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Abstract
The research on human gut microbiome, regarded as the black box of the human body, is still at the stage of infancy as the 
functional properties of the complex gut microbiome have not yet been understood. Ongoing metagenomic studies have deci-
phered that the predominant microbial communities belong to eubacterial phyla Firmicutes, Bacteroidetes, Proteobacteria, 
Fusobacteria, Cyanobacteria, Verrucomicrobia and archaebacterial phylum Euryarchaeota. The indigenous commensal 
microbial flora prevents opportunistic pathogenic infection and play undeniable roles in digestion, metabolite and signaling 
molecule production and controlling host’s cellular health, immunity and neuropsychiatric behavior. Besides maintaining 
intestinal health via short-chain fatty acid (SCFA) production, gut microbes also aid in neuro-immuno-endocrine modulatory 
molecule production, immune cell differentiation and glucose and lipid metabolism. Interdependence of diet and intestinal 
microbial diversity suggests the effectiveness of pre- and pro-biotics in maintenance of gut and systemic health. Several 
companies worldwide have started potentially exploiting the microbial contribution to human health and have translated their 
use in disease management and therapeutic applications. The present review discusses the vast diversity of microorganisms 
playing intricate roles in human metabolism. The contribution of the intestinal microbiota to regulate systemic activities 
including gut–brain–immunity crosstalk has been focused. To the best of our knowledge, this review is the first of its kind 
to collate and discuss the companies worldwide translating the multi-therapeutic potential of human intestinal microbiota, 
based on the multi-omics studies, i.e. metagenomics and metabolomics, as ready solutions for several metabolic and systemic 
disorders.
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Introduction

Human gut microbiome refers to the total microbial popula-
tion in the human gastrointestinal tract (GIT) that includes 
bacteria and other microorganisms. The human body is the 
host to approximately 500–1000 species of gut microbes that 
encode 100-fold more unique genes than the host human 
genome (Ley et al. 2006). The huge diversity of gut micro-
biota remained unknown until culture independent high-
throughput sequencing technology and powerful analytical 
and bioinformatics tools were developed. With the devel-
opment and advancement of next generation sequencing 
technology, the long unexplored black box of the human 
body, i.e. the gut microbiome came into light and a deeper 
understanding of the same was designated as the second 
human genome (Mosca et al. 2016). Although the first one 
is inherited from the parents of an individual and is highly 
stable, the second genome is adapted from the environment 
after birth and remains continuously dynamic (D’Argenio 
and Salvatore 2015). The second genome, i.e. the acquired 

microbiome is therefore, highly dependent and subject to 
change upon several environmental factors, such as i) host 
genotype and ethnicity, ii) age and sex, iii) diet, iv) hormo-
nal cycles, v) illness and therapies, and vi) travel history. 
Establishment of a microbial community is therefore, con-
sequent to varied range of ecological interactions classified 
under five different heads: i) mutualism—beneficial interac-
tion for both the partners), ii) amensalism—one impacts the 
other negatively, iii) commensalism—one impacts the other 
positively, iv) competition—both the competitors harm each 
other, v) predation and parasitism—one gets benefitted out 
of the other (Faust and Raes 2012; Mosca et al. 2016).

Mounting evidences indicate that the trillions of bacteria 
and archaea residing in the human gut are extensively related 
to host health regulating various metabolisms, such as fer-
mentation and digestion of various biomolecules, xenobiotic 
degradation and heavy metal biotransformation, produc-
tion of various immune regulators and special metabolites, 
energy production, epithelial homeostasis, short-chain fatty 
acid (SCFA) production and so on (Bäckhed et al. 2015; Li 
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et al. 2019). The gut microbiome comprising thousands of 
bacterial species interact and crosstalk with the host cells 
in various ways and comprehensively with the host genome 
to determine human health. Disturbed ecology of the gut 
microbiome has been frequently reported to be associated 
with various human diseases, such as obesity and metabolic 
syndromes, non-alcoholic fatty lever disease, coronary heart 
disease, irritable bowel syndrome, inflammatory bowel dis-
orders, allergy, asthma, etc. (Holmes et al. 2011; Mosca et al. 
2016). Extensive research on gut microbiome through vari-
ous alterations have shown that the secondary metabolites 
produced by the bacterial flora can signal the activity of 
distal tissues, such as liver, brain, muscle and adipose tis-
sues. A healthy and normal microbiota not only maintains 
the gastrointestinal activities, but also controls various cen-
tral nervous systemic activities, perturbation of which might 
trigger neuropsychiatric effects, such as anxiety, depression, 
schizophrenia and autism (Yarandi et al. 2016). The nature 
of microbial composition of human gut is increasingly being 
documented through various microbiome projects, such 
as the International Human Microbiome Consortium, the 
European Commission’s Metagenomics of the Human Intes-
tinal Tract Project, the US National Institutes of Health’s 
Human Microbiome Project, the Human Microbiome Pro-
ject (HMP) the Human Gastrointestinal Bacteria Genome 
Collection (HGG) and the Canadian Microbiome Initiative 
which finally converge into a single global network (Bäck-
hed et al. 2015; Gevers et al. 2012; Huttenhower et al. 2012). 
Several recent research findings that are intriguing yet very 
promising could pave the way for filling the knowledge gaps 
in microbiome–host interactions and their role in disease 
pathogenesis as well as potential therapeutic applications.

In view of the existing knowledge on gut microbiome the 
present review discusses an integrated approach to under-
stand the diversity of the complex black box of our body 
and the specific roles of particular bacterial taxa related 
to human metabolism under varying environmental or 
physiological conditions. It further discusses as to how the 
extraordinarily diverse microbial community participates in 
the functioning of innate and adaptive immune responses 
and is also involved in the crosstalk with central nervous 
system where brain commands several gut functions like 
mucin production, peristalsis and gut immune functions. The 
potential use of gut microbiota by several start-up companies 
for therapeutic applications and commercialization is also 
discussed.

Diversity in the gut microbiome

Microbial colonization on the human body starts imme-
diately following birth and the community composi-
tion is shaped by various environmental factors. Various 

molecular techniques have been employed to analyze the 
microbial diversity and abundances (Table 1). The infant 
gut microbiota is majorly predominated by members of Act-
inobacteria, Proteobacteria, Firmicutes and Bacteroidetes 
and the abundance of the phylum detected are according 
to the order of their appearance. However, in adults, the 
abundance shifts to Firmicutes followed by the members 
of Bacteroidetes and Actinobacteria. Although members 
of Proteobacteria, Fusobacteria, Cyanobacteria and Ver-
rucomicrobia are present in adults, but are less represented 
(Eckburg 2005; Ley et al. 2006; Winston and Theriot 2020; 
Zhernakova et al. 2016). Trillions of bacteria belonging to 
thousands of different species majorly fall under the above 
mentioned phyla (D’Argenio and Salvatore 2015; Li et al. 
2008). Human metabolic phenotypes are found to be modu-
lated by the symbiotic intestinal gut microbiome. Moreover, 
their ratio of abundance might act as biomarkers indicating 
sex, age or diseased conditions. Li et al. (2008) in their study 
showed that a low ratio of Bacteroidetes to Firmicutes cor-
relate with obesity and could be elevated by restricting the 
dietary calorific intake.

DGGE fingerprint study to identify the key OTUs of 
specific and dominant intestinal bacterial groups provided a 
deeper level understanding (Li et al. 2008). The major OTUs 
were found to be predominated by Bacteroides coprocola, 
B. thetaiotaomicron and B. uniformis. These were shown to 
be important metabotypes which displayed correlation with 
various urinary metabotypes (Li et al. 2008). Studies on gut 
microbiome in an European population through fluorescence 
in situ hybridization (FISH) and flow cytometry is also found 
to be sex dependent as gender specific differences in ratio of 
Bacteroides to Prevotella were found to be higher for males 
than females (Mueller et al. 2006). Among these, B. thetaio-
taemicron was found to be more abundant in males than in 
females which may serve as a potential marker for sex-dis-
crimination (Li et al. 2008). Another study documented the 
prominent differences in the microbial community composi-
tion in obese and non-obese individuals through metagen-
omic high-throughput sequencing (Chatelier et al. 2013). 
Individuals with low gene count (LGC), i.e. < 480,000 genes 
were found to be associated with inflammatory bowel dis-
order (IBD), inflammation and obesity and were detected 
with low richness of gut microbiota. Others were consid-
ered as high-gene count (HGC) group, i.e. with > 480,000 
genes who were non-obese and with little reported gut dis-
order. They could detect that 46 bacterial genera differed 
significantly in abundance. The phylogenetic shift showed 
an abundance of phyla Proteobacteria and Bacteroidetes 
encompassing genera Bacteroides, Parabacteroides, Rumi-
nococcus (R. torques, R. gnavus), Campylobacter, Dialister, 
Porphyromonas, Staphylococcus and Anaerostipes in LGC 
individuals. Concurrently, HGC individuals were found to be 
highly associated with members of phyla, Verrucomicrobia, 
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Table 1  List of microbiological, biochemical and molecular techniques applied to analyze the microbiome components of an environment

Sl. No Technique Principle References

Microbiological and Biochemical Techniques
 1 Plate counts Direct cultivable bacterial count upon growth on 

media plates based on morphological differences
Kirk et al. 2004

 2 Community Level Physiological Profiling (CLPP) Physiological profiling based on sole carbon source 
utilization properties of microbial communities 
helpful in detecting copiotrophic organisms

Lladó and Baldrian 2017

 3 Fatty Acid Methyl Ester analysis (FAME) Gas chromatographic analysis of cellular fatty acids 
through

Ghosh et al. 2020

 4 Guanine plus Cytosine (GC) GC content of the genomic DNA, a taxon level 
characteristic feature, is analyzed through melting 
temperature curve of DNA renaturation studies

Kirk et al. 2004

Molecular Techniques
 1 16S rDNA sequencing approach a. 16S rRNA gene amplification, preparation of clone 

libraries (for metagenomic samples), forming oper-
ational taxonomic units (OTUs) upon Amplified 
Ribosomal DNA Restriction Analysis (ARDRA), 
selection of representative members and sequencing

b. 16S rRNA gene amplicon library preparation, next 
generation high-throughput sequencing, OTU for-
mation and bioinformatic analysis for phylogenetic 
classification

Ghosh and Sar 2013
Dutta et al. 2018

 2 Polymorphism based techniques a. Denaturing Gradient Gel Electrophoresis (DGGE): 
16S rRNA gene amplicon from bacterial genomic 
DNA differing in sequence composition is resolved 
electrophoretically based on their difference in 
denaturation at increasing concentrations of the 
denaturant in the gel

b. Temperature Gradient Gel Electrophoresis 
(TGGE): Electrophoretic separation of 16S rRNA 
gene amplicon based on the varying melting tem-
perature on a temperature gradient gel

c. Amplified ribosomal DNA restriction analysis 
(ARDRA) or restriction fragment length polymor-
phism (RFLP) Terminal restriction fragment length 
polymorphism (T- RFLP): Polymorphism of restric-
tion sites of 16S rRNA gene for a particular restric-
tion enzyme is utilized to differentiate the microbial 
communities

d. Single strand conformation polymorphism (SSCP): 
Separation based on the electrophoretic mobility 
of secondary structures formed out of DNA single 
strands under non-denaturing conditions

Kirk et al. 2004
Theron and Cloete 2000
Schwieger et al., 1998

 3 Nucleic acid reassociation and hybridization tech-
niques

a. DNA-DNA hybridization: Genomic DNA 
hybridization with known microbial taxa to analyze 
distinctness of the taxon to species level with 70% 
as cornerstone

b. DNA microarray: Microscopic DNA slides with 
spots of known DNA sequences to which the 
unknown DNA sequences are hybridised and fluo-
rescence measured

c. DNA Reassociation: Lower the DNA reassociation 
kinetics of a microbial community, higher is the 
diversity

d. Reciprocal Hybridization of Community DNA: 
Reciprocal hybridization of total community DNA 
indicates the presence of same kinds of organisms 
in two samples based on the idea that only identical 
or very closely related species would show signifi-
cant cross-hybridization of pure culture DNA

Theron and Cloete 2000
Cho and Tiedje 2001
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Actinobacteria and Euryarchaeota with genera Faecalibac-
terium, Bifidobacterium, Lactobacillus, Butyrivibrio, Alis-
tipes, Akkermansia, Coprococcus and Methanobrevibacter. 
Evidently, high richness of the gut microbiome diversity is 
associated with healthy host metabolism.

Another factor that plays the most crucial role in main-
taining the diversity of the bacterial taxa found in gut micro-
biome is the presence of predator bacterial communities. 
Predators are the key species that limits the population of 
the dominant species, preventing it from overgrowing and 
building up a high biomass which will directly hamper the 
species diversity. Mathematical simulation based on Lotka 
Voltera model suggested that the predators can drastically 
reduce the population of their preys helping in maintenance 
of the species diversity (Mosca et al. 2016). One of the best-
known predatory bacteria are the members of Bdellovibrio 
and Bdellovibrio—like organisms (BALO). These have 
shown the best sensitivity towards gram-negative bacteria 
like Salmonella enteritidis and Pseudomonas fluorescens 
and have also been found to impact the growth of gram-pos-
itive Staphylococcus aureus. Besides, predation upon domi-
nant species of the gut microbiome has also been reported 
through protists and bacteriophages.

A mini microbiome was constructed considering refer-
ence genomes in level of phyla obtained from Integrated 
Microbial Genomes–Human Microbiome Project (IMG/
HMP) online platform was built to represent a healthy 
adult gut microbiome (Kaoutari et al. 2013). A list of 177 
genomes was predominated by the members of Firmicutes 
(n = 104), Bacteroidetes (mostly Bacteroides spp. n = 29), 
Proteobacteria (n = 22) and Actinobacteria (n = 12). The 

mini microbiome also contained members of Fusobacteria 
(n = 2) and Cyanobacteria, Elusimicrobia, Lentisphaerae, 
Spirochaetes, Synergistetes, Tenericutes, Thermotogae and 
Verrucomicrobia, (n = 1 of each phylum).

The human gut is segregated and partitioned so that the 
first shot of digestive activity on the food ingested is the 
host’s own. The gut is partitioned into stomach, duodenum, 
jejunum, ilium and colon, the environment of which is in the 
ascending order of pH and anaerobic from stomach to colon. 
The stomach is highly acidic (pH ~ 1.5) and was considered 
as sterile until Helicobacter pylori was discovered to be able 
to survive this hostile environment (Marshall and Warren 
1984). Later investigations on possibility of existence of 
other microbial life in this acidic environment revealed that 
the gastric fluid was predominated by the members of Fir-
micutes, Bacteroidetes and Actinobacteria (Minalyan et al. 
2017). The gastric mucosa was rather found to be richer in 
diversity with bacterial members belonging to Firmicutes, 
Bacteroidetes, Proteobacteria, Fusobacteria and Actino-
bacteria. In most individuals Streptococcus and Prevotella 
were found to be predominating apart from H. pylori. Other 
allochthonous species were found to belong to Gamella, 
Granulicatella, Veillonella, Porphyromonas, Rothia, Neis-
seria, Fusobacterium and Lactobacillus (Walter and Ley 
2011). The microbial biomass in the gastric environment 
remains up to  102–3 cells/ml. This increases up to  108 cells/
ml in the small intestine (SI). The SI mucosa is associated 
with members of phyla, Bacteroidetes and Firmicutes. The 
SI is partitioned into three sections—the duodenum with pH 
5–7 and bacterial load of  103–4 cells/ml where Gram positive 
aerobes predominate, followed by jejunum and ileum with 

Table 1  (continued)

Sl. No Technique Principle References

 4 Ribosomal Intergenic Spacer Analysis (RISA)/
Automated Ribosomal Itergenic Spacer Analysis 
(ARISA)

DNA fingerprinting technique based on the amplifi-
cation of the intergenic region between 16 and 23S 
rRNA genes in the rRNA operon. Different 
microbial taxon has characteristic and significant 
variability in the length and nucleotide sequence of 
this region. ARISA is an updated and more efficient 
technique to get high-resolution data involving a 
fluorescence-tagged oligonucleotide primer for 
PCR amplification and subsequent electrophoresis 
in an automated system

Ciesielski et al. 2013

 5 Flow cytometry Flow cytometry conjugated with fluorescence-
activated cell sorting (FACS) relying on fluorescent 
dyes for detection helps quantify and fractionate 
complex bacterial communities

Park et al. 2005

 6 Fluorescence In Situ Hybridization (FISH) Fluorescently labelled DNA probes are used to target 
rRNA of defined taxonomic or phylogenetic groups 
for microbial identification. Recently, an updated 
technique named live-FISH combined with FACS 
has been developed to sort specific taxonomic 
groups of bacteria and culture them for their further 
taxon level identification

Batani, et al. 2019
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pH 7–9 and cell density of  104–8 cells/ml comprising strict 
to facultative anaerobic Gram-positive and Gram-negative 
bacteria. The microbiome composition of the intestinal 
lumen, known as mucosal and epithelial spaces of the gut 
(Swidsinski et al. 2005), is highly diverse and comprises 
members of Verrucomicrobia, Fusobacteria, Asteroplasma, 
Cyanobacteria, Actinobacteria, Lentisphaera, Spirochaetes, 
Bacteroidetes, Proteobacteria, Bacilli, Clostridial clusters I, 
IV, IX, XI, XIII, XIVa, XV, XVI, XVII, XVIII and uncultured 
Clostridiales and Mollicutes (Zoetendal et al. 2012). The 
predominating genera are E. coli, Klebsiella, Enterococcus, 
Bacteroides, Ruminococcus, Dorea, Clostridium, Coproc-
occus, Weisella and Lactobacillus. Allochthonous popula-
tions include Granulicatella, Streptococcus, Veilonella and 
Lactobacillus. The large intestine (LI) or the colon is strictly 
anaerobic with pH varying from 5 to 7. This area of the 
gut is the fermentation hub where various amino acids and 
butyrate–an SCFA, are fermented and production of vari-
ous phenolic and indolic compounds take place (Smith and 
MacFarlane 1996, 1998). This compartment of the gut is 
home to the most complex bacterial diversity where the cell 
density reaches  1011 cells/ml. The high-bacterial diversity 
and abundance in the LI is due to several factors, such as 
i) larger volume, ii) moderate or less acidic pH, iii) low 
concentration of biliary salts and iv) longer retention time 
due to relatively slower peristalsis. Five major phyla- Firmi-
cutes, Bacteroidetes, Actinobacteria, Verrucomicrobia and 
Proteobacteria covering a wide range of bacterial genera 
Clostridium, Fusobacterium, Bacteroidetes, Actinomyces, 
Propionibacterium are associated with the LI. Other Gram-
positive cocci- micrococci, peptococci, peptostreptococci 
and ruminococci have been also reported to play crucial 
roles in the LI (Ramakrishna 2013; Walter and Ley 2011). 
These are majorly responsible for the SCFA production, 
i.e. acetate, butyrate and propionate. The specific bacteria 
responsible for particular SCFA synthesis have been dis-
cussed later in this review.

Apart from eubacterial members, archaebacterial mem-
bers also constitute the LI microbiota with Methanobrevibac-
ter smithii and Methanosphaera stadtmanae as the predomi-
nating species. M. smithii alone makes 10% of the colonic 
anaerobic bacterial population (Walter and Ley 2011; Jhangi 
et al. 2014) (Fig. 1). Archaeal growth is syntrophic with 
eubacterial  H2, C, acetate, formate or methanol production 
in mammalian gut where these are incorporated as precur-
sor materials by methanogens in their methanogenesis and 
energy production process playing a crucial role in energy 
balance (Hoffmann et al. 2013; Matarazzo et al. 2012; Ishaq 
et al. 2015). In contrast to these species, Methanomassiliico-
ccus luminyensis was found to significantly increase with age 
having remarkable metabolic properties, such as trimethyl-
amine degradation with low immunogenic properties (Bang 
et al. 2017). Besides methanogens, members of halophilic 

archaea, Crenarchaeota and Thaumarchaeota have also 
been detected to colonize human intestinal tract through 
metagenomic investigations (Gaci et al. 2014). Archaeal 
diversity has been found to be maximum in the age group 
25–60 years where apart from the predominant spp., abun-
dance of M. oralis, M. arboriphilus, M. millerae, M. rumi-
nantium, Methanosalsum zhilanaea, Methanomassiliicoccus 
luminyensis, Methanoculleus chikugoensis have been found 
(Nkamga et al. 2017; Guindo et al. 2021). Occurrence of 
Nitrososphaera, a member of Thaumarchaeota, although at 
a low abundance, have been found to be antagonistic with 
Methanobrevibacter (Hoffmann et al. 2013). However, the 
diversity is less in the age group below 15 years and above 
70 years old. Predominant taxa in the former age group are 
Methanobreviibacteriales and Methanomassiliicocales and 
that in the later age group are M. smitthii, M. stadtmanae, M. 
luminyensis and Candidatus M. intestinalis. Representative 
taxa of halophillic archaea identified in human fecal samples 
of populations with higher intake of salty and sea foods have 
been found to be Halorubrum koreense, H. alimentarium, 
H. saccharovorum, Halococcus morrhuae and Halopherax 
massiliense (Nkamga et al. 2017). A recent study on the 
Korean gut archaeom revealed abundance of archaeal gen-
era, Halolamina, Haloplanus, Halorubrum, Halobacterium, 
Haloterrigena, Natronomonas, Halarchaeum, Haloarcula, 
Halonotius and Halorussus (Kim et al. 2020).

A neighbor-joining phylogenetic tree based on the 16S 
rRNA sequences of all the microbial species detected in 
human gut microbiome has been constructed which reflects 
that the predominant phyla are Firmicutes, Proteobacteria, 
Bacteroides and Actinobacteria in eubacterial group and 
Euryarchaeota in the archaeal group (Fig. 2). Other phyla 
are moderately to sparsely represented.

Role of gut microbiome in human metabolic 
activities

a. Digestion
  Gut microbes and microbial enzymes play pivotal 

roles in digestion of human diet; however, the specific 
contributions of different species are not well under-
stood. Many substrates in human diet are resilient to 
host enzymes and their digestion solely depends on gut 
microbial enzymes. Dietary resistant starch, a complex 
carbohydrate composed of amylase and amylopectin, is 
one such example which is essentially broken down to 
small chain fatty acids like butyrate, propionate, valer-
ate and isovalerate, etc. Amylopectin, a polymer of 
glucose, is readily hydrolysed by amylase at 1–6 gly-
cosidic bonds. However, amylose, a more linear glu-
cose polymer with 1–4 glycosidic bonds, is the one that 
show resistance to degradation. The varying propor-
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tions of amylose to amylopectin that a starch molecule 
contains increases the degree of resistance to degrada-
tion. Besides, digestibility of starch molecule in the diet 
vastly depends on the structure, crystallinity, particle 
size and cooking. Depending on digestibility, Resistant 
Starch (RS) has been classified into 5 different types: 
RS type 1 (physically inaccessible), RS type 2 (native 
granular starch consisting of ungelatinized granules), RS 
type 3 (retrograded amylose) and RS type 4 (indigestible 
i.e. chemically modified) and RS type 5 (amylase- lipid 
complexes- often considered as slowly digested starch 
and not a true RS) (DeMartino and Cockburn 2020). 
Digestion of resistant starch has been found to be mainly 
associated with the members of Clostridium cluster IV- 
Faecalibacterium prausnitzii, Clostridium leptum and 
Ruminococcus bromii and XIV- Eubacterium rectal, 
Clostridium coccoides, Butyrivibrio fibrisolvens and 

Roseburia sp. whereas members of Bacteroidetes were 
found to be downregulated upon administration of high-
resistant starch (HRS) diet (Maier et al. 2017; Ram-
akrishna 2013). F. prausnitzii, Ruminococcus, Prevo-
tellaceae, Eubacterium rectale, Roseburia faecis and 
Akkermansia muciniphila are the specific taxa that were 
found to increase upon HRS diet (Maier et al. 2017). R. 
bromii, has been regarded as the keystone species in RS 
degradation. They have been found to possess special 
structures called amylosomes in which the amylolytic 
enzymes are uniquely arranged bound through cohesin 
and dockerin modules (DeMartino and Cockburn 2020). 
These multi-enzyme complexes remain attached to the 
cell surface via scaffolding proteins as found in cel-
lulosomes (DeMartino and Cockburn 2020; Ze et al. 
2012, 2015). Metaproteomic study has also reflected 
that most of the carbohydrate metabolizing enzymes and 

Fig. 1  Autochthonous and 
allochthonous members of 
bacterial taxa distributed in 
different compartments of GIT. 
The colour bar indicates pH 
range corresponding to the pH 
of the GIT compartment lying 
beside, respectively

Small intestine (107 - 108)
Autochthonous members:
Escherichia coli, Bacteroides, Clostridium, 
Verrucomicrobia, Fusobacteria, Asteroplasma, 
Actinobacteria, Lentisphaera, Spirochaetes, 
Proteobacteria, Klebsiella, Enterococcus, 
Ruminococcus, Dorea, Coprococcus, Weisella, 
Clostridial clusters I. IV, IX, XI, XIII, XIVa, XV, 
XVI, XVII, XVIII

Allochthonous members: 
Gamella, Granucatella, Veillonella,
Porphyromonas, Rothia, Nisseria, Fusobacterium,
Lactobacillus

Large intestine/ colon (107 - 108)
Autochthonous members:
Eubacterial members:Alistipes, Anaerostipes, 
Bacteroides, Clostridium, Fusobacterium, 
Actinomyces, Propionibacterium, Bifidobacterium, 
Dorea, Eubacterium, Faecalibacterium, 
Parabacteroides, Roseburia, Ruminococcus, 
Peptostreptococcus, Micrococcus, Peptococcus, 
Butyrivibrio

Archaebacterial members: Euryarchaeota
(methanogenic archaea, halophillic non-
methanogenic archaea)
Thaumarchaeota

Allochthonous members:
Methanobrevibacter smithii, Methanosphaera
stadtmanae

Stomach (102 - 103)
Autochthonous members:
Lactobacillus, Propionibacterium, Streptococcus, 
Staphylococcus, Helicobacter pylori, Bacteroides, 
Actinobacteria, Prevotella

Allochthonous members: 
Gamella, Granucatella, Veillonella,
Porphyromonas, Rothia, Nisseria, Fusobacterium,
Lactobacillus

pH
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transportational molecular systems were affiliated to F. 
prausnitzii and Coprococcus comes, following an HRS 
diet. An HRS diet has shown upregulation in human 
enzymes related to lipid metabolism, such as colipase, 
pancreatic triglyceride lipase and bile salt-stimulated 
lipase while downregulating human α-amylase. Thus, an 
HRS diet would promote the growth and abundance of 
microbial taxa involved in resistant starch digestion and 
SCFA production in colon and is a coherent phenom-
enon with human lipid metabolism (Maier et al. 2017). 
On the contrary, a diet rich in starch and other easily 
digestible carbohydrates has been found to be associated 
with methanogenic archaeal members, M. smithii (Car-
berry et al. 2014; Hoffmann et al. 2013) which has 
shown to improve polysaccharide digestion and promote 
the production of acetate or formate for its own use. M. 
stadtmanae, found in omnivores, helps in pectin fer-
mentation to produce methanol required to carry out its 
methanogenesis pathway (Dridi et al. 2009; Ishaq et al. 
2016; Moses et al. 2015). Among various dietary lipids, 
cholesterol (majorly in Western diets) is one of the major 
components that poses serious health threats related to 
cardiovascular diseases. Upon ingestion followed by 
enterohepatic absorption, biliary excretion and circula-
tion, cholesterol is subjected to gut microbial reduction 
to produce co-prostanol- a major (50%) steroid found in 
human feces. Eubacterium coprostanoligenes have been 
documented to be a cholesterol reducing coprostanol 
synthesizing gut bacteria (Gérard et al. 2004; Kenny 
et al. 2020; Koppel et al. 2017).

  Another recalcitrant substrate is gluten which resists 
complete digestion via human enzymes. Gluten, rich 
in amino acids like proline and glutamine, is a crucial 
source of dietary protein derived from wheat and wheat-
based diets (Fernandez-Feo et al. 2013; Helmerhorst 
et al. 2010; Zamakhchari et al. 2011). Human digestive 
proteases release incompletely digested metastable Pro/
Gln-rich gliadin peptides, 30–40 residues long, into the 
gut lumen. Sometimes these induce abnormal immune 
responses in some individuals with genetic predisposi-
tion eliciting intestinal symptoms and severe mucosal 
damage, a condition known as coeliac disease (CD). 
However, upon arrival to large intestine after escaping 
digestion in the stomach and the small intestine, gluten 
proteins and peptides act as dietary compounds from 
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Fig. 2  Neighbour joining tree showing phylogenetic relatedness 
among human gut bacterial and archaeal 16S rRNA genes based 
on Jukes Cantor model. Nucleotide sequences were retrieved from 
NCBI database and the values at the branches denote bootstrap val-
ues obtained upon 1000 iterations. Coloured brackets indicate vari-
ous phyla Evolutionary analyses were conducted in MEGAX (Felsen-
stein 1985; Jukes and Cantor 1969; Kumar et al. 2016; Saitou and Nei 
1987)
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which gut microbiota derive energy. The specific taxa 
found to show glutenasic activity are Bacillus licheni-
formis, B. subtilis, B. pumilus, Bacteroides fragilis, 
Bifidobacterium longum, Clostridium sordellii, C. per-
fringens, C. botulinum/sporogenes, C. butyricum/beijer-
inckii, Enterococcus faecalis, E. faecium, Propionibac-
terium acnes, Pediococcus acidilactici, Paenibacillus 
jamilae, Staphylococcus epidermidis, S. hominis and 
Stenotrophomonas maltophilia (Caminero et al. 2014; 
Herrán et al. 2017). The hydrolysis of gliadin peptide 
is again found to be a specific peptidase activity for a 
group of microbial taxa. The 33-mer peptidase activ-
ity was found to be higher in Lactobacillus mucosae, 
L. rhamnosus and Clostridium botulinum/sporogenes 
than other bacteria belonging to Enterococcus faecalis 
or Bacillus licheniformis (Caminero et al. 2014).

  Other highly complex and variable plant cell wall 
polysaccharides, such as xylans, xyloglucans and pectins 
require the concerted action of different glycosidases 
to produce fermentable monosaccharides. For example, 
the breakdown of type I and type II rhamnogalacturonan 
that are two different components of pectin, requires at 
least a dozen enzymes or more for complete breakdown. 
Role of gut microbial enzymes have also been found in 
degradation of animal glycans, such as glycosaminogly-
can substrates, such as hyaluronan, heparin and chon-
droitin (Cantarel et al. 2012; Stam et al. 2006). Other 
glycosylated proteins such as mucins (produced by intes-
tinal epithelial cells) and peptidoglycans (bacterial cell 
wall component) also act as alternative energy source for 
the distal gut microbiota. Degradation of the total die-
tary carbohydrates is not solely possible through human 
enzymes as human produces only 17 active enzymes for 
digestion of food glycans. Hence, the huge and complex 
repertoire of our dietary polysaccharides are digested 
into fermentable compounds through the microbial car-
bohydrate active enzymes (CAZymes) produced in our 
gut. The CAZyme family of the gut microbiome encodes 
15,882 enzymes and is composed of glycoside hydro-
lases (GH = 57%), polysaccharide lyases (PL = 2%), 
glycosyl transferases (GT = 35%) and carbohydrate 
esterases (CE = 6%) (Kaoutari et al. 2013). Majority of 
the CAZymes constituting GHs and PLs are produced 
by the members of Bacteroides caccae, B. dorei, B. fine-
goldii, B. fragilis, B. intestinalis, B. ovatus, B. thetaio-
taomicron, B. uniformis, B. xylanisolvens, Bryantella 
formatexigens, Butyrivibrio fibrisolvens, Clostridium 
hathewayi, Enterobacter cloacea, Escherichia coli, 
Faecalibacterium prausnitzii, Klebsiella pneumoniae, 
Parabacteroides distasonis, Prevotella copri, P. salivae, 
Roseburia intestinalis, Ruminococcus flavefaciens, R. 
gnavus, Subdoligranulum variabile, Victivallis vaden-
sis (Oliphant and Allen-Vercoe 2019). Archaeal mem-

bers are also associated with a healthy digestion process 
and the relationship among the archaeal and eubacterial 
members are metabolically interdependent. Methano-
brevibacter ruminantium is associated with diet high 
in fiber and structural carbohydrates, such as cellulose, 
hemicelluloses, lignin that majorly remains recalcitrant 
to animal and human digestive enzymes (Zhou et al. 
2010). On the contrary, a diet rich in starch and readily 
digestable carbohydrates is associated with M. smithii 
which has also been shown to improve polysaccharide 
digestion and influence the production of acetate or for-
mate for its own use (Hoffmen et al. 2013; Carberry 
et al. 2014; Ishaq et al. 2015). The archaeal diversity 
of an omnivore is comprised of Msp. stadtmanae as it 
requires methanol, a by-product of pectin fermentation, 
for its methanogenesis pathway (Ishaq et al. 2015).

b. Production of special metabolites
  Degradation of dietary carbohydrates, lipids and pro-

teins by the gut microbiome give rise to multitude of bio-
chemical metabolites of both local and systemic action. 
These metabolites can be either potentially beneficial 
or harmful to the host depending on the concentration 
and site of action. Generally, a wide variety of metabo-
lites are produced, such as SCFAs and alcohols from 
monosaccharides, ammonia, branched chain fatty acids, 
amines, sulfur compounds, phenols and indoles from 
amino acids, glycerol and choline derivatives from lipids 
and tertiary cycling of  CO2 and hydrogen. Production of 
SCFAs like butyrate, acetate and propionate upon degra-
dation of pyruvate are the most abundant faecal metabo-
lites. These are extremely important for host health as 
butyrate apart from serving as the primary energy source 
for colonocytes, also improves the integrity of intestinal 
epithelial cells (IECs) by promoting tight junctions and 
cell proliferation, increases mucin production by Goblet 
cells, production of cytokines, TGF-β, IL-10 and IL-8 
and induces differentiation of naïve T-cells. Both acetate 
and propionate also aid in anti-inflammatory process 
and cytokine production. Excess SCFAs can be incor-
porated in gluconeogenic and lipogenic process. (Oli-
phant and Allen-Vercoe 2019). F. prausnitzii, Eubacte-
rium rectale, Eubacterium hallii and R. bromii are well 
known n-butyrate producers (Li et al. 2008; Louis et al. 
2010). Bacteroides, Veillonella, Dialister and Salmo-
nella (gram-negative bacteria) as well as gram-positive 
bacteria Coprococcus, Roseburia and Ruminococcus are 
key propionate producers (Covasa et al. 2019; Morrisson 
2016) whereas, Akkermansia municiphilla, Bacteroides, 
Clostridium and Bifidobacterium longum and Bifidobac-
terium adolescentis are profound acetate producing bac-
teria (Derrien et al. 2004; Frost et al. 2014; Fukuda et al. 
2011; Russell et al. 2013).
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  Eubacterium halii—an SCFA producer and Clostrid-
ium sporogenes is known to produce indole-3-propionic 
acid and Clostridium difficile has been known to produce 
4-cresol, cholesterol and coprostanol (Wang et al. 2017). 
Pyruvate fermentation can also result in production of 
small amount of alcohols, such as ethanol, propanol, 
2,3- butane-di-ol. Gut microbiota can also produce 
toxic methanol by processes other than fermentation. 
Members of Proteobacteria are known to be alcohol 
producers. Besides, members of genera Bifidobacte-
rium, Clostridium, Eubacterium, Blautia, Coprococcus, 
Dorea, Lachnoclostridium, Roseburia, Lactobacillus, 
Faecalibacterium, Ruminiclostridium, Ruminococcus, 
Streptococcus, Veilonella and Escherichia are well-
known alcohol producers including ethanol, propanol, 
1,2- propanediol.

  2,3-butanediol production. These species also produce 
various other SCFAs like formate, acetate, lactate, pro-
pionate, succinate, valerate, etc. (Oliphant and Allen-
Vercoe 2019).

  Dietary protein after digestion by pancreatic pro-
teases and other proteolytic enzymes move to the small 
intestine where the peptides and amino acids that are 
generated during proteolysis, are further subjected to 
microbial fermentation. Microbes have lesser diverse 
enzymatic apparatus to degrade amino acids due to the 
obvious fact that the complex steps involved consume 
more energy than actually generated. Incorporation of 
the available amino acids in their anabolic processes 
rather than utilizing them as their energy substrates, 
however, is more preferred by the gut microbes. How-
ever, series of Stickland reactions take place by mem-
bers of Clostridium sp. produces variety of SCFAs and 
branched chain fatty acids (BCFAs) like isovalerate, 
isobutyrate, 2- methyl butyrate. Members of Bacilli are 
capable of producing other SCFAs and BCFAs (Oli-
phant and Allen-Vercoe 2019). These processes may 
give rise to indolic and phenolic metabolites, which are 
otherwise not produced by human cells and may exert 
deleterious effects in the host. Degradation products of 
α-amino acids like tyrosine and phenylalanine include 
4-hydroxyphenylpyruvate, 4-hydroxyphenylacetate, 
4-hydroxyphenylpropionate and 4-hydroxyphenylac-
etate, phenol, p-cresol and 4-ethylphenol as well as 
phenylpyruvate, phenyllactate, phenylacetate and phe-
nylpropionate, respectively. Degradation of tryptophan 
generates indole, 3-methyl indole (skatole), indole ace-
tate and indole propionate (Windey et al. 2012). These 
metabolites have been found to be produced by bacterial 
members belonging to F. prausnitzii, Subdoligranulum 
variabile and Bifidobacterium pseudocatenulatum (Li 
et al. 2008). Production of toxic metabolites, such as 
indoxyl sulfate, p-cresyl sulfate, amines and ammonia 

have been shown to be related to nephrological issues, 
cardiovascular diseases in chronic kidney disease (CKD) 
in human host (Mafra et al. 2014; Oliphant and Allen-
Vercoe 2019; Windey et al. 2012). The predominant 
proteolytic bacteria with strong peptidase activity in 
human faeces are the members of Bacteroides spp. and 
Clostridium spp., whereas members of Desulfomonas 
spp. and Desulfovibrio spp. are capable of oxidizing sul-
fur containing amino acids like cystine, cysteine, taurine 
and methionine to producing  H2S. Depending on the 
concentration of  H2S produced, it may act as “friend 
or foe” to the host (Blachier et al. 2019). Polyamines, 
such as putrescine, spermidine, agmatine, cadaverin, 
tyramine and histamine are small polycationic molecules 
with multitude of functions including gene regulation, 
stress resistance, cell growth and proliferation and differ-
entiation (Mafra et al. 2014; Tofalo et al. 2019). Mem-
bers of Bacteroides, Fusobacterium, Escherichia coli, 
Enterococcus faecalis, Bifidobacterium animalis sub sp. 
lactis and Lactobacillus rhamnosus have been shown to 
play profound roles in production of various polyamines 
(Tofalo et al. 2019).

c. Production of signaling molecules
  The gut microbiome is capable of playing a multitude 

of functions related to host metabolism through its abil-
ity to produce extremely diverse repertoire of metabo-
lites and gene products (D’Argenio and Salvatore 2015; 
Olivares et al. 2018; Yano et al. 2015). Depending on the 
dietary exposure, it also produces signaling molecules 
which contribute in controlling neuro-immuno-endo-
crine activities as well as peripheral metabolism (Turn-
baugh et al. 2007). The inaccessible carbohydrates like 
resistant starch and plant polysaccharides in the host diet 
are utilized by the intestinal microbiota, the products of 
which in turn aid in release of several gut hormones by 
the enteroendocrine (EE) cells of the GI tract which are 
important peripheral host metabolism regulators. The 
microbial structural components, such as flagella and 
membrane-bound lipopolysaccharide (LPS), can also 
act as signaling molecules (Gordon 2002). The cell wall 
LPS of Gram-negative bacteria, e.g. Bacteroidetes phy-
lum, is a potent ligand for toll like receptor 4 (TLR4). 
The activation of TLRs induce strong immunity- and 
inflammation effects (Lancaster et al. 2018; Takeuchi 
and Akira 2010), along with secretion of multitude of 
metabolically active hormones, such as glucagon-like 
peptide-1 (GLP-1) (Lebrun et al. 2017), 5-hydroxy-
tryptamine (5-HT) (Kidd et al. 2008) and peptide tyros-
ine tyrosine (PYY) (Larraufie et al. 2017).

  The proportion of various SCFAs, such as acetate, 
propionate and butyrate, produced by the intestinal 
microbes upon degradation of dietary fibers and resist-
ant starch although depends on the diet, microbial 
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composition and intestinal transit time, yet maintains 
a ratio of 3:1:1 in the intestinal lumen (Cummings 
et al. 1987; Mowat & Agace 2014; Topping & Clifton 
2001). These SCFAs are found to be important neuro-
immuno-endocrine regulators and play significant roles 
in microbiota-gut-brain crosstalk like motility, secretion 
and blood flow. SCFAs also controls peripheral activities 
like brown adipose tissue activation, regulation of liver 
mitochondrial function, body energy homeostasis and 
control over appetite and sleep (De Vadder et al. 2014; 
Éva et al. 2019; Li et al. 2008, 2019; Mollica et al. 2017; 
Silva et al. 2020; Bhattacharya et al. 2002). Following 
their production, colonocytes absorb SCFAs mainly via 
 H+-dependent or sodium-dependent monocarboxylate 
transporters (MCTs and SMCTs, respectively) (Vijay 
and Morris 2014). While acetate is readily absorbed by 
the circulatory tissue for peripheral distribution, propi-
onate is metabolized by hepatocytes and butyrate acts 
as fuel for colonocytes (Koh et al. 2016; Martin et al. 
2019). Not much has yet been elucidated regarding the 
specific role of different taxa in metabolite production, 
however, members of Bacteroidetes are found to be 
enriched with carbohydrate metabolism genes and Fir-
micutes have been reported to harbor bile acid metabo-
lism genes (David et al. 2014; Martin et al. 2019). These 
SCFAs, thus produced, act as important signaling mol-
ecules for enteroendochrine cells by i) inhibiting nuclear 
histone deacetylase (HD) and ii) stimulating G-protein 
coupled free fatty acid receptors 2 & 3 (FFAR2 and 
FFAR3) (Fellows et al. 2018; Larraufie et al. 2017; 
Offermans et al. 2014; Rooks and Garrett 2016; Wal-
decker et al. 2008).

  Secondary bile acids, such as lithocholate (LCA) 
and deoxycholate (DCA) are important signaling mol-
ecules that have profound roles in peripheral metabolism 
through their action on two bile acid receptors expressed 
on EE cells, the G- protein coupled receptor TGR5 and 
the nuclear farnesoid receptor FXR (Ramírez-Pérez et al. 
2018; Winston & Theriot 2020). These are more hydro-
phobic than the bile acids and are produced by decon-
jugation and dehydroxylation of bile salts by microbial 
bile salt hydrolases (BSH). Metagenomic studies have 
revealed that BSHs are expressed majorly within three 
phyla, i.e. Firmicutes (30%), Bacteroidetes (14.4%) and 
Actinobacteria (8.9%) (Jones et al. 2008; Winston and 
Theriot 2020). Members of genera Clostridium, Bacte-
roides, Lactobacillus, Bifidobacterium and Enterococ-
cus and their roles in BSH expression have been vividly 
studied (Begley et al. 2005; Jones et al. 2008). The BSH 
of Firmicutes and Actinobacteria metabolizes all conju-
gated bile salts, whereas those of Bacteroidetes are spe-
cific to tauro-conjugated bile acids (Jones et al. 2008). 
The importance of secondary bile acids lies in the fact 

that being more hydrophobic help in better reabsorption 
of the bile salts through passive diffusion, thus limit-
ing faecal loss (Martin et al. 2019; Winston and Theriot 
2020).

  The gut microbiota also exerts its control over host 
metabolism by regulating the release of an array of 
gut hormones and peptides like 5-HT, GLP-1, PYY, 
glucose-dependent insulinotropic peptide (GIP), chol-
ecystokinin (CCK), ghrelin, leptin, pancreatic polypep-
tide (PP), oxyntomodulin and neurotensin (Bliss and 
Whiteside 2018; Covasa et al. 2019; Dockray 2014; 
Fukui et al. 2018) (Table 2). Serotonin or 5-HT is one 
among several other important regulatory factors which 
not only acts as a brain neurotransmitter, but also regu-
lates diverse functions like platelet aggregation, bone 
development, immune responses, cardiac functions, 
promote homeostasis and control enteric motor and 
secretory reflexes. Serotonin is known to be secreted 
by the enterochromaffin cells upon sensing the nutri-
ent condition in the intestinal lumen (Yano et al. 2015). 
Cultivable bacterial isolates have been shown to produce 
5-HT under laboratory conditions. Therefore, it is still 
ambiguous if microbial de-novo synthesis of 5-HT by 
indigenous members of gut microbiota contribute to host 
5-HT levels. However, the gut microbiota comprising 
spore forming microbes have been specifically found 
to promote 5-HT production in adult mice. The 5-HT 
concentrations in serum, colon and fecal samples were 
low for germ-free mice as compared to conventionally 
colonized specific pathogen-free controls (Wikoff et al. 
2009). Glucagon like peptide, an incretin hormone and 
the neuroendocrine hormone PYY are the two regula-
tory hormones secreted by L-cells of ileum and colon. 
GLP-1 is released in response to glucose to augment 
insulin and impede the secretion of insulin. On the 
other hand, PYY is secreted postprandially from illeal 
and colonic endocrine cells inducing feeling of satiety 
and reducing food intake. This is therefore, directly 
related to obesity (Muller et al. 2007). The enzyme 
dipeptidyl peptidase IV (DPP-IV) can cleave GLP-1 as 
well as PYY leading to potentially anti-diabetic effects. 
The dynamic relation among the L-cells and microbial 
DPP like activity, SCFA signaling, bacterial lipopoly-
saccharide and indole production by gut microbes can 
exert potential influence on levels of host GLP-1 and 
PYY levels, thereby controlling glucose metabolism. 
This, in turn may also influence the microbial compo-
sition and microbial metabolite compositions. Indole, 
another major bacterial metabolite, derived from tryp-
tophan metabolism stimulates GLP-1 (Chimerel et al. 
2014). Another gastric inhibitory peptide GIP secreted 
from K-cells significantly contributes to insulin secre-
tion postprandially. While DPP-IV and microbial DPP-



5292 Archives of Microbiology (2021) 203:5281–5308

1 3

IV like activity, such as in Prevotella or Lactobacillus 
(Olivares et al. 2018) attenuates the biological activity 
of GIP and GLP-1, it stimulates that of PYY by break-
ing down it to  PYY3-36. Cholecystokinin, secreted by 
I—cells, is released in response to fat and protein con-
tent of the host diet. It acts by activation of CCK1 and 
CCK2 receptors located all over the tissues of GIT and 
CNS. Although, abundance of certain gut bacteria like 
commensal Bifidobacterium and Lactobacillus strains 
have been negatively correlated to the decreased levels 
of cholecystokinin and ghrelin in germ-free mice, yet no 
strong association has yet been found among the intesti-
nal bacteria and levels of these hormones (Covasa et al. 
2019; Martin et al. 2019; Pen & Welling 1983; Perry 
et al. 2016; Queipo-Ortuño et al. 2013), etc.

d. Xenobiotic degradation and heavy metal transformation
  Xenobiotics are chemicals or synthetic substances 

metabolically extrinsic to host system which might accu-

mulate within host extraneously or may be produced as 
a defense mechanism by certain host microbes (Atash-
gahi et al. 2018; Koppel et al. 2017). These include 
environmental pollutants produced in large volumes 
for industrial, agricultural and domestic use (Atash-
gahi et al. 2018) which might enter the environment at 
macro (μg/L to mg/L range) or micro levels (ng/L to 
μg/L range) (Meckenstock et al. 2015; Schwarzenbach 
et al. 2006). Pharmaceutical compounds like metformin, 
methotrexate, proton-pump inhibitors (PPIs), opioids, 
non-steroidal anti-inflammatory drugs (NSAIDs) and 
antibiotics, etc. immensely affect the gut microbiome 
structure. Other xenobiotic compounds, such as per-
sistent organic compounds (POPs), pesticides, phar-
maceuticals, e.g. psychotropic agents like olanzapine, 
personal care products (PPCPs), food additives, disinfec-
tion by-products (DBPs) (Atashgahi et al. 2018) can also 
potentially alter the gut microbiome diversity. Dietary 

Table 2  List of signaling molecules, secretory cells and bacterial genera aiding in secretion of specific signaling molecule

NK not known

Gut hormones Secretory cells Aiding microbes References

Serotonin Enterochromaffin cells Clostridium spp., Escherichia, 
Enterococcus, Truchuris, Candida, 
Streptococcus

Covasa et al. 2019; Yano et al. 2015

Glucagon like peptide 1 Colonic L-cells Bifidobacteria, Lactobacillus, Akker-
mansia muciniphila

Everard and Cani 2014; Greiner and 
Bäckhed 2016

Peptide YY Colonic L- cells Bifidobacteria, Lactobacillus, Akker-
mansia muciniphila, Escherichia, 
Enterococcus and Truchuris

Covasa et al. 2019; Everard and Cani 
2014; Greiner and Bäckhed 2016; 
Xu et al. 2015

DPP 4 Enterocytes, epithelial cells and 
immune cells

Prevotella and Lactobacillus Klemann et al. 2016; Olivares et al. 
2018; Zhong et al. 2015

Glucose dependent insuli-
notrophic peptide

K- cells NK Fukui et al. 2018

Cholecystokinin I- cells NK Dockray 2014; Fukui et al. 2018
Leptin adipocyte NK Queipo-Ortuño et al. 2013
Pancreatic polypeptide F or PP cells NK Bliss and Whiteside 2018
Ghrelin cardiomyocytes NK Iglesias et al. 2004
Oxyntomodulin Pancreatic cells NK Bliss and Whiteside 2018
Neurotensin Gastrointestinal endocrine N cells NK Bliss and Whiteside 2018
Motilin Endocrine M- cells NK Chapman et al. 2016
Insulin B- cells Lactobacillus, Bifidobacterium, 

Blautia coccoides, Eubacterium 
rectale, Prevotella

Zhang et al. 2015 

Glucagon A cells NK Kelly et al. 2010
Somatostatin D cells NK Giloteaux et al. 2012
Dopamine or noradrenaline Nerve cells Escherichia, Bacillus and Saccha-

romyces
Covasa et al. 2019

Acetylcholine Nerve cells Lactobacillus Covasa et al. 2019
GABA Β- cells Lactobacillus, Bifidobacterium Covasa et al. 2019
Indole NK Escherichia, Bacteroides, Clostrid-

ium
Covasa et al. 2019

Bile acids Hepatocytes Acetatifactor and Bacterroides Covasa et al. 2019
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compounds including polyphenolic phytochemicals like 
resveratrol and flavonoids, polyunsaturated fatty acids, 
artificial sweeteners and plant sterol esters have also 
been associated with changes in structural diversity of 
gut microbiome. Variety of other environmental and 
industrial chemicals, such as endocrine disrupting chem-
icals, heavy metals, pesticides and pollutants majorly 
impact the structural composition as well as functional-
ity of the gut microbiome (Clarke et al. 2019).

  The human gut microbiota homes genetic informa-
tion for multiple xenobiotic detoxification and seques-
tration and is capable of encoding a broad diversity of 
enzymes (Haiser and Turnbaugh 2013; Spanogiannop-
oulos et al. 2016). Factors, such as host genetics, age, 
geographical location of the host, diet, administration 
of drugs, hormonal status, gender, stress and circa-
dian rhythm immensely control microbial metabolism 
of xenobiotic compounds (Clarke et  al. 2019; Das 
et al. 2016). A cyclic metabolic interaction takes place 
between microbes and host cells. The anoxic environ-
ment of the gut facilitates a reductive and hydrolytic 
metabolism generating non-polar, low-molecular weight 
by-products that are readily absorbed by the host cells. 
These by-products are transported to the liver where the 
hepatic cells metabolize them to generate hydrophilic, 
polar metabolites via a diverse repertoire of oxidative 
and conjugative enzymes. These high-molecular weight 
polar metabolites are secreted through the bile and again 
reach the gut where they are further subjected to reduc-

tive and hydrolytic metabolism (Claus et al. 2017; Kop-
pel et al. 2017; Sousa et al. 2008). Two mechanisms are 
involved in xenobiotic metabolism, i.e. direct mecha-
nism which includes production of active compounds 
which are microbially detoxified in the gut lumen. In 
indirect mechanism the xenobiotic undergoes enterohe-
patic cycling where the host physiology is manipulated 
by the gut bacteria. Here, xenobiotic compounds are 
inactivated by conjugation in the liver; the conjugated 
compound then enters the intestinal lumen through bile 
where, microbial enzymes release the conjugate group, 
reactivating the compound. This active compound may 
now re-enter the circulation or may undergo microbial 
transformation to form microbial metabolite which 
now competes with the active xenobiotic compound for 
binding sites on the enzyme. These microbial metabo-
lites may in turn stimulate immune responses through 
translocation or inflammation (Fig. 3) (Carmody and 
Turnbaugh 2014). The host may face beneficial, detri-
mental or even lethal outcomes of xenobiotic metabo-
lism (Okuda et al. 1998; Satoh-Takayama et al. 2008; 
Shin et al. 2013). Exposure to xenobiotics may lead 
to significant alteration in gut microbiota composi-
tion and metabolic activity (Maurice et al. 2013) and, 
may increase predisposition to various diseases (Lee & 
Hase 2014; Lu et al. 2015; Šrut et al. 2018; Wang et al. 
2011). Metabolism of xenobiotic in human occurs in two 
phases, i.e. Phase I—wherein, polar functional groups 
are exposed and Phase II—wherein, phase I groups are 

(a) Direct mechanism of xenobiotic
detoxification

i) Activation

ii) Direct 
binding

Enterohepatic
cycling

Immune response from 
lymphoid organs

Deconjugation

Xenobiotic

Activated xenobiotic

Gut microbe

Inactivated Xenobiotic

Host enzyme

Bacterial metabolite

(b) Indirect mechanism of xenobiotic
detoxification

Liver

Intestinal 
lumen

Fig. 3  Direct (a) and indirect (b) mechanisms of xenobiotic detoxification
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conjugated to more-polar metabolites. While the oxida-
tive, reductive or hydrolytic reactions are performed by 
Phase I enzymes to generate hydroxyl groups, epoxides, 
thiols and amines; in Phase II, the xenobiotic molecule 
or the phase I metabolites are appended with glucuronyl, 
methyl, acetyl, sulfonyl and glutathionyl groups (Koppel 
et al. 2017; Pellock and Redinbo 2017). Enzymes used 
and reactions catalysed in xenobiotic degradation have 
been listed in Table 3.

  Gut microbiome has been found to play profound 
roles in increasing or decreasing the activity of vari-
ous pharmaceutical drugs when incubated with respec-
tive cell lines. Structural modification of anti-cancerous 
drugs by tumor-associated bacteria, such as E. coli or 
Listeria welshimeri have been experimentally found 
to be responsible for inter-individual differences in 
response to anti-cancerous chemotherapy. Likewise, 
many anti-inflammatory prodrugs rely on gut micro-
bial activity to be transformed into active drugs, such 
as sulfasalazine containing azo linkages. Various gut 
associated azoreductases have been characterized till 
date, which are mainly involved in detoxification of vari-
ous azo dyes, nitro-aromatic and azoic drugs. Diverse 
group of azoreductase enzymes with varying co-factor 
dependence, structure and functional mechanism, cata-
lytic activity and aerobic or anaerobic microbial source 
have been isolated and characterized with a common 
potential to reduce azo compounds (Bryant and DeLuca 
1991; Bürger and Stolz 2010; Matsumoto et al. 2010; 
Misal and Gawai 2018; Morrison et al. 2012; Vijay and 
Morris 2014) Aerobic bacterial strains belonging to gen-
era Pseudomonas, Bacillus, Escherichia, Xenophillus, 
Pigmentiphaga, Rhodobacter, Enterococcus, Staphy-
lococcus, Geobacillus, Brevibacillus, Lysinibacillus, 
Aquiflexum, Shewanella, Rhodococcus and Halomonas 
along with anaerobic members of Clostridium, Eubacte-
rium, Butyrivibrio, Sphingomonas produce a large array 
of azoreductases varying in their temperature and pH 
optima, flavin/nicotinamide requirement, with aerobic/
anaerobic natures (Misal and Gawai 2018).

  Exposure to heavy metals have also been reported to 
perturb the gut microbiome significantly. A study by Li 
et al. (2019) on the effect of heavy metal exposure on gut 
metabolic health suggested that several metabolically 
important genera like Blautia, Eisenbergiella, Clostrid-
ium showed a decline in metabolic interactions. A sig-
nificant decline in butyrate producing organism, such 
as Fusicatenibacter, Eisenbergiella, Syntrophococcus, 
Blautia, Clostridium XIVb, Cellulosilyticum, Oribacte-
rium, Coprococcus, Anaerostipes, Hespellia and Lach-
nospiracea incertae sedis was found upon exposure to 
both As and Cd. Exposure was also found to affect bile 
acids, amino acids and taxa associated with metabolic Ta

bl
e 

3 
 (c

on
tin

ue
d)

En
zy

m
es

 u
se

d
X

en
ob

io
tic

 d
et

ox
ifi

ed
O

rg
an

is
m

Re
fe

re
nc

es

A
lk

an
e 

hy
dr

ox
yl

as
e

N
or

ca
ra

ne
, n

-H
ex

an
e,

 Is
o-

he
xa

ne
, C

yc
lo

pe
nt

an
e,

 e
tc

Ps
eu

do
m

on
as

 o
le

ov
or

an
s, 

Ps
eu

do
m

on
as

 a
er

of
a-

ci
en

s, 
P.

 p
ut

id
a.

 A
ci

ne
to

ba
ct

er
, R

ho
do

co
cc

us
 

an
d 

Al
ca

ni
vo

ra
x 

bo
rk

um
en

si
s, 

H
yd

ro
ca

r-
bo

ni
ph

ag
a 

eff
us

a

Ja
ns

se
n 

et
 a

l. 
20

05

H
al

oa
lk

an
e 

de
ha

lo
ge

na
se

1,
2‐

di
br

om
oe

th
an

e,
 1

,3
‐d

ic
hl

or
op

ro
pe

ne
, 1
‐c

hl
or

ob
-

ut
an

e‐
, 1
‐c

hl
or

oh
ex

an
e‐

 a
nd

, 1
,6
‐d

ic
hl

or
oh

ex
an

e,
Xa

nt
ho

ba
ct

er
 a

ut
ot

ro
ph

ic
us

, R
ho

do
co

cc
us

 e
ry

th
ro

-
po

lis
, M

yc
ob

ac
te

ri
um

, P
se

ud
om

on
as

 p
av

on
ac

ea
e

Ja
ns

se
n 

et
 a

l. 
20

05

O
xa

la
te

an
 o

xa
la

te
:fo

rm
at

e 
an

tip
or

te
r; 

fo
rm

yl
-C

oA
 tr

an
s-

fe
ra

se
 a

nd
 o

xa
ly

l-C
oA

 d
ec

ar
bo

xy
la

se
O

xa
lo

ba
ct

er
 fo

rm
ig

en
es

C
ar

m
od

y 
an

d 
Tu

rn
ba

ug
h 

20
14



5296 Archives of Microbiology (2021) 203:5281–5308

1 3

health. Butyrate besides being the major energy source 
for the colonic epithelium, is also capable of improv-
ing insulin sensitivity and increase energy expendi-
ture (Gao et al. 2018; Roediger 1980). Consequently, 
these downregulated genera along with Parasutterella 
and Gemmiger, are also associated with alleviation of 
T2DM (Helmerhorst et al. 2010; Li et al. 2018; Xu et al. 
2015). Exposure to lead has been found to be associated 
with Succinivibrionaceae and Gammaproteobacteria in 
children (Bisanz et al. 2014) and Gammaproteobacterial 
members in adults (Eggers et al. 2019).

  The specific bacterial groups in the human intestinal 
lumen act for detoxication rather than detoxification of 
the xenobiotic or heavy metals to which human body is 
exposed. Detoxication is the mechanism by which the 
drugs, mutagens and other harmful agents like heavy 
metals are removed from the body (Monachese et al. 
2012). This helps to prevent the harmful agents to enter 
and impair the important organs of human body. Heavy 
metals are largely removed from the intestinal lumen by 
gram-positive bacteria by binding of metals to their cell 
walls. Ion exchange reactions of the exposed metal with 
peptidoglycan and teichoic acid, precipitation through 
nucleation reactions and complexation with nitrogen 
and oxygen ligands are main mechanisms through which 
these gram-positive bacteria, particularly Bacillus spp., 
having high peptidoglycan and teichoic acid content in 
their cell walls absorb the heavy metals. However, gram-
negative bacteria show poorer metal absorbing capacity 
due to presence of a thin cell wall with lower peptidogly-
can content.

  The abundance of xenobiotic metabolizing enzyme 
repertoire in specific groups of bacteria vary across dif-
ferent nationalities (Das et al. 2016). Depending on the 
abundance pattern of various bacterial genera, the micro-
bial groups have been categorized accordingly. The first 
category includes genera like Prevotella, Faecalibacte-
rium, Dorea, Roseburia, Eubacterium, Ruminococcus, 
Bacteroides, etc. which showed a high-specific abun-
dance across all regions. The next category included 
genera like Neisseria, Bacillus, Slackia, Coprobacillus, 
Treponema, etc. which were highly abundant across the 
European and American populations, but depleted rela-
tively in the gut microbiomes of individuals of Asian 
nationalities. Genera like, Rhizobium, Rhodospirillum, 
Bradyrhizobium, Rhodopseudomonas, Methylobacte-
rium, etc. comprised the third group which could be 
sparsely detected in the gut microbiome of European and 
American populations and was absent in that of Asians. 
Asian gut microbiome rather showed the presence of E. 
coli as one of the genera harboring xenobiotic metabo-
lizing gene repertoire.

Control over immune system

The extraordinarily diverse and complex microbial com-
munity of gut microbiome has been found to participate 
in maturation and functioning of innate as well as adaptive 
immunity (Cénit et al. 2014; Cheng et al. 2019). The diverse 
microbial flora also plays important role in host defense 
against pathogens by repairing intestinal mucosal damage, 
production of various anti-microbial peptides and induction 
of secretion of interleukins IL-22, IL-17 and, IL-10 by host 
immune cells.

The first line of defense provided by intestinal bacteria is 
by competing for attachment sites and nutrient in the gut lin-
ing, thus preventing attachment of non-commensals or path-
ogenic strains- a mechanism known as competitive-exclu-
sion effect. Further, these bacteria are also equipped with 
ability to produce several bacteriocins and elicit production 
of various anti-microbial peptides, such as α-defensins, 
β- defensins, angiogenins, C-lectins and RegIIIγ and Reg 
IIIβ by intestinal epithelial cells (IECs) (Bull and Plummer 
2014; Cheng et al. 2019; Guarner and Malagelada 2003; 
Lazar et al. 2018). An example of bacteriocin production 
has been found in E.coli competing for amino acids and 
producing bacteriocin against enterohemorrhagic strain of 
E.coli (Belkaid 2015; Momose et al. 2008). Induction of 
other anti-microbial peptides by B. thetaiotaomicron, target-
ing other intestinal microbe have also been reported (Lazar 
et al. 2018). Intestinal microbes can even exert immunomod-
ulatory effects so that the environment becomes hostile for 
the pathogenic species, e.g. Lactobacillus creating an acidic 
environment unfit for pathogenic invasion. The α-defensins 
are produced by intestinal Paneth cells upon stimulation by 
both Gram-negative and Gram- positive bacteria and bacte-
rial metabolites, such as lipopolysaccharides, lipoteichoic 
acids, lipid A and muramyl dipeptide. Lactobacillus induces 
production of α-defensins upon infection with Helicobac-
ter hepaticus. β-defensins are involved in direct killing or 
attenuation of the pathogenic microorganisms by penetrating 
into their cell membrane and chemoattraction of immune 
cells. Lactobacillus and E.coli induce β-defensin produc-
tion upon infection with S. aureus, S. pyogenes, P. aerugi-
nosa, E. coli and C. albicans (Cheng et al. 2020; Islam et al. 
2004; Schlee et al. 2007; Seo et al. 2012; Steubesand et al. 
2009; Wehkamp et al. 2004). C-type lectins, i.e. RegIIIγ and 
Reg IIIβ also play key roles in innate immunity by provid-
ing protection against specific pathogens like Enterococcus 
faecalis, Yersinia pseudotuberculosis and Listeria monocy-
togenes. Several interleukins have been documented to be 
produced upon infection with particular pathogens by dif-
ferent innate immune response cells. Enterobacteriaceae, 
pathobiont Proteus mirabilis, gut microbe derived ATP and 
SCFAs have been reported to induce production of IL-1β 
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and IL-18. IL-22 is found to play central role in maintenance 
of mucosal barrier integrity produced in response to infec-
tion by diverse pathogens, such as Klebsiella pneumonia, 
Citrobacter rodentium, vancomycin resistant Enterococ-
cus, Plasmodium chabaudi. Gut microbes like Lactobacil-
lus, Allobaculum spp. E.coli, Clostridium and Bacteroides 
spp. utilize tryptophan and produce indole-3-aldehyde which 
in turn induce IL-22 production by innate lymphoid cells 
(ILCs) (Abt et al. 2016; Kinnebrew et al. 2010; Ota et al. 
2011; Satoh-Takayama et al. 2008; Sellau et al. 2016; Xu 
et al. 2015; Zheng et al. 2008). IL-17 is another important 
cytokine produced by intraepithelial lymphocytes (IELs) 
modulated by commensal bacteria in response to pathogens 
like Salmonella typhimurium. IL-17 acts by both neutrophil 
recruitment and anti-microbial peptide production, thereby 
limiting invasion and dissemination of pathogenic microbes. 
Production of IL-17 is induced by Bacteroides in response to 
infection with S. typhimurium. IL-10 is an anti-inflammatory 
cytokine produced by macrophages in response to host dam-
age by pathogens and play neutralizing roles to maintain 
intestinal homeostasis. Clostridium butyricum has been 
shown to induce IL-10 production in IL-10 deficient mice 
to prevent acute colitis. Probiotic strains of Lactobacilli and 
Bifidobacterium have been shown to modulate IL-10 produc-
tion (Niers et al. 2005).

However, innate immune homeostasis is acquired by 
the intestinal macrophages through a mechanism called 
inflammation anergy (Smythies et al. 2005, 2010). This 
mechanism involves phenotypic modulation of intestinal 
macrophages with no or low innate response in contrast 
to the blood monocytes. This is due to the lack of or low 
expression of a key receptor CD14 protein involved in rec-
ognition of bacterial LPS or related antigens known as 
microbe-associated molecular proteins (MAMPs) (Smith 
et al. 1997, 2011). Other innate response receptors, such as 
CD 89, CD 64, CD 32, CD16, CD 11, CD 18, CD 25, CD 
123 and proinflammatory cytokines, such as IL-1, IL-6, 
IL-12, RANTES, TNFβ, TNFα were found to be downreg-
ulated upon inflammatory stimulations (Cénit et al. 2014).

The adaptive immune response required for local and 
systemic homeostasis is highly regulated by the diverse 
composition of gut microbiota. Gut harbors an environ-
ment where continuous presence of microbes imposes 
a selective pressure on the gut-associated lymphoid tis-
sue (GALT) to undergo dynamic remodeling. Intestinal 
CD4 + T cells present on the lamina propria of intestine 
are the key component of adaptive immunity which can 
differentiate into four major subtypes, i.e. T helper 1 
cells (Th1), Th2, Th17 and regulatory T  (Treg) cells, The 
characteristics and roles of different subtypes of T cells 
have been summarized in Table 4 (Wu and Wu 2012). 
Gut microbiota plays a major role in T cell differentia-
tion, e.g. the polysaccharide A molecule of Bacteroides 

fragilis induces systemic Th1 response. Segmented Fila-
mentous Bacteria (SFBs) influence TH17 cell differen-
tiation through pro-inflammatory response and Th1 cells 
to a lesser extent. Overexpression of Th17 response may 
lead to auto-immune diseases. Clostridia spp. belonging 
to clusters XIVa and IV were found to be associated with 
IL-10 producing  Treg cells (Atarashi et al. 2011).

Microbiota‑gut‑central nervous system axis

The gut-brain axis is an integrated communication sys-
tem that involves afferent and efferent neural, endocrine/
hormonal, nutrient and immunological signals for the 
crosstalk of the gut microbiota and its metabolites with 
the central nervous system. It is a bidirectional commu-
nication system where in response to the gut microbial 
environment and its metabolite signaling, brain commands 
several gut functions, such as mucin production, peristalsis 
and gut immune functions. Factors, such as stress, varia-
tions in diet (Buffington et al. 2016), immune activation 
(Estes and McAllister 2016; Foley et al. 2014) and altera-
tions in maternal microbiome during pregnancy due to 
use of antibiotics or probiotics (Russell et al. 2013; Tochi-
tani et al. 2016), can modulate the microbiome, neurode-
velopment and behavior of an individual (Baumgart and 
Carding 2007; Borre et al. 2014; Bull and Plummer 2014; 
Silva et al. 2020). Gut pathologies increase permeability 
of the intestinal barrier which leads to increase in trans-
location of bacterial products that can in turn, enhance 
the production of cytokines and impact the blood brain 
barrier (BBB). This leads to even more serious ill effects. 
Moreover, it is well documented that levels of several neu-
rotransmitters are regulated by the gut microbes. These 
microbes have even been found to directly synthesize or 
modulate the synthesis of various other neurotransmit-
ters like g-aminobutyric acid (GABA), serotonin (5-HT), 
dopamine (DA) and noradrenaline (NA) (Calvani et al. 
2018; Fung et al. 2017; Sherwin et al. 2018) which can 
potentially influence microglial activation and several cer-
ebral functions. Signal transducers, such as enterochromaf-
fin cells can bind several microbial metabolites, secrete 
serotonin increasing its concentration in both blood and 
colon. Among other transducers are vagus nerve signaling 
involved in mediating satiety, stress and mood and micro-
bial metabolites, such as SCFAs, the variation of which 
have shown various neuropathologies (Silva et al. 2020). 
There are speculations that SCFAs might have roles in the 
production of GLP-1, PYY and other gut hormones, such 
as 5-HT, GIP, ghrelin and CKK.

The microbiome-gut-brain axis involves multidirectional 
communication which includes metabolic, endocrine, neural 
and immune pathways (Joscelyn and Kasper 2014; Wang 
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and Kasper 2014). The intrinsic nervous system of the GI 
tract is known as the enteric nervous system (ENS) and is 
a part of the autonomic nervous system. Due to its huge 
extent, degree of autonomy and capability to control gastric 
functions, such as absorption, secretions, integrity, prolifera-
tion, barrier function and defense alarm system in concert 
with CNS, it is also known as the ‘second brain’. Enteric 
neurons have been known to be activated by various bacte-
rial toxins and metabolites, e.g. Lactobacillus rhamnosus- 
(strain JB-1) and B. fragilis-specific polysaccharide A (PSA) 
activates intestinal primary afferent neurons of the ENS in 
mice (Ochoa-Repáraz and Kasper 2016). Gut commen-
sals including E. coli have also been documented to show 
symbiotic host-microbiota relationships via production of 
inositol 1,4,5 triphosphate through phytate metabolism. 
Besides, inducing growth of human tissue derived intesti-
nal organoids, inositol 1, 4, 5 triphosphate has been shown 
to stimulate histone deacetylase 3 (HDAC3)—dependent 
proliferation and counteract the inhibitory effect of abun-
dantly present butyrate upon colonic growth. Thus, the gut 
microbiota-derived metabolite inositol 1,4,5 triphosphate 
has been shown to activate a mammalian HDAC to promote 
intestinal epithelial repair (Wu et al. 2020).

Translation and commercialization of gut 
microbiome

Several investigators have proposed that the human microbi-
ome should be used as an integral part of precision medicine 
approach as not only it could contribute to inter-individual 
variability in diseases but could also be a modifiable fac-
tor in terms of development of future therapeutics. Various 
researchers observed that personalized diets could be created 
through blood glucose response by integrating parameters, 
such as dietary habit, physical activity and gut microbiota for 
lowering blood glucose post-meal (Suez and Elinav 2017; 
Zeevi et al. 2015). Several promising research findings have 
documented the link between the gut microbiome, their 

therapeutic effects and various systemic diseases in recent 
times. Numerous start-up companies have initiated the trans-
lation of the research findings of several investigations on 
gut microbiome for fruitful therapeutic applications and sub-
sequent commercialization. Companies developing micro-
biome therapy pipelines use various microbial approaches 
which include small molecule therapy (31%), e.g. prebiotics 
supporting growth of a particular group of bacteria of thera-
peutic importance; development and administration of single 
strain whole bacteria (26%). Few other approaches, such as 
application of microbial consortia and genetically modified 
single strain bacteria (12%) are also adopted. However, with 
increase in the number of bacterial populations number of 
factors playing role in cause and effect also increases. The 
least used approaches are phage cocktail (4%) and microbial 
ecosystems (4%) which call for several challenges including 
immune response, microbial succession and change in gut 
flora composition of an individual.

The microbiome therapeutic pipeline includes five stages 
of trials, i.e. preclinical, research, phase I, phase II and, 
phase III before commercialization of the product for public 
use. Several companies, such as SERES therapeutics have 
reported to meet the Phase 3 primary endpoint in develop-
ing oral microbiome therapeutic SER-109 to show statisti-
cally significant reduction in the rate of Clostridium diffi-
cile infection (CDI). Another company Rebiotix have also 
started Phase III trial for reduction of recurrent CDI. Fae-
cal microbiota transplantation (FMT) has been found to be 
rigorously successful, with cure rates over 95%, in treating 
various infectious disease, such as recurrent CDI, ulcerative 
colitis, irritable bowel syndrome, etc. Cure for other diseases 
like obesity, autism, Alzheimer’s and Parkinson’s diseases 
are also being investigated with good prospects and highly 
expected to be successful through microbiome therapies.

Today around 200 companies are working across the 
globe to utilize the therapeutic capacity of the healthy 
gut microbiome to translate it for public use. Biomica is 
an emerging company working on microbiome-based 
therapeutics against immune mediated infectious diseases, 

Table 4  Subtypes of T-cells, role played, health impact due to overexpression of the T cells and gut microbial taxa influencing T cell differentia-
tion

Subtype of T cell Role played Overexpression of T cells Gut microbial taxa influencing T cell 
differentiation

Th1 Host defence against intracellular microbial infec-
tion

Autoimmune disease Bacillus fragilis

Th2 Elimination of infection by parasites Allergen specific IgE response Roseburia intestinalis
Th 17 Produces IL-17; a crucial cytokine involved in limit-

ing invasion and dissemination of pathogens, such 
as Salmonella typhimurium

Autoimmune disease Segmented filamentous bacteria (SFB)

T reg Immune tolerance; promotes class switching to IgA 
in presence of specific antigen

Autoimmune disorder Clostridial clusters IV. XIVa
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Table 5  List of companies working on translational research on gut microbiome, location and their research focus

Company Location Research focus

Adapsyn Bioscience Canada Production of novel bacterial metabolites
AOBiome Boston Restoration of ammonia oxidizing bacteria
A-Mansia Louvain-la-Neuve microbial products based on unique properties of the 

Akkermansia muciniphila bacterium
ActoBio Therapeutics Ghent Targeted and microbe-based therapeutic agents for locally 

delivering potential disease modifying therapeutics
4D Pharma UK Novel therapeutics
Artugen Therapeutics Concord Novel Live Biotherapeutic Products to help patients living 

with infectious, inflammatory and oncologic diseases
Biohm Cleveland Probiotic comprising bacteria, fungi and enzymes to 

remove digestive plaques
BioGaia Stockholm Developing probiotics for gut and immune system
BioMe Oslo High-throughput microbiome analysis and probiotic 

development
Biomica Park Rehovot Microbiome-based therapeutics for the treatment of 

immune-mediated and infectious diseases, with specific 
focus on Immuno-Oncology and GI-related disorders

BiomX Ness Ziona Phage cocktails containing natural and/or engineered 
phage developed through algorithm and experimental 
validation for targeted killing of specific pathogenic 
bacteria

Biosortia Pharmaceuticals San Diego Development of drugs/therapeutics based on the cell to 
cell communication chemistry from mining of microbi-
ome in the field of immuno-oncology and immunology

Boehringer Ingelheim Fremont Small Molecules, Biologics, Microbiome
Carverr Brooklyn Developing traceable probiotics and custom microbiomes
CHAIN Biotechnology Nottingham, Marlow Develop live biotherapeutics—these are novel drugs based 

on living bacteria found in the gut but engineered to 
deliver specific therapeutic molecules

ClostraBio Chicago Developing new therapeutics to treat food allergies and 
provide protective immunity

Consortia Therapeutics La Jolla CA Develops microbial therapies to prevent and treat human 
disease and allergies

Da Volterra Paris Development of microbiota protective therapy during 
antibiotic treatments to help prevent and cure human 
diseases

Diagnostic Solutions Laboratory Alpharetta Provides diagnostic solutions for identifying pathogenic 
organisms in stool through PCR and comprehensive 
stool testing for assessing GI health through DNA-based 
studies

EnteroBiotix UK Full therapeutic potential of fecal microbiota transplanta-
tion (FMT) through a field-leading GMP-compliant 
minimally manipulated microbiome platform and an 
ex vivo microbiome engineering platform

Enterome Cambridge and Paris Discovery and development of novel therapeutics upon 
understanding the gut microbe and immune system 
interaction; production of small molecules and peptides 
with a focus on cancer, autoimmune, inflammatory and 
metabolic diseases

Evolve Biosystems Davis Developing the next generation of products to establish, 
restore and maintain a healthy newborn gut microbiome

Federation Bio South San Francisco Therapeutic approaches of using beneficial microbes for 
curing human diseases like secondary hyperoxaluria, 
metabolic disorders, cancer, immune diseases
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Table 5  (continued)

Company Location Research focus

Finch Therapeutics Somerville MA Developing oral microbiome drugs for recurrent C. dif-
ficile, chronic hepatitis B, inflammatory bowel disease 
and children with autism and significant GI symptoms

Gusto Global Morrisville NC Development of novel live biotherapeutic products 
through advanced computational and microbiological 
tools for targeted immune modulation and optimization 
of metabolic pathways

Kaleido Biosciences Bedford MA Develop microbial metabolic therapies (MMT) to under-
stand the disease pathways, such as the use of synthetic 
glycans, harnessing target enzymes across the microbial 
taxa, formulation of therapeutic products to mitigate 
serious complications of Covid-19, treat IBD, urea cycle 
disorders and hepatic encephalopathy

Locus Biosciences Morrisville NC Works on CRISPR-Phage (crPhage) platform com-
bines the antibacterial power of CRISPR-Cas3 with 
the efficient, safe delivery of bacterial viruses called 
bacteriophage. The lead targets are E. coli, Clostridium 
difficile and organisms causing respiratory infections

MaaT France Patient specific biotherapeutics for improving the survival 
outcome of blood cancer through proprietary data col-
lection and analysis on CGMP platform

Metabiomics Aurora CO, Manassas VA, Chevy Chase MD; US Developing a non-invasive microbiome test for the earlier 
and more accurate detection of colon polyps and colo-
rectal cancer

Microbiotica Limited Cambridge, UK Identifies gut bacteria linked to phenotype with unprec-
edented precision in order to discover and develop live 
bacterial therapeutics and biomarkers

Novome Biotechnologies South San Francisco CA; United States Synthetic biology and microbial therapies; selecting 
potential bacteria from the human gut microbiome, 
engineering them to express therapeutic products to treat 
chronic disease

Oragenics Florida, US Production of lantibiotics helpful to recover microbial 
antibiotic resistance and prebiotics active in weight 
management in obese people

TargEDys Rouen; France Appetite regulation via molecular mimicry of pharma-
cological targets controlling gut brain axis involving bac-
terial, hormonal mimetic, proteins naturally occurring in 
the gut microbiome. They target to regulate/ moderate 
appetite in obese and/or old aged people

Sun Genomics San Diego CA, USA Customises probiotics constituting gut microbes, such as 
Lactobacillus acidophillus, L. rhamnosus, Bifidobacte-
rium lactis

Synlogic Cambridge, MA Develop biotic medicines to treat various metabolic 
diseases like phenylketonuria, hyperoxaluria as well 
as immunomodulation therapies to treat diseases like 
cancer, IBS, etc

Sugarlogix Berkeley CA, USA Produces complex sugars with prebiotic functions which 
selectively feed the beneficial human gut bacteria 
strengthening the immune and nervous functions in turn

Seres Therapeutics Cambridge, MA Formulates and develops microbiome therapeutics to cure 
recurrent C. difficile, ulcerative colitis, metastatic mela-
noma and antibiotic resistant bacterial disease and graft 
versus host disease,

Vedanta BioSciences Cambridge MA, United States Leveraging live therapeutics made up of gut bacterial con-
sortia which can stimulate immunoregulatory responses 
controlling allergic diseases as well as holds roles in 
cancer and vaccination
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immuno-oncology and, gastro-intestinal tract disorders. 
Finch therapeutics group is another concern that harnesses 
the gut microbiome. Companies adopting other approaches, 
i.e. on single strain cell development are A-mansia, Bio-
Gaia, Bio-Me, Ginkgo Bioworks, Next Biotix, etc. Others 
that focus on development of gut microbiome modulating 
drugs are Vedanta BioSciences, Snipr Biome, Ritter Phar-
maceuticals, etc. The use of prebiotics/probiotics has been 
immensely adopted for the treatment of various gut related 
diseases affecting metabolism, immune system and CNS. 
Genetically modified Escherichia coli Nissle 1917 (EcN) 
is a well-known probiotic or Live Biotherapeutic Products 
(LBP) which is believed to impede the growth of opportun-
istic pathogens, including Salmonella spp. and other coli-
form enteropathogens, through the production of microcin 
proteins or production of iron-scavenging siderophores. It 
has been used to treat various gastrointestinal conditions, 
including inflammatory bowel disease and irritable bowel 
syndrome in its unengineered form. Besides, probiotics 
belonging to diverse genera Lactobacillus, Lactococcus, 
Lysteria monocytogenes, Bifidobacterium, Staphylococcus, 
Salmonella typhii, Clostridium and Bacteroidetes have also 
been engineered to be applied for biotherapeutic purpose 
to treat various therapeutic indications (Charbonneau et al. 
2020). Companies like Acto Bio Therapeutics, Synlogic, 
Oragenics, Novome Biotechnologies and, CHAIN biotech, 
etc. are actively involved in bioengineering and production 
of various lantibiotics, immunomodulators and probiotics 
to treat systemic and metabolic disorders (Table 5). Several 
other companies have also worked on novel therapeutics 
based on small molecules, such as 4D Pharma, VAXIMM, 
Scioto Biosciences, etc. specially targeted to act as immu-
nomodulators or live biotherapeutics to treat grave diseases 
as various cancers, neurodegenerative disorders and recur-
rent C. difficile prevention.

Concluding remarks

The complex and dynamic population of microorganisms 
in the human gut and its relationship with human health 
and disease has been the subject of extensive research in 
the last two decades. Several research studies have reported 
that the human gut microbiome contribute immensely in 
regulating human health including metabolic diseases, 

neuropsychological disorders and immunological response. 
Exciting discoveries on targeted roles of microbial commu-
nities on host metabolism, increasing knowledge on keystone 
species relating to particular disease states through high-
throughput sequencing data, understanding links between 
the bacterial activation of host cells through expression of 
special metabolites and production of host signaling mol-
ecules in turn could open up new avenues to treat infectious 
and chronic diseases in a much healthy and chemical-free 
manner. Deeper understanding of the roles of gut microbial 
species in host immune activation and regulation of central 
nervous system would be highly rewarding in treating sev-
eral autoimmune diseases and neuropsychiatric disorders 
which either remain untreated or suffer from various adverse 
side-effects upon chemical therapy. Researchers worldwide 
have started utilizing the knowledge excavated from micro-
biome mining studies into the translational pipeline to treat 
and prevent various human diseases. However, even deeper 
insights would be needed to completely unravel the com-
plexity of human gut microbiome or the second genome and 
realize its enormous potential to serve mankind.
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Xeno Biosciences Los Angeles CA, United States Engineer gut bacterial consortia addressing obesity and 
metabolism-related diseases; oral formulation of probi-
otic composition to cause weight loss by mimicking the 
microbiome changes induced by gastric bypass surgery
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