of crude extracts from TpWPM 39143
TpWPM 39143 and the well-known biocontrol fungi, Th and Ta, were grown on PDA agar at
15°C for 30 days. Fungal growth was gently scraped with a plastic loop, and a spore/hyphal sus-
pension was harvested in sterile distilled water. Approximately 5 ml of spore/hyphal suspen-
sion (OD600 = 1.0) was seeded into six 500-ml flasks containing 100 g of autoclaved rice
fermentation medium, and cultures were then incubated at 22°C for 30 days. Following incuba-
tion, the fermented rice substrate was extracted with methanol (3 x 400 ml) by 4 h incubation
at 22°C. The methanol-fungal slurry was centrifuged at 8,000 RPM for 10 min. The fungal pel-
let was removed, and the supernatant evaporated under vacuum. The dry pellet (approximately
7~8 g) was suspended into 30 ml of methanol, which served as a crude extract.

A portion of the crude extract was assessed for stability by exposure to high temperature
(45°C), regular light and 10 μl of proteinase K (37° and 45°C) for a total of 20 h each.

HPLC fractionation of TpWPM 39143 crude extract
The TpWPM 39143 crude extract was analyzed for the presence of different metabolites by
high-performance liquid chromatography (HPLC). In brief, 20 μl of crude extract from Tp
WPM 39143 was placed into HPLC column (Agilent Zorbax SB-C18 column, 5 μm, 4.6×250
mm, 1 ml min-1) and different fractions were eluted using gradients starting with 5% CH3OH
in H2O to 100% CH3OH for 55 min followed by 100% CH3OH for 5 min (12 fractions). The
crude extract in the column was further eluted using gradients starting with 100% CH3OH to
90% acetonitrile in H2O for 10 min (2 fractions) and final washing with 5% CH3OH in H2O
for 5 min (1 fraction). A total of 15 fractions were collected. This experiment was repeated 10
times and fractions from each run were pooled, concentrated 100 fold, and then each fraction
was assessed for anti-Pd activity using antimicrobial disc diffusion bioassay.

Antimicrobial disc diffusion bioassay
The antimicrobial disc diffusion bioassay was performed as described in a previous publication
[53]. In brief, conidial suspensions of Pd and Pp were prepared by gently scraping fungal
growth from the agar surface and then passing through a 27-G needle. Conidia were counted
microscopically using a hemocytometer, and approximately 100 μl of conidial suspension (108

conidia/ml) was spread on YPD agar plates. The 6 mm autoclaved filter discs (Whatman no. 1)
were carefully placed on seeded plates and 15 μl of untreated or treated crude extract or extract
purified through HPLC column was placed onto filer discs. Plates were incubated for 5–7 days
at 15°C, and the zone of fungal growth inhibition around the disc was measured.

Biocontrol of Pseudogymnoascus destructans

PLOSONE | DOI:10.1371/journal.pone.0141316 October 28, 2015 5 / 17

http://cels.uri.edu/gsc/cndna.html


Statistical Analysis
Data in figures are presented as mean ± SD. All statistical analyses were performed using
GraphPad Prism software (GraphPad, San Diego, CA, USA). The comparison of mean value of
multiple groups was performed using a two-way ANOVA and comparison of two groups was
performed using a two-tailed unpaired t-test. Values were accepted as significant if p� 0.05.

Nucleotide Sequence Accession Numbers
All nucleotide sequences of TpWPM 39143 (Hypocrea pachybasioide) were deposited in Gen-
Bank under accession numbers: ITS sequence, KJ494575; 28S rRNA gene partial sequence,
KJ494576.

Results

Phylogenetic analysis of TpWPM 39143
BLAST search of the ITS sequences of the ribosomal gene of TpWPM 39143 strain showed
close homology with T. polysporum strain CBS 119319 (accession no. FJ860796). Further, phy-
logenetic analyses using a Neighbor-Joining tree revealed that Tp strain WPM 39143 was
closely related toHypocrea pachybasioide CBS 119319 (teleomorph of Trichoderma poly-
sporum) followed by T. piluliferum. In contrast, TpWPM 39143 was distantly related to the
well-known biocontrol fungi Th and Ta (Fig 1). Phylogenetic analysis of the D1/D2 region of
the 28S ribosomal gene revealed a similar placement of respective genera (data not shown).

Growth characteristics of TpWPM 39143
In order to examine the biocontrol potential of TpWPM 39143, we first tested its growth at dif-
ferent temperatures in comparison to the well-known biocontrol strains Th and Ta. Our results
indicated that TpWPM 39143 grew fairly well at 6°C while Th and Ta did not grow at all at
6°C after 9 days post-incubation (Fig 2A and 2B). Even prolonged incubation of 20 days did
not support the growth of either Th or Ta at 6°C while restricted growth of Ta was observed at
10°C (Fig 2C). Tp 39143 grew better at�10°C but growth was also evident at 6°C, a tempera-
ture more prevalent in the caves and mines [40].

Dual culture challenge studies
In the dual culture challenge experiments on PDA agar, the Pd hyphal extension (diameter)
was 1.93 ± 0.1 cm in the presence of TpWPM 39143 (Fig 3Ai) while it was 2.82 ± 0.2 cm in the
absence of TpWPM 39143 at 14 days post-incubation (Fig 3Ci). No extension of Pd hyphal
growth was observed in the presence of TpWPM 39143 (Fig 3Aii) while it steadily increased to
3.90 ± 0.2.cm at 28 days post-incubation (Fig 3Cii). Of particular interest, Pd colonies in the
presence of TpWPM 39143 appeared white and restricted as compared to fluffy and pig-
mented when grown alone (Fig 3Ci and 3Cii). A similar trend was observed for Pd grown in
the presence of Th (Fig 3Bi and 3Bii).

Next, we determined if TpWPM 39143 induced growth inhibition was sustainable in auto-
claved soil sample mimicking the natural environment. This information is crucial if TpWPM
39143 is to be considered as a biocontrol agent of Pd in caves and mines. The Th induced
growth inhibition was also determined for comparison. The autoclaved soil sample supported
good growth of Pd (106 CFU/g soil) and Tp or Th (approximately 108 CFU/g soil). When com-
pared to the control soil sample harboring Pd alone, the recovery of Pd from soil samples har-
boring TpWPM 39143 was reduced by approximately 4.0-logs (99.98% inhibition). In
contrast, the recovery of Pd from soil samples harboring Th was reduced by 1.7-log (89%
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inhibition) (Fig 4). A similar trend was observed for Pd genome copies in soil samples by real-
time PCR assay. As compared to the recovery of Pd genome copies from control soil sample
harboring Pd alone, several logs reduction of Pd genome copies was observed in soil samples
harboring TpWPM 39143, and only one log reduction of Pd genome copies was observed in
soil samples harboring Th (Fig 5). These results confirmed that TpWPM 39143 had potent
inhibitory activity against Pd, and the inhibitory activity was sustainable under a simulated nat-
ural setting.

Inhibitory activity of TpWPM 39143 extract
In order to identify active ingredients for biocontrol, preliminary experiments were done with
crude extract of TpWPM 39143 against Pd. We also included crude extracts from well-known
biocontrol fungi Th and Ta for comparison. Pseudogymnoascus pannorum (Pp), a species

Fig 1. Phylogenetic analysis of TpWPM 39143. The ITS nucleotide sequence of TpWPM 39143 was aligned with similar sequences from 27 taxa of
Trichoderma/Hypocrea species available in the GenBank. The neighbor-joining method was used to construct the phylogenetic tree. The bootstrap scores
are based on 1,000 reiterations. Fusarium oxysporumCBS 129.24 andNeotyphodium uncinatum NBRC 32642 were used as outgroup.

doi:10.1371/journal.pone.0141316.g001
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closely related to Pd and abundant in caves and mines [20] was also included in the challenge
experiment as a target to compare species-specific biocontrol activities. The crude extract from
TpWPM 39143 showed inhibitory activity against Pd as judged by the presence of clear zone
surrounding the disc (Fig 6A) but not against Pp (Fig 6B). Similarly, the TpWPM 39143 crude

Fig 2. Growth comparisons of TpWPM 39143 at different temperatures. TpWPM 39143 along with Th and Ta strains were point inoculated on the center
of PDA (A) and YPD (B) agar plates and incubated at different temperatures (6°C-22°C) for 9 days and colony diameter was measured. The TpWPM 39143
growth was significantly rapid (asterisk denotes p<0.001) as compared to Ta or Th at lower temperatures of 6°C and 10°C. Further incubation (20 days)
revealed good growth of Th and restricted growth of Ta at 10°C, but no growth of Th or Ta at 6°C (C).

doi:10.1371/journal.pone.0141316.g002
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extract was not inhibitory against fungi common in caves and mines including Aspergillus spe-
cies, Penicillium species,Mucor species, Fusarium species, Cladosporium species, Alternaria
species and Paecilomyces species (data not shown). The Th crude extract also showed more
pronounced inhibitory activity against Pd but not against Pp (Fig 6A and 6B). The Ta crude
extract did not inhibit either Pd or Pp (data not shown). These results indicated that the inhibi-
tory metabolites in Tp or Th crude extracts might be specific against Pd.

Characterization of TpWPM 39143 inhibitory metabolites
Since TpWPM 39143 grew in the laboratory at cave and mine temperatures (6°C-15°C) and
exhibited Pd inhibition, we further assessed its inhibitory potential by determining the stability
of metabolites at different temperatures, light exposure, and proteinase K treatment. The
treated extracts inhibited Pd growth as efficiently as non-treated extract indicating that Tp
WPM 39143 extract is stable at high temperatures and under regular light (Fig 7).

Since TpWPM 39143 extract was not altered by proteinase k treatment indicating that the
inhibitory metabolite(s) in TpWPM 39143 extract are presumably not proteins, but a mixture
of compounds (Fig 7). Therefore, we explored the chemical nature of inhibitory metabolites in
TpWPM 39143 crude extract. The TpWPM 39143 crude extract was fractionated using high

Fig 3. Dual culture challenge on PDA agar medium. Approximately 15 μl spore suspension of Pd (107/ml) was inoculated near the edge of the PDA plate.
Following incubation at 15°C for 10 days, 15 μl of TpWPM 39143 or Th conidial suspension (105 cells/ml) was inoculated on the opposite edge of the culture
plate and the interaction between these two fungi was assessed at 14 and 28 days post-incubation. Pd colonies were white and restricted in the presence of
TpWPM 39143 or Th as compared to fluffy and pigmented when grown alone.

doi:10.1371/journal.pone.0141316.g003

Biocontrol of Pseudogymnoascus destructans

PLOSONE | DOI:10.1371/journal.pone.0141316 October 28, 2015 9 / 17



performance liquid chromatography (HPLC) and a total of 15 fractions were collected
(Fig 8A). The first two sub-fractions (F1, 0–5 min and F2, 5–10 min-red arrow) and the last
four sub-fractions (F11, F12, F13, and F14 –yellow arrow) displayed inhibitory activity against
Pd while other fractions did not (Fig 8B). These results indicated that there are two major sub-
classes of compounds in TpWPM 39143 extract, high polarity compounds with higher inhibi-
tory activity to Pd and low polarity compounds with lower inhibitory activity to Pd.

Fig 4. PdCFU recovery from dual culture challenge in soil (culture-dependent method). Autoclaved soil
sample was first inoculated with 100 μl of Pd conidia (104/g) and following incubation for 7 days at 15°C, one
soil sample each containing Pd, was inoculated with 100 μl of TpWPM 39143 or Th conidia (104/g) or 100 μl
of water alone. Dual culture challenge samples and control samples were incubated at 15°C for another 35
days, and three aliquots of 100 mg soil from each treatment group were processed for the recovery of Pd in
culture. Approximately, 4-logs reduction of PdCFU by TpWPM 39143 (p<0.0001) compared to 1.7-logs
reduction of PdCFU by Th (p<0.05) was observed.

doi:10.1371/journal.pone.0141316.g004
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Discussion
The major findings of this study were: the isolation of novel TpWPM 39143 strain from a
WNS affected cave, growth of the novel strain at temperatures simulating cave and mine envi-
ronments, and potent and specific inhibitory activity of TpWPM 39143 against Pd in labora-
tory media and autoclaved soil. Biocontrol agents are already accepted as an environmentally
friendly alternative to chemicals for plant disease management in agriculture [54, 55]. Recently,
a zooplankton Daphnia magna was suggested as a promising biocontrol agent for Batrachochy-
trium dendrobatitis, a chytrid fungus responsible for deadly chytridiomycosis in amphibians
[56, 57]. Our findings of a novel, psychotolerant TpWPM 39143 now sets the stage for poten-
tial biological decontamination of Pd at WNS affected sites.

There were no published studies prior to a report from our laboratory that documented Tp
from caves and mines [20]. We isolated Tp from only William Preserve Mine, and that too
from 3 of the 25 samples investigated. The rare isolation indicated that it is probably not pres-
ent in large numbers as are some other fungi or has a restricted niche. Since, we did not observe
any inhibition of at least some of the major fungal genera by Tp apart from Pd, it follows that
Tp could serve as a biocontrol agent for the inhibition or eradication of Pd from caves and
mines. The excellent growth of Tp observed in autoclaved soil sample from Aeolus Cave sug-
gests that the organic and inorganic contents of the soil favor the growth of Tp. Additionally,

Fig 5. Pd genome copies recovery from dual culture challenge in soil (culture-independent method). A, Standard curves of Pd intergenic spacer
region (IGS) and alpha L-Rhamnosidase (ALR) gene by real-time PCR assays. The purified genomic DNA from Pd was used for the generation of standard
curve against IGS and ALR targets, which was used to extrapolate Pd genome copies in the soil samples with or without biocontrol agents. All data points
represent the meanCt value of amplification reactions done in triplicates with error bars denoting standard deviation. The assay was linear over 6 orders of
magnitude for IGS gene (y = –3.5886x+42.131, R2 = 0.9982) and over 4 orders of magnitude for ALR gene (y = –3.398x+45.716, R2 = 0.9994). B, Pd genome
copies recovery by real-time PCR assays. Autoclaved soil sample was first inoculated with 100 μl of Pd conidia (104/g) and following incubation for 7 days at
15°C, one each soil sample containing Pd was inoculated with 100 μl of TpWPM 39143 or Th conidia (104/g) or 100 μl of water alone. The dual challenge
samples were incubated at 15°C for additional 35 days and three aliquots of 100 mg each soil sample from each treatment group were processed for Pd
gDNA extraction followed by IGS and ALR real-time PCR assays. The meanCt counts equivalent to DNA was extrapolated from the standard curve, and Pd
genome copies were calculated based on the formula described in Materials and Methods. Substantial reduction of Pd genome copies observed in samples
challenged with TpWPM 39143 (p<0.0001) as compared to samples challenged with Th (p<0.05).

doi:10.1371/journal.pone.0141316.g005
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Fig 6. Inhibition of Pd by TpWPM 39143 and Th extracts. YPD agar plates were streaked with 108 spore suspensions of Pd or Pp. Sterile filter discs (6
mm) were placed on the surface of the inoculated plate and saturated with 15 μl of TpWPM 39143 or Th crude extract. Plates were incubated at 15°C for 10
days. Both TpWPM 39143 and Th extract showed inhibitory activity against Pd (A) but not against Pp (B). The fermentation medium without metabolites,
which went through similar extraction process as medium containing metabolites served as a negative control (NCo).

doi:10.1371/journal.pone.0141316.g006

Fig 7. Stability assessment of Pd inhibitory activity in TpWPM 39143 crude extract. YPD agar plates were streaked with 100 μl of Pd conidial
suspension (108) and sterile filter discs (6 mm) were placed on agar plates and saturated with 15 μl of treated or untreated TpWPM 39143 extract. Plates
were incubated at 15°C for 10 days and were photographed for inhibition zone around discs. Abbreviations: PCo, positive control (untreated TpWPM 39143
extract), NCo, negative control (fermentation medium alone); 1, TpWPM 39143 extract exposed to regular light for 20 h; 2, TpWPM 39143 extract exposed
to proteinase K at 37°C for 20 h; 3, TpWPM 39143 extract exposed to proteinase K at 45°C for 20 h; 4, TpWPM 39143 extract exposed to 45°C for 20 h.

doi:10.1371/journal.pone.0141316.g007
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our limited studies documented the fungicidal activity of Tp against Pd in spiked autoclaved
soil sample. These results further confirmed the potent biocontrol activity of Tp against Pd and
the biocontrol activity was sustainable under simulated natural setting. Therefore, the stage is
set for future experiments to demonstrate if Tp can grow well in the presence of other microbes
in natural settings and if it can sustain inhibitory activity against Pd.

Trichoderma spp. are prominent among the most effective mycoparasites. Several species
such as T. harzianum, T. polysporum, T. viride and T. virens are currently in commercial pro-
duction for the control of plant pathogenic fungi in agriculture and horticulture [24, 58]. A
number of studies have documented that psychrophilic range limits the biocontrol potential of
Trichoderma spp. and only a few cold adapted strains with biocontrol potential have been
reported, including T. aureoviride, T. harzianum, and T. viride [35, 59]. Although T. poly-
sporum has been reported from cold environments including the Arctic and Antarctic, none of
the reported strains are known for their potent biocontrol activity against other fungi [60, 61].
Thus, the discovery and characterization of TpWPM 39143 establishes it as a potentially
unique biocontrol agent against the psychrophilic, zoopathogen Pd.

Trichoderma polysporum secondary metabolites include cyclosporin [62, 63], trichosporin
[64], peptaibols [65], anthraquinones [38], trichodermin [24], and minor cyclonerodiol deriva-
tives [66]. Among them, trichosporin, cyclosporine, peptaibols, and cyclonerodiol derivatives
have antifungal activities [62, 63, 66]. Many of these metabolites are amphipathic [67, 68]. It is

Fig 8. Inhibitory activity of HPLC fractions obtained from TpWPM 39143 extract. A) TpWPM 39143 crude extract was fractionated by HPLC (details in
methods). Total of 15 sub-fractions were collected at the intervals of 5 min. B) Disc diffusion assay to measure inhibition of Pd growth by various HPLC sub-
fractions. F1, 0–5 min sub-fraction; F2, 5–10 min sub-fraction; F3, 10–15 min sub-fraction; . . .. . .. . .. . .. F14, 65–70 min sub-fraction; F15, 70–75 min, 5%
CH3OH in H2O elution time. Abbreviation: PCo, positive control (untreated TpWPM 39143 crude extract).

doi:10.1371/journal.pone.0141316.g008
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relevant to recall that water soluble, high polarity compounds with specific inhibitory activity
against Pd were identified in our preliminary analyses. The next logical experiments will be to
define the fungicidal molecule (s) in Tp extracts active against Pd.

In conclusion, we have identified a novel biocontrol strain TpWPM 39143 from a cave at
the epicenter of the WNS zoonotic. Trichoderma polysporumWPM 39143 produced potent
inhibitory compound(s) that impeded the growth of Pd in both laboratory media and soil
matrices. These results could be used to design a viable strategy for the biological decontamina-
tion of Pd in ‘cave or mine in a lab’ environment or under field conditions.

Supporting Information
S1 Fig. Flowchart of dual culture challenge in soil. Flow chart representing culture-depen-
dent (CD) and culture-independent (CI) methods for the recovery of Pd in the presence or
absence of biocontrol fungi, TpWPM 39143 or Th.
(TIF)
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