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OBJECTIVE—The cytokine interleukin-6 (IL-6) stimulates
AMP-activated protein kinase (AMPK) and insulin signaling in
skeletal muscle, both of which result in the activation of endo-
thelial nitric oxide synthase (eNOS). We hypothesized that IL-6
promotes endothelial cell signaling and capillary recruitment in
vivo, contributing to increased glucose uptake.

RESEARCH DESIGN AND METHODS—The effect of IL-6
with and without insulin on AMPK, insulin, and eNOS signaling in
and nitric oxide (NO) release from human aortic endothelial cells
(HAECs) was examined. The physiological significance of these
in vitro signaling events was assessed by measuring capillary re-
cruitment in rats during control and euglycemic-hyperinsulinemic
clamps with or without IL-6 infusion.

RESULTS—IL-6 blunted increases in insulin signaling, eNOS
phosphorylation (Ser1177), and NO production and reduced phos-
phorylation of AMPK in HAEC in vitro and capillary recruitment
in vivo. In contrast, IL-6 increased Akt phosphorylation (Ser473)
in hindlimb skeletal muscle and enhanced whole-body glucose
disappearance and glucose uptake during the clamp. The differ-
ences in endothelial cell and skeletal muscle signaling were
mediated by the cell-specific, additive effects of IL-6 and insulin
because this treatment markedly increased tumor necrosis factor
(TNF)-� protein expression in HAECs without any effect on
TNF-� in skeletal muscle. When HAECs were incubated with
a TNF-�–neutralizing antibody, the negative effects of IL-6 on
eNOS signaling were abolished.

CONCLUSIONS—In the presence of insulin, IL-6 contributes to
aberrant endothelial cell signaling because of increased TNF-�
expression. Diabetes 58:1086–1095, 2009

I
t is now recognized that obesity promotes secretion
of many proinflammatory cytokines including tumor
necrosis factor (TNF)-�, resistin, interleukin (IL)-1�,
and IL-6 from both adipocytes and macrophages

within the adipose tissue bed (1). Given this proinflamma-
tory response and the observation that systemic IL-6
plasma concentrations are elevated in obesity and in
patients with type 2 diabetes (2–4), it is generally thought
that IL-6 inhibits insulin action (5). This is consistent with
epidemiological data associating IL-6 with increased risk
of cardiovascular disease (6). Whether IL-6 has positive or
negative effects on metabolic processes is the subject of
continuing controversy (7,8). The notion that IL-6 induces
insulin resistance has been challenged by the observations
that IL-6 is both produced in (9,10), and subsequently
released from (11), contracting skeletal muscle cells. It is
well-known that physical exercise training increases insu-
lin sensitivity (12), while in the immediate postexercise
period, insulin action is enhanced (13).

Recent evidence suggests that IL-6, at least when admin-
istered acutely, enhances insulin action because of the
upregulation of key signal transduction pathways. IL-6
activates AMP kinase (AMPK) in both skeletal muscle and
adipose tissue (14). Activation of AMPK may increase
glucose uptake (15) via insulin signal transduction–depen-
dent and –independent pathways (16). We recently ob-
served that acute treatment of muscle cells in vitro with
IL-6 increased both basal glucose uptake and GLUT4
translocation from intracellular compartments to the
plasma membrane (14). IL-6 increased basal and insulin-
stimulated glucose uptake in vitro, whereas infusion of
recombinant human IL-6 into healthy humans during a
euglycemic-hyperinsulinemic clamp increased glucose in-
fusion rate without affecting the total suppression of
endogenous glucose production (14). The effects of IL-6 on
glucose uptake in vitro appeared to be mediated by
activation of AMPK because the results were abolished in
cells infected with an AMPK-dominant, negative adenovi-
rus (14). Apart from activating AMPK, signaling through
the gp130 receptor complex results in activation of phos-
phoinositol 3-kinase (PI3-kinase), a key protein in the
insulin signaling transduction cascade. Recent studies in
vitro have demonstrated that acute IL-6 treatment can
activate PI3-kinase and its downstream target Akt (17). It
appears that IL-6 signaling through the gp130 receptor
activates signal transduction pathways that favor en-
hanced insulin action (18).
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In 1990, Laakso et al. (19) described a novel role for
insulin in modulating skeletal muscle blood flow. The
effect of insulin on total blood flow to skeletal muscle has
produced conflicting results with some, but not all, studies
demonstrating an increase (rev. in ref. 20). It is clear that
insulin increases nutritive blood flow and capillary recruit-
ment in skeletal muscle (21,22). Insulin signaling is
thought to promote vasodilatation through enhanced en-
dothelial nitric oxide synthase (eNOS) activity (23). It is
likely that activation of AMPK may lead to vasodilatation
because AMPK phosphorylates eNOS at serine residue
1177, thereby activating this enzyme (24). We have previ-
ously shown that the proinflammatory cytokine TNF-� not
only reduces insulin signaling and AMPK activity (25) but
also attenuates insulin-stimulated increases in capillary
recruitment (26). Given that IL-6, in direct contrast with
TNF-�, increases AMPK activation and augments insulin
signaling in skeletal muscle and adipose tissue and be-
cause both AMPK and insulin result in phosphorylation of
eNOS in endothelial cells, we hypothesized that IL-6 may
increase endothelial cell signaling and capillary recruit-
ment leading to enhanced insulin-stimulated glucose
uptake.

RESEARCH DESIGN AND METHODS

Reagents. See supplementary methods, available in an online appendix at
http://diabetes.diabetesjournals.org/cgi/content/full/db08-0775/DC1.

In vitro experiments. Human aortic endothelial cells (HAECs) (passage four
to eight; Cell Application, San Diego, CA) were maintained in endothelial cell
media (EGM-2 bullet kit; Lonza, Walkersville, MD) and seeded into experi-
mental 10-cm flat-bottom tissue culture dishes, precoated with 0.2% gelatin.
When cultures were 80% confluent, cells were serum deprived for 18 h before
experiments were conducted. Cells were treated with (10 ng/ml) or without
(PBS control) IL-6 for 2 h, followed by treatment with (100 nmol/l) or without
(PBS control) insulin for 15 min. In separate experiments, cells were treated
with (1, 10, and 100 ng/ml) or without (PBS control) TNF-� for 2 h, followed
by treatment with (100 nmol/l) or without (PBS control) insulin for 15 min. For
TNF-�–neutralizing antibody experiments, cells were pretreated for 1 h with
0.1 �g/ml of either mouse IgG1 isotype control antibody (BD Biosciences,
North Ryde, NSW, Australia) or mouse IgG1 anti-human TNF-� neutralization
antibody (R&D Systems, Gymea, NSW, Australia). Cells were then treated
with (10 ng/ml) or without (PBS control) IL-6 for 2 h and coincubated with
either isotype control or TNF-� neutralization antibody, followed by treatment
with (100 nmol/l) or without (PBS control) insulin for 15 min.
Endothelial nitric oxide levels. Nitric oxide (NO) release from human
aortic endothelial cells (HAECs) was measured by using 4-amino-5-methyl-
amino-2�,7�-difluorofluorescein (DAF-FM) diacetate fluorescence. HAECs
were seeded into gelatin coated plastic eight-well chambers (BD Falcon,
North Ryde, NSW, Australia). After serum starvation, HAECs were treated
with or without IL-6 or TNF-� for 2 h in phenol red–free Dulbecco’s modified
Eagle’s medium. After 1.5 h of treatment, DAF-FM diacetate (2.5 �mol/l final
concentration) was spiked into the media. After 2 h of IL-6 treatment, insulin
was spiked into the media, and cells were incubated for a further 15 min. The
cell culture chamber was then placed in the humidified confocal microscope
chamber (37°C; 5% CO2). Calcium ionophore (2 min of treatment) and the NO
donor S-nitroso-N-acetylpenicilamine (1 min of treatment) were used as
positive controls for eNOS. Cells were viewed for 10 min, and fluorescence
intensity was recorded at 15-s intervals using confocal microscopy (Olympus
IX70 inverted microscope using Perkin-Elmer Wallac Ultraview and Zeiss
META 510 systems). Time-matched images were also quantified. Because the
TNF-� experiment measured basal NO release alone, the detector gain was
increased (compared with the initial experiment) to capture basal images.
In vivo experiments

Surgery, experimental procedure, and capillary recruitment. For a
description of the animals, see supplementary methods. All experiments were
approved by the University of Tasmania Animal Ethics Committee and
conducted using the anesthetized rat model (n � 6) as described previously
(26–28). After a 45-min equilibration period, rats were infused intravenously
with IL-6 (recombinant rat IL-6; R&D Systems, Minneapolis, MN) at 5 �g � h�1 �
kg�1 for 3 h. To test the effect of IL-6 on insulin action, a euglycemic-
hyperinsulinemic clamp, in which insulin (Humulin R; Eli Lilly, Indianapolis,
IN) was infused into rats at 3 mU � min�1 � kg�1 for 2 h, was started after 1 h

of IL-6 infusion. At the conclusion of the experiment, the muscles of the lower
leg were freeze-clamped in liquid nitrogen and stored at �80°C until required
for analysis. The surface area of the perfused capillary bed of muscle was
measured by a previously established method involving the steady-state
infusion of 1-methylxanthine (1-MX) and its metabolism by capillary endothe-
lial xanthine oxidase (26,27).
Analytical techniques. See supplementary methods (29–31).

RESULTS

HAECs express the gp130R�/IL-6R� receptor com-
plex that is activated by IL-6. To first establish that IL-6
would transduce signals through its tripartite IL-6/IL-6R�/
gp130R� signaling complex, we determined the expres-
sion of both the IL-6R� and gp130R� in HAECs. As seen in
Fig. 1A, both components of the receptor complex were
expressed in HAECs to a lesser extent than in HepG2 cells,
which were used as a reference positive control. We
treated the cells with insulin and/or IL-6 and measured the
phosphorylation of signal transducer and activator of
transcription (STAT) 3 at Tyr705 (p-STAT3) as a marker of
IL-6 bioactivity in HAECs. As seen in Fig. 1B, IL-6, but not
insulin, markedly increased p-STAT3.
IL-6 decreases phosphorylation of AMPK in HAECs.
We previously demonstrated that IL-6 family cytokines
activate AMPK in skeletal muscle and adipose tissue
(14,32). Because AMPK is known to phosphorylate eNOS
at Ser1177 that activates the enzyme (24), we examined
whether IL-6 would phosphorylate AMPK in HAECs. Con-

FIG. 1. HAECs express the gp130R�/IL-6R� receptor complex that is
activated by IL-6. A: Representative blots of gp130R� and IL-6R� in
HAECs and positive control human hepatoma cells (HepG2). B: Rep-
resentative blots and quantification of phosphorylation of STAT3 in
HAECs treated with or without (PBS control) IL-6 (10 ng/ml) for 2 h,
followed by treatment with or without (PBS control) insulin (100
nmol/l) for 15 min. *Difference (P < 0.05) IL-6 versus control; **dif-
ference (P < 0.05) IL-6 � insulin versus control (data are means � SE;
n � 3–5 replicates from three different experiments).
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trary to our hypothesis, IL-6 decreased p-AMPK in both the
presence and absence of insulin (Fig. 2A; supplementary
Fig. 1). The differences when comparing skeletal muscle
with HAECs with respect to the role of IL-6 in activation of
AMPK are not fully clear but may be related to the relative
expression of the AMPK isoforms in these different cells or
organs. AMPK �1 was markedly more abundantly ex-
pressed in HAECs, whereas the AMPK �2 isoform was
expressed in very low concentration in HAECs relative to
skeletal muscle (Fig. 2B).
IL-6 decreases insulin signaling in HAECs. It has been
widely reported that IL-6 activates insulin signal transduc-
tion in skeletal muscle, adipose tissue, and liver (rev. in
ref. 33). As activation of Akt is known to release NO from
endothelial cells by phosphorylating eNOS (Ser1177) (34),
we examined whether or not IL-6 would affect insulin
signaling in HAECs. In the absence of insulin, IL-6 tended
to increase the association of the p85 subunit of PI3-kinase
with insulin receptor substrate (IRS)-1 (NS) (Fig. 3B). IL-6
alone increased the phosphorylation of its downstream
target Akt (Ser473) (Fig. 3C). Pretreatment of HAECs with
IL-6 suppressed the tendency (NS) for increased insulin-
mediated phosphorylation of IRS-1 (Tyr612) (Fig. 3A),
completely blunting the association of the p85 subunit of
PI3-kinase with IRS-1 (Fig. 3B) and the phosphorylation of
Akt (Ser473) (Fig. 3C).
IL-6 blunts the insulin-mediated activation of eNOS
in, and NO production from, HAECs. We tested the
effect of IL-6 on phosphorylation of eNOS at sites that
activate (Ser1177) or inhibit (Thr495) the enzyme. Treatment
with IL-6 alone did not significantly affect the basal phos-
phorylation of eNOS at either residue, although consistent
with the effect of IL-6 alone on Akt phosphorylation (Fig.
3C), this treatment tended (NS) to increase eNOS phos-
phorylation at Ser1177 (Fig. 4A). Although treatment of

HAECs with insulin markedly phosphorylated eNOS at
Ser1177, pretreatment with IL-6 completely prevented this
effect (Fig. 4A). In contrast, although neither insulin nor
IL-6 treatment in isolation affected phosphorylation of
eNOS at Thr495, the regulatory site that reduces synthase
activity, pretreatment with IL-6 markedly increased insulin-
mediated eNOS phosphorylation at this site (Fig. 4B). To
determine whether the previously described signaling
events resulted in parallel physiological changes, we ex-
amined the production of NO from endothelial cells in
vitro. Consistent with the eNOS phosphorylation results,
insulin treatment resulted in an approximately ninefold
increase in NO production, but pretreatment with IL-6
abolished this effect (Fig. 5A and B).
IL-6 decreases insulin-stimulated capillary recruit-
ment in vivo. Our in vitro data clearly showed that IL-6
inhibited insulin-mediated endothelial cell signaling and
NO production. Whether or not this translated into im-
paired vascular function in vivo was the next question that
we sought to answer. Consistent with our in vitro data,
whereas IL-6 had no effect per se on 1-MX disappearance,
it completely prevented the insulin-mediated increase in
capillary recruitment in the rat hindlimb (Fig. 5C).
IL-6 augments insulin action in muscle and fat but
results in hepatic insulin resistance in vivo. Having
established that IL-6 has a negative effect on insulin-
mediated endothelial cell function and capillary recruit-
ment in vivo, we examined how the effect of IL-6 on
capillary recruitment impacted insulin action and glucose
uptake in rats under euglycemic-hyperinsulinemic clamp
conditions. Unfortunately, muscle and fat tissue were only
examined after 2-h clamp experiments, and, therefore,
early signaling events were not captured. No differences
were observed in phosphorylation of AMPK (Thr172), the
downstream target acetyl-CoA carboxylase (Ser79), IRS-1
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FIG. 2. IL-6 decreased phosphorylation of AMPK in HAECs. A: Phosphorylation (Thr172)/total AMPK in HAECs treated with or without (PBS
control) IL-6 (10 ng/ml) for 2 h, followed by treatment with or without (PBS control) insulin (100 nmol/l) for 15 min. B: Representative blots and
quantification of AMPK �1 and �1 isoforms/�-tubulin in HAECs and skeletal muscle (SkM). *Difference (P < 0.05) IL-6 versus control (A) and
HAEC versus skeletal muscle (B); **difference (P < 0.05) IL-6 � insulin versus control (A) and HAECs versus skeletal muscle (B) (data are
means � SE; n � 3–6 replicates from 2–3 different experiments).
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(Tyr612), or the association of the p85 subunit of PI3-kinase
with IRS-1 in skeletal muscle with any treatment condition
(data not shown). As activation of these signal transduc-
tion proteins by insulin and/or IL-6 is a rapid, transient
event, it is likely that any effects were missed by sampling
tissue after 2 h. Nonetheless, at this time point, both
insulin and IL-6 independently increased Akt phosphory-
lation (Ser473). Consistent with previous studies (14,18),
the effects of IL-6 and insulin on Akt phosphorylation were
additive (Fig. 6A). We assessed insulin sensitivity via the
glucose infusion rates (GIRs) during the clamp. Under
non–insulin-stimulated conditions, IL-6 increased the GIR
above that of the vehicle control. During insulin clamp
conditions, we observed no effect of IL-6 infusion (Fig.
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FIG. 3. IL-6 decreases insulin signaling in HAECs. Representative blots
and quantification of phosphorylation (Tyr612) of IRS-1/total IRS-1
pulled down by immunoprecipation (IP) (A), expression of the p85
subunit of PI3-kinase associated with immunoprecipitated IRS-1 (B),
and phosphorylation (Ser473)/total Akt (C) in HAECs treated with or
without (PBS control) IL-6 (10 ng/ml) for 2 h, followed by treatment
with or without (PBS control) insulin (100 nmol/l) for 15 min. *Differ-
ence (P < 0.05) IL-6 � insulin versus insulin; **difference (P < 0.05)
insulin versus control; ***Difference (P < 0.05) IL-6 versus control
(data are means � SE; n � 3–5 replicates from three different exper-
iments). IB, immunoblot.
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FIG. 4. IL-6 blunts the insulin-mediated activation of eNOS in HAECs.
Representative blots and quantification of phosphorylation (Ser1177

[A] or Thr495 [B])/total eNOS in HAECs treated with or without (PBS
control) IL-6 (10 ng/ml) for 2 h, followed by treatment with or without
(PBS control) insulin (100 nmol/l) for 15 min. *Difference (P < 0.05)
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6B). These data contrast with those of previous studies
from our group, in which IL-6 increased GIR during a
euglycemic-hyperinsulinemic clamp in humans (14). In

this previous study, IL-6 had no effect on the full suppres-
sion of hepatic glucose production by insulin in humans.
In contrast, in the present study, whereas insulin markedly
decreased the rate of glucose appearance (Ra), IL-6 re-
stored this rate to levels seen in the absence of insulin
(Fig. 6C). These data highlight the differences between
rodents and humans in the capacity for IL-6 to affect liver
glucose metabolism under insulin-stimulated conditions.
Given that GIR was the same (Fig. 6B), but Ra was greater
(Fig. 6C) with IL-6 under insulin-stimulated conditions,
and given the Akt results, it was not surprising that IL-6
markedly enhanced the rate of whole body glucose disap-
pearance during euglycemic-hyperinsulinemic clamp con-
ditions (Fig. 6D). To investigate this effect further, we
examined the rate of glucose uptake (R�g) into specific
insulin-responsive depots. As expected, insulin increased
R�g into the combined calf muscles, whereas there was a
tendency (NS) for IL-6 to augment this effect (Fig. 6E).
When we examined individual muscle and adipose tissue
depots individually, we observed significant differences in
R�g in red gastrocnemius muscles and adipose tissue when
we compared insulin stimulation in the absence or pres-
ence of IL-6 (Fig. 6F). These data demonstrate that,
despite compromising capillary blood flow, IL-6 can para-
doxically enhance glucose uptake in skeletal muscle and
fat under insulin-stimulated conditions.
Negative effects of IL-6 on insulin signaling and NO
production are not mediated by activation of c-Jun
NH2-terminal kinase, extracellular signal-regulated
kinase 1/2, p38 mitogen-activated protein kinase, or
I�B kinase. From these results, it was clear that IL-6 had
different effects on insulin action in endothelial cells
compared with those in skeletal muscle. We sought to
elucidate a mechanism for such an effect. A recent article
suggested that IL-6 impairs insulin-mediated NO produc-
tion in human umbilical vein endothelial cells (HUVECs)
through activation of the mitogen-activated protein ki-
nases (MAPKs) c-Jun NH2-terminal kinase (JNK) and
extracellular signal-regulated kinase 1/2 (ERK1/2) (35). In
addition, the serine threonine kinase I�B kinase (IKK) has
been shown to negatively affect insulin signaling in liver
via an IL-6–dependent mechanism (36), whereas an alter-
native proinflammatory cytokine, TNF-�, is known to
induce insulin resistance in endothelial cells via a p38
MAPK-dependent pathway (37). Accordingly, we exam-
ined whether these pathways were involved in the IL-6–
dependent insulin resistance in our experimental model.
We found no differences when examining the effects on
these various signaling pathways when cells were incu-
bated from 0 to 60 min (supplementary Fig. 2A). Unexpect-
edly, we found that incubation with IL-6 for 120 min
markedly reduced the insulin-mediated increase in phos-
phorylation of JNK (Thr183)/Tyr185), ERK1/2 (p44/42
Thr202)/Tyr204), p38 MAPK (Thr180)/Tyr182), and IKK��
(Ser180)/Ser181) (supplementary Fig. 2B–E). These path-
ways could not explain why IL-6 and insulin resulted in
dysregulated endothelial cell signaling.
IL-6 combined with insulin increases membrane-
bound TNF-� protein expression in HAECs but not in
skeletal muscle. TNF-� is known to downregulate eNOS
expression and activity in endothelial cells (37), white and
brown adipose tissue (38), and skeletal muscle (38). In
addition, as discussed, we have previously shown that the
proinflammatory cytokine TNF-� not only reduces insulin
signaling and AMPK activity in skeletal muscle (25) but
also attenuates insulin-stimulated increases in capillary
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FIG. 6. IL-6 augments insulin action in muscle and fat but results in hepatic insulin resistance in vivo. Representative blots and quantification
of phosphorylation (Ser473)/total Akt in mixed hindlimb muscle (A), GIR (B), rate of glucose appearance (C) and disappearance (D), combined
calf muscle glucose uptake (R�g) (E) and individual hindlimb muscle (SOL, soleus; PLA, plantaris; RG, red gastrocnemius; WG, white
gastrocnemius, EDL, extensor digitorum longus; TA, tibialis anterior) and adipose tissue (ADIP) (F) from rats that underwent control (vehicle)
and euglycemic-hyperinsulinemic clamps (insulin 3 mU � min–1 � kg–1) for 120 min with and without the infusion of IL-6 (5.0 �g � h–1 � kg–1).
*Difference (P < 0.05) from vehicle; #difference IL-6 � insulin versus insulin (data are means � SE; n � 6).
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recruitment (26). Accordingly, we measured both TNF-�
mRNA and membrane-bound TNF-� protein expression in
HAECs and in mixed hindlimb skeletal muscles from the in
vivo study. We observed no effect of insulin either with or
without IL-6 on TNF-� mRNA in either HAECs (vehicle
1.0 � 0.06; insulin [100 nmol/l] 1.1 � 0.19; IL-6 [10 ng/ml]
0.98 � 0.10; insulin 	 IL-6 1.31 � 0.10, fold change from
vehicle, NS) or mixed hindlimb skeletal muscle (vehicle
1.0 � 0.41; insulin [3 mU � min�1 � kg�1] 2.0 � 0.42; IL-6 [5.0
�g � h�1 � kg�1] 2.40 � 0.80; insulin 	 IL-6 2.01 � 0.83, fold
change from vehicle, NS), and we did not find any effects
of treatment on TNF-� protein expression in hindlimb
mixed skeletal muscle (Fig. 7A). Although insulin and IL-6
alone had no effect on TNF-� protein expression in
HAECs, an approximate twofold increase in membrane-
bound TNF-� protein expression was observed in IL-6–
pretreated, insulin-stimulated HAECs (Fig. 7B). When we
measured TNF-� protein expression in the media from
treated HAECs, we observed an increase in TNF-� release
when comparing the IL-6 	 insulin-treated cells with
control cells (Fig. 7C).
Negative effects of IL-6 on insulin signaling are me-
diated by TNF-� protein expression. To determine
whether the increase in TNF-� could have accounted for
our observations in HAECs treated with IL-6 and insulin,
we stimulated HAECs with TNF-� in a dose-dependent
manner. TNF-�, even at the lowest dose of 1 ng/ml,
completely blunted insulin-stimulated Akt phosphory-
lation (Ser473) (Fig. 8A), thus increasing eNOS phosphor-
ylation at the inhibitory site (Thr495) (Fig. 8B). Such
treatment completely blocked basal NO production (Fig.
8C). To determine whether the negative effects of IL-6 and
insulin on eNOS signaling were mediated by the elevated
TNF-� levels observed in this treatment condition, we
performed TNF-� neutralization experiments. As ex-
pected, when pretreated with the isotype control, the
combination of IL-6 and insulin increased phosphorylation
of eNOS at the inhibitory site (Thr495). In contrast, this
increase was completely prevented when cells were pre-
treated with an anti-TNF-�–neutralizing antibody (Fig. 8D
and E). In addition, although not statistically significant,
treatment with an anti-TNF-�–neutralizing antibody tend-
ed (P � 0.14) to rescue the blunted phosphorylation of
eNOS at Ser1177 observed when cells were treated with
IL-6 and insulin (Fig. 8D and F).

DISCUSSION

IL-6 is a biologically active cytokine involved in the acute
inflammatory response but is also secreted by adipose
tissue and skeletal muscle in the absence of inflammation
to modify metabolism (39). Although recent studies have
suggested that IL-6 may stimulate metabolic processes by
enhancing insulin action (14) and preventing obesity (40),
this cytokine has been linked to endothelial dysfunction
(41) and increased risk of developing coronary heart
disease (6). Here we provide evidence that IL-6 can
enhance insulin action in peripheral tissues such as skel-
etal muscle. Paradoxically, IL-6 decreases insulin signaling
and activation of AMPK in endothelial cells in the pres-
ence, but not the absence, of insulin. Furthermore, IL-6
attenuates insulin-mediated increases in capillary recruit-
ment in hindlimb muscles.

Recent evidence has demonstrated that IL-6 is produced
in (10) and released from (11) skeletal muscle. During
vigorous, prolonged exercise, circulating IL-6 levels can

FIG. 7. The combined treatment of IL-6 and insulin increases TNF-�
protein expression in and release from HAECs but not skeletal muscle.
Representative blots and quantification of membrane-bound TNF-� in
mixed hindlimb muscle that underwent control (vehicle) and euglycemic-
hyperinsulinemic clamps (insulin 3 mU � min–1 � kg–1) for 120 min with and
without the infusion of IL-6 (5.0 �g � h–1 � kg–1) (A). Representative blots
and quantification of membrane-bound TNF-� (B) and TNF-� release into
media (C) in HAECs treated with or without (PBS control) IL-6 (10 n/ml)
for 2 h, followed by treatment with or without (PBS control) insulin (100
nmol/l) for 15 min *Difference (P < 0.05) from vehicle control (data are
means � SE; n � 3–5 replicates from 1–3 different experiments for in vitro
experiments, n � 6 for in vivo experiments).
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increase up to 100-fold above basal levels (42). Our data
demonstrating that IL-6 impairs endothelial cell signaling
and capillary recruitment may appear surprising because
exercise, which results in such a marked release of IL-6,
also results in enhanced endothelial cell function (43) and
capillary recruitment (44). Note that IL-6 treatment of cells

in the absence of insulin resulted in an increase in Akt
phosphorylation (Fig. 3C) and tended to elevate eNOS
phosphorylation at serine residue 1177 (Fig. 4A) and NO
production (Fig. 5A and B). It was only in the presence of
insulin that IL-6 had such a marked inhibitory effect on
both endothelial cell and vascular function. These data

FIG. 8. The negative effects of IL-6 on insulin signaling are mediated by TNF-� protein expression. Representative blots and quantification of
phosphorylation (Ser473)/total Akt (A), eNOS phosphorylation (Thr495)/�-tubulin (B), and representative NO production images (C) in HAECs
treated with or without (PBS control) TNF-� (1, 10, or 100 ng/ml) for 2 h followed by treatment with or without (PBS control) insulin (100
nmol/l). Representative blots (D) and quantification of phosphorylation of eNOS (Thr495 [E] ot Ser1177 [F]) total eNOS in HAECs pretreated for
1 h with 0.1 �g/ml of either mouse IgG1 isotype control antibody (Isotype) or mouse IgG1 anti-human TNF-� neutralization antibody (anti-TNF-�
AB) then treated with or without (PBS control) IL-6 (10 ng/ml) for 2 h, followed by treatment with or without (PBS control) insulin (100 nmol/l)
for 15 min. *Difference insulin versus basal in the absence of TNF-� (A), basal versus all doses of TNF-� (B), isotype-pretreated IL-6 � insulin
versus isotype-pretreated vehicle control (E) (data are means � SE; n � 3–5 replicates from 2–3 different experiments). (A high-quality digital
representation of this figure is available in the online issue.)
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suggest that IL-6 plays an inhibitory role in vascular
function in states of insulin resistance and may help to
explain why IL-6 may be linked to vascular disease (6). Our
data may explain why IL-6 is linked to the metabolic
syndrome, in which patients present with a cluster of
disorders, including atherosclerosis, hypertension, inflam-
mation, and insulin resistance (45). It should be noted that
the elevated IL-6 observed during exercise has a permis-
sive effect on capillary recruitment because, in separate
experiments, we demonstrated that hindlimb IL-6 infusion
during muscle contraction does not affect contraction-
induced increases in 1-MX disappearance (data not
shown). Although previous studies have shown a tight
correlation between insulin-mediated capillary recruit-
ment and glucose uptake by muscle, this is the first study
in which insulin-mediated capillary recruitment has been
inhibited and insulin-mediated glucose uptake has been
unaffected or augmented. This finding may mean that
although microvascular perfusion of muscle is incomplete
because of the global inhibition of capillary recruitment by
the hindlimb as indicated by 1-MX metabolism, those
regions of muscle receiving insulin, IL-6, and glucose are
stimulated. Such a scenario is suggested by the further
activation of muscle Akt by IL-6 and insulin that has
already been activated by insulin alone (Fig. 7A).

It is important to note that our data showing that IL-6
and insulin increase phosphorylation of Akt and glucose
uptake by skeletal muscle and adipose tissue support
previous work from our group in skeletal muscle and
adipocyte cell culture (14). However, in contrast with
previous studies in humans (14), we showed that the GIR
during a clamp was not augmented by IL-6. This was
because, unlike our previous data from studies in humans,
the increase in glucose disappearance (Rd) seen with IL-6
treatment (Fig. 6D) was completely offset by an increase in
Ra. Thus, in contrast with human studies, in which IL-6
does not affect hepatic insulin sensitivity, in studies with
rats it induces hepatic insulin resistance, augmenting
insulin action in both skeletal muscle and adipose tissue.

These data demonstrate that IL-6 has marked opposing
effects in endothelial cells compared with skeletal muscle.
In separate experiments in which we have incubated
muscle cells and adipocytes in a fashion similar to our
treatment of HAECs, we have shown activation of AMPK
and insulin signaling (14). In addition, consistent with our
in vivo experiments reported here, we have previously
demonstrated in human euglycemic-hyperinsulinemic
clamps that IL-6 augments muscle glucose uptake (14).
Our in vivo capillary recruitment measurements (Fig. 5C),
which are indicative of vascular function, were entirely
consistent with our cell culture data. We assessed many
potential candidates to account for the differential effects
of IL-6 on endothelial cells compared with muscle cells
and adipocytes. In a previous study in HUVECs, it was
shown that IL-6 induces insulin resistance via activation of
JNK and ERK1/2 pathways (36). This was clearly not the
case in our study because IL-6 markedly blocked insulin-
induced increases in both JNK and ERK1/2 (see supple-
mentary Fig. 2B and C). This is not surprising to us
because the phenotype of endothelial cells is specific to
the vascular bed from which they originate, and global
gene expression profiling studies have demonstrated
marked endothelial cell diversity (46). Indeed, in prelimi-
nary experiments in which we characterized our endothe-
lial cell culture model, we observed a markedly different
phenotype when comparing HUVECs with HAECs (data

not shown). In addition, IKK is known to negatively affect
insulin signaling via an IL-6–dependent mechanism (36),
whereas TNF-� is known to induce insulin resistance in
endothelial cells via a p38 MAPK–dependent pathway
(37). In our model, activation of IKK or p38 MAPK could
not account for our observations (see supplementary Fig.
2D and E). In contrast, we were able to show that in the
presence, but not in the absence, of insulin, membrane-
bound TNF-� protein expression in (Fig. 7B) and released
from (Fig. 7C) HAECs increased approximately twofold,
but no such effect was seen in skeletal muscle (Fig. 7A). It
was indeed surprising that IL-6 alone did not increase
TNF-�, but our data clearly pointed toward the endothelial
cell–specific synergistic effect of IL-6 and insulin leading to
a posttranscriptional increase in the membrane-bound
form of TNF-� as the mechanism behind the differences
we observed in endothelium versus skeletal muscle. Given
the relatively short (15 min) exposure to insulin, it is likely
that the combination of insulin and IL-6 led to an increase
in the trafficking of TNF-� out of the cells rather than an
increase in protein synthesis per se. Incubation of HAECs
with various doses of TNF-� increased phosphorylation of
eNOS at the negative regulatory site (Thr495) and com-
pletely suppressed both insulin-stimulated Akt phosphor-
ylation and NO release (Fig. 8A–C). When we pretreated
HAECs with a TNF-�–neutralizing antibody and then incu-
bated them with IL-6 followed by insulin, the increase in
eNOS phosphorylation (Thr495) was completely abrogated
(Fig. 8D and E), whereas the blunted phosphorylation of
eNOS at the active site (Ser1177) tended to be rescued (Fig.
8D and F).

In summary, we demonstrate that IL-6 decreases insulin-
stimulated NO production from endothelial cells via a
decreased activation of insulin signaling mediated by
enhanced TNF-� production. Consistent with these cellu-
lar observations, we show that IL-6 decreases insulin-
stimulated capillary recruitment. Paradoxically, however,
IL-6 increases insulin-stimulated glucose uptake into skel-
etal muscle and adipose tissue via enhanced insulin sig-
naling, at least in skeletal muscle, in which the
combination of IL-6 and insulin does not lead to elevated
TNF-� expression. Our results highlight the complex role
of this cytokine in the etiology of whole-body metabolism.
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