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Abstract

Background

Brain volume loss is an important surrogate marker for assessing disability in MS; however,

contribution of gray and white matter to the whole brain volume loss needs further examina-

tion in the context of specific MS treatment.

Objectives

To examine whole and segmented gray, white, thalamic, and corpus callosum volume loss

in stable patients receiving natalizumab for 2–5 years.

Methods

This was a retrospective study of 20 patients undergoing treatment with natalizumab for 24–

68 months. Whole brain volume loss was determined with SIENA. Gray and white matter

segmentation was done using FAST. Thalamic and corpus callosum volumes were deter-

mined using Freesurfer. T1 relaxation values of chronic hypointense lesions (black holes)

were determined using a quantitative, in-house developed method to assess lesion

evolution.

Results

Over a mean of 36.6 months, median percent brain volume change (PBVC) was -2.0% (IQR

0.99–2.99). There was decline in gray (p = 0.001) but not white matter (p = 0.6), and tha-

lamic (p = 0.01) but not corpus callosum volume (p = 0.09). Gray matter loss correlated with

PBVC (Spearman’s r = 0.64, p = 0.003) but not white matter (Spearman’s r = 0.42, p = 0.07).

Age significantly influenced whole brain volume loss (p = 0.010, multivariate regression), but

disease duration and baseline T2 lesion volume did not. There was no change in T1 relaxa-

tion values of lesions or T2 lesion volume over time. All patients remained clinically stable.
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Copyright: © 2018 Koskimäki et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: FK was supported by a personal research

project grant from Turku University Hospital,

Division of Clinical Neurosciences, Finland. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: AJ has received consulation

honoraria from EMD-Serono, Sanofi-Genzyme,

http://orcid.org/0000-0001-7171-3217
http://orcid.org/0000-0002-6418-0309
https://doi.org/10.1371/journal.pone.0209326
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209326&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209326&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209326&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209326&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209326&domain=pdf&date_stamp=2018-12-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0209326&domain=pdf&date_stamp=2018-12-21
https://doi.org/10.1371/journal.pone.0209326
https://doi.org/10.1371/journal.pone.0209326
http://creativecommons.org/licenses/by/4.0/


Conclusions

These results demonstrate that brain volume loss in MS is primarily driven by gray matter

changes and may be independent of clinically effective treatment.

Introduction

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central

nervous system (CNS). Pathologically, it is characterized by demyelination in the white matter

and also substantially in the gray matter, as well as by axonal transection and neuronal loss.[1–

3] Loss of tissue in the gray and white matter is associated with cognitive and physical disabil-

ity. The mechanisms involved and the time course leading to permanent tissue loss continue

to be defined, but focal and diffuse inflammation is an important factor in the disease pathol-

ogy. [4] Current disease modifying treatments (DMTs) for MS target the inflammatory com-

ponent of the disease with variable effectiveness in curtailing disability. A few longitudinal,

prospective, open label studies suggest that some DMTs stabilize certain aspects of MS disease

over 5–10 years, [5–7] but none halt all components of MS disease. Due to the difficulties of

conducting long-term clinical trials, surrogate markers of disease activity, particularly MRI,

are essential for assessing disease status over time.

Quantitative MRI measures of MS disease activity, such as measurement of contrast

enhancing T1, T2, and chronic T1 lesions, have been used to predict future relapses, disability

progression, and cognitive decline. [8–11] T1 and T2 lesion accumulation over a short time

period (2 years) correlate with long-term physical disability.[12, 13] Brain atrophy measure-

ments, both global and regional, assess net tissue damage, since it reflects the sum of demyelin-

ation, axonal/neuronal loss, and glial scarring. Brain atrophy reflects current physical and

cognitive disability and has prognostic value[14–21]. Regional brain atrophy is a more sensi-

tive and reliable indicator of disease status. Regional gray matter is less prone to pseudoatro-

phy/artifact effects and certain gray and white matter structures such as the thalamus and

corpus callosum show volumetric changes early in the disease course.[22–25]

Brain atrophy occurs in normal aging but is 2–3 fold faster in MS[26] and is present at the

earliest stages of MS, in radiologically and clinically isolated syndromes (RIS, CIS).[21, 27, 28].

Reduction in the rate of brain atrophy is an important target of MS treatments. Some DMTs

consistently reduce brain atrophy (fingolimod and alemtuzumab) [6, 29, 30] but most others

have minimal effects or mixed results. The later may be due to methodological differences for

assessing atrophy, mechanism of action of drugs, cohort characteristics, pseudoatrophy, early

versus late disease, diurnal brain changes, or pre-study disease status (highly inflammatory,

quiescent, or progressive disease activity). Furthermore, the observed atrophy over a given

assessment period not only reflects current pathological processes, but is also influenced by

prior disease activity and severity and its evolution into the assessment period.

Natalizumab, a specific humanized anti-α4 integrin monoclonal antibody, has a potent

anti-inflammatory effects in MS. Natalizumab significantly reduces relapses and disability pro-

gression in patients with relapsing-remitting MS.[31–34] In the pivotal phase III trial,

AFFIRM, natalizumab reduced brain atrophy only in the second year of therapy, but not in

the first year, perhaps due to the pseudoatrophy associated with anti-inflammatory therapies.

[35] Regional, global, and white matter atrophy over a longer time period needs further eluci-

dation in patients treated with high efficacy treatments. There is a paucity of information on

whether changes in gray or white matter predominantly drive global atrophy during therapy.
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The objective of this study was to examine global and regional gray and white matter volume

loss in clinically stable patients treated with natalizumab for 2–5 years. Clinical and conven-

tional MRI measurements of disease activity such as EDSS and T2 lesion volume changes were

included. Quantitative assessment of T1 hypointense lesions over time was also done using a

novel technique whereby a T1 relaxation distribution is derived from a T1-weighted scan.

With this measure, an increase in T1 relaxation time reflects edema, demyelination, and axonal

loss.[36] This assessment of T1 relaxation times in lesions is useful in delineating the fate of

lesions over time, showing either deterioration or repair.

Material and methods

Patients

This was a retrospective study consisting of patients who had been treated with natalizumab

for at least 24 months and up to 68 months. All data were derived from archival patient records

including radiological database. Natalizumab infusions were given continuously with standard

interval dosing schedule. Clinical assessments including EDSS were performed at routine phy-

sician office visits every 4–6 months. Only patients who did not have a contrast-enhancing

lesion at baseline and did not have any new MRI activity or relapses during the observation

period were included. MRIs were available from patients who were followed longitudinally

over a mean of 36.55 months (range 24–68 months). Two time points were examined for atro-

phy assessments, with 5 out 20 patients having the first assessment scan within 4 weeks prior

to natalizumab therapy (median 7 days) and 15/20 patients having the first assessment scan

after a minimum of 9 doses of natalizumab (median 11.5 months, range 9–18). Hence, major-

ity of patients had a”run-in” exposure to natalizumab prior to the initial MRI assessment. All

MRI and clinical data analysis were done blinded to the patient identity. The study was con-

ducted at the University of Chicago Medical Center and approved by the Institutional Review

Board under protocol number 15–1042. This study was performed in accordance with the eth-

ical standards laid down in the 1964 Declaration of Helsinki.

MRI acquisition and analysis

The MR scans were obtained on a 3T Phillips scanner (Philips Medical Systems, Best, The

Netherlands). The protocol was as follows; 3D T1-weighted Turbo Field Echo (3DT1TFE)

TR = 8 ms, TE = 3.6 ms, flip angle = 15˚, voxel size = 1 x 1 x 1 mm3 and FLAIR images

TR = 11,000 ms, TE = 125 ms, TI = 2800 ms, both with matrix size = 256 x 256, FOV = 224 x

224 mm. All patients were scanned on the same MRI machine using the same protocol

throughout the duration of the study. No hardware or software changes occurred during the

study period. Percentage brain volume change was estimated using SIENA.[37, 38] Gray and

white matter segmentations were done using FAST[39], which incorporates bias field correc-

tion algorithms. Both SIENA and FAST were acquired through FSL library, http://www.fmrib.

ox.ac.uk/fsl/fslwiki/. Subcortical segmentation of thalamus and corpus callosum was per-

formed with Freesurfer image analysis suite ((http://surfer.nmr.mgh.harvard.edu/). Volumes

of thalamus and corpus callosum were multiplied by the segmented brain-to-estimated total

intracranial volume (eTIV) scaling factor to correct for the head size. Prior to all image pro-

cessing, pre-Gd T1 images were corrected for white matter hypointensities corresponding to

T2 lesions on FLAIR images. This lesion in-painting improves the quality of nonlinear regis-

tration.[40] The lesion in-painting was done using FreeView, [41] whereby white matter

lesions are manually assigned intensities matching the surrounding normal appearing white

matter. The final image appears as a normal T1-weighted scan. FLAIR images were used to
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determine T2 lesion volume using Slicer, https://www.slicer.org/.[42] All volumes are reported

in mm3 (x 1000 for conversion to cm3).

As an exploratory measure of T1-hypointensity (chronic black holes) evolution over time,

T1 relaxation values for regions of interest were calculated using a novel method. Hypointense

lesions seen on T1-weighted scans have been reported to be markers of demyelination, axonal

loss, and tissue damage.[43–46] T1-hypointense lesions are strongly correlated with the degree

of disability and progression over time.[47, 48] However, the examination of hypointense

lesions on T1-weighted scans is problematic, especially when assessing lesion evolution in lon-

gitudinal studies. Short TR and TE images are referred to as T1-weighted, and the degree of

“weighing” (i.e., shades of gray) can be variable over time and is sequence dependent. The lack

of absolute signal intensity confounds both longitudinal analysis of lesion evolution and cross-

sectional comparisons among groups, where the degree of demyelination should be evaluated

as a metric of disease progression, stabilization, or regression. Hence, exact settings and the

same scanner needs to be used to reliably measure the degree of T1 hypointensity over time.

The degree of hypointensity on T1-weighted images can also vary as lesions evolve for the bet-

ter or worse over time. It is also challenging to accurately determine the borders of hypoin-

tense lesions for calculating volume or even number. One way of circumventing these issues is

to measure T1 relaxation values of the region of interest, which represent the same pathologi-

cal processes as the T1-weighted lesions. Furthermore, T1 value of the lesions is significantly

correlated with disability.[49] Herein, T1 values in different MS lesions and the gray matter

were determined to generate quantitative values representing tissue destruction or recovery.

T1 relaxation map derivation from T1 weighted MRI

A T1 relaxation map of the whole brain was derived from previously acquired T1-weighted

spin echo sequences, i.e. 3DT1TFE images described above. The MRI physics of the pulse

sequence used to acquire the MR images determined the signal equation and parameters used

in the regression analysis to model the relationship between signal intensity and T1. In the

case of 3DT1TFE, signal regrowth was modelled as a gradient-recalled echo signal equation

with short TE (<< T2):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S ¼ k 1 � e� TRT1

� �
sinθ= 1 � cosθe� TR

T1

� �q

where TR and tip angle θ are known and the scanner-specific constant k (receiver gain, etc.) is

fitted by constraining the equation to the signal intensity and T1 of normal appearing WM

and GM. The average signal intensity of NAWM and NAGM were obtained from non-lesion

white matter and Heschl gyrus, the later not known to be affected in MS. Reference value of T1

was 810 ms for WM and 1350 ms for GM, as previously reported.[50] Once k was found,

pixel-by-pixel T1 values were calculated depending on the corresponding pixel signal intensity.

The approach described is valid for the 3DT1TFE sequence used in this study; however it can

be generalizable to different T1 or T2 images by substituting the appropriate MRI signal equa-

tion and tissue reference values.

Statistical analysis

All statistics were performed using STATA 14.1 (Stata Corp., College Station, TX). Normality

of continuous variables was determined by Q-Q plots. Paired Student’s t-test and Spearman’s

rho were used to analyze continuous variables. General linear regression, univariate and multi-

variate, was used to examine the effect of age, race, MS disease duration, natalizumab
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treatment duration, treatment possession ratio (time on natalizumab/MS disease duration),

and baseline T2 lesion volume on whole brain volume loss (PBVC).

Results

The study consisted of 20 patients with relapsing-remitting multiple sclerosis, of which 19

were female and 1 male. 50% of patients were Caucasian, 45% African-American, and 5% His-

panic. The median age was 39.5 years (interquartile range, IQR 30.5–45) and the median dis-

ease duration was 9 years (IQR 6–16 years). Median EDSS at baseline was 2.25 (SD ±1.27) and

the median T2 lesion load was 7.42 cm3 (IQR 2.32–20.87). The median total time on natalizu-

mab was 32.5 months (IQR 24–46 months). The demographic, clinical, and MRI characteris-

tics of patients at baseline are summarized in Table 1.

Table 2 shows MRI characteristics at baseline and at follow-up. The median decline in

whole brain volume loss over an average of 36.6 months was fairly substantial at -2.00% (IQR

0.99–2.99). Despite this brain atrophy, there was no significant change in EDSS score, T2

lesion volume, and T1 relaxation values. The T1 relaxation value of the lesions and total gray

matter was examined in a subset of patients (N = 12) due to the availability of all the necessary

original sequence data. Even in this subset of patients, gray matter volume declined signifi-

cantly (p = 0.01) but not the white matter volume (p = 0.11), despite no significant change in

the T1 values of both the gray and white matter.

Fig 1A and 1B show brain segmentation into total gray and white matter volumes and their

respective change over time. Total gray matter volume was significant decreased over time

compared to the white matter volume (gray matter 798,024.63 ± 15,584.44 SEM mm3 vs.

780,135.80 ± 13,906.12 SEM mm3, p = 0.001; white matter 643,247.52 ± 13,030.83 SEM mm3

vs. 641,091.86 ± 12,510.08 SEM mm3, p = 0.60). Percentage change in gray matter volume over

time was -2.24. Even when a smaller cohort of patients in whom MRI was available after a run-

in median period of 11.5 months, there was a significant decrease in gray matter volume (gray

matter 795,944.62 ± 20,302.09 SEM mm3 vs. 782,322.41 ± 17,687.99 SEM mm3, p = 0.024).

Thalamus and corpus callosum were examined next over time (Fig 2). There was a signifi-

cant atrophy in the thalamus (10,670.98 ± 361.98 SEM mm3 vs. 10,286.94 ± 360.27 SEM mm3,

p = 0.01), but not in the corpus callosum (1,751.24 ± 139.94 SEM mm3 vs. 1,659.10 ± 140.30

SEM mm3, p = 0.09).

Table 1. Baseline demographic, clinical, and MRI characteristics of study subjects.

Characteristics Patients treated with natalizumab

(n = 20)

Median age, years (IQR) 39.5 (30.5–45)

Sex

Male 1 (5%)

Female 19 (95%)

Race

Caucasian 10 (50%)

African-American 9 (45%)

Hispanic 1 (5%)

Median disease duration, years (IQR) 9 (6–16)

Median EDSS (±SD) 2.25±1.27

Median total time on natalizumab, months (IQR) 32.5 (24–46)

Time on natalizumab / Total disease duration (%, mean ±SD) 36.6±18.7

Median T2 lesion load, cm3 (IQR) 7.42 (2.32–20.87)

https://doi.org/10.1371/journal.pone.0209326.t001
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To determine whether brain volume loss over time was driven by the gray or white matter

component, PBVC was correlated with the change in the total gray matter (Fig 3A) and the

change in the total white matter volume (Fig 3B). There was a significant correlation between

the PBVC and the change in gray matter (Spearman’s r = 0.64, p = 0.003) but not between the

change in white matter (Spearman’s r = 0.42, p = 0.07).

Univariate regression analysis did not show any significant correlation between MS disease

duration, treatment duration, treatment possession, or baseline T2 lesion volume and PBVC

(Table 3). However, there was an influence of age on brain volume loss (p = 0.048). In multi-

variate regression analysis, which included age, MS disease duration, and baseline T2 lesion

volume, only age was found to significantly influence PBVC (p = 0.01).

Discussion

MS is a chronic, inflammatory, and more importantly, a neurodegenerative disease. The

inflammatory component of the disease has been well studied, but the understanding of the

neurodegenerative component and its potential relationship to inflammation remains largely

undefined. Over a longer time period, the disease progresses in physical and cognitive

domains. Drug treatments slow some aspects of the MS disease process but not all.

Despite clinical disease stability with natalizumab treatment, there was substantial brain

volume loss of 2% over a mean period of 36 months. This brain volume loss could not be

explained by pseudoatrophy, since the majority of patients had their brain volume assessed

using the initial MRI that was acquired at least 9 months post first infusion of natalizumab.

Pseudoatrophy phenomena are attributed to resolution of ongoing inflammation. Treatment

associated pseudoatrophy is mostly driven by the white matter.[51] Herein, contrast-enhanc-

ing lesions at baseline or new T1 contrast-enhancing or T2 lesions were not observed during

the study period, precluding the influence of inflammatory disease activity on brain volume

loss in all the scans that were analyzed in this study. There was a significant loss of total gray

matter but not white matter volume, and based on correlation analysis, total brain volume loss

was largely driven by the gray but not the white matter. Furthermore, the thalamus, largely

gray matter, demonstrated volume loss over time but the corpus callosum, a white matter

structure, did not. Multivariate regression analysis showed that age had significant influence

on brain volume loss, but other variables did not, including race, disease duration, treatment

duration, treatment possession (time on natalizumab/total disease duration), and baseline T2

lesion volume. Given that age had an influence on brain atrophy over time, the degree of brain

atrophy of about 2% could not be explained by the aging phenomena alone in this cohort,

since the rate of atrophy in normal aging has been reported to less than 0.4% per year.[52, 53]

Table 2. Evolution of MRI characteristics over time (mean 36.6 months).

Variable Baseline Follow-up

Median PBVC (IQR) - 2.00 (0.99–2.99)

Mean (±SD) T2 lesion volume, cm3 13.64 (15.65) 13.64 (15.41)

Median (±SD) EDSS 2.25 (1.27) 2.25 (1.45)

Mean (±SD) T1 values, ms (n = 12)�

GM 1240.46±56.44 1315.62±135.29

WM lesion 1041.52±125.82 1068.98±132.66

All comparisons were non-significant per paired t-test. PBVC = percentage of brain volume change, GM = gray

matter, WM = white matter.

� Only a subset of patients were examined for T1 relaxation values (n-12).

https://doi.org/10.1371/journal.pone.0209326.t002
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Change in the degree of T1 hypointensities, i.e., black holes, was also assessed over time.

Rather than measuring change in T1 lesion volume or number, a quantitative and patholog-

ically informative measure was used, T1 relaxation value. This value is reflective of tissue evo-

lution over time, either destructive or reparative. A novel technique is described whereby an

already acquired T1 weighted sequence is converted into a T1 relaxation map. T1 relaxation

values were derived both for the total gray matter and select lesions in the periventricular

regions. Although there was a trend seen in deterioration of T1 relaxation values in the gray

matter and white matter lesions, the comparisons did not reach statistical significance

(p = 0.14). This could be due to the small sample size. Larger sample size and validations stud-

ies are ongoing to further establish the value of this technique. If proven, this technique could

have widespread applications, such as retrospective and prospective analysis of MRI data in

disease and health.

A key observation of this study was that there was a progressive decline in brain volume

despite treatment with natalizumab. This decline was seen in gray matter but not white matter

structures. This confirms previous findings that gray and white atrophy occur independently

of each other.[16, 54, 55] This study illustrates that although natalizumab could seemingly halt

disease progression in the white matter, as determined by conventional MRI methods, gray

matter pathology may not be amenable to therapy. Mechanisms that drive gray and white mat-

ter changes may be very different. In MS, meningeal inflammation, the presence of follicle-like

structures in the meninges, and a unique lymphatic system adjacent to the meninges all point

to greater effects on cortical gray matter pathology rather than on white matter. The thalamus,

Fig 1. Gray (A) and white (B) matter changes over time (mean 36.6 months).

https://doi.org/10.1371/journal.pone.0209326.g001

Fig 2. Thalamic (A) and corpus callosum (B) volume changes over time (mean 36.6 months).

https://doi.org/10.1371/journal.pone.0209326.g002
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a deep gray matter structure, is affected significantly, perhaps because of its prominent bidirec-

tional connections with the cortical gray matter and because of its close proximity to the cho-

roid plexus, a site of immune cell entry into the CNS.[56] The results of this study suggests that

natalizumab may not have substantially halted some of the immune or neurodegenerative

mechanisms involved in gray matter atrophy, at least in this cohort of patients. Another possi-

bility is that there may be a slow and steady carry over of prior neurodegenerative decline into

the observation period. Given the stabilization of disease in the white matter, it could be that

natalizumab has a greater influence in alleviating white matter pathology than that involved in

gray matter.

In assessing the effects of a particular drug on brain atrophy, it should be noted that volume

loss is a result of several dynamic processes, a balance between destructive and reparative

mechanisms with interaction among neurons, axons, oligodendrocytes, astrocytes, microglia,

endothelial cells, inflammatory cells, and water distribution. How a particular drug affects a

tissue compartment can vary depending on what substrate is most affected by that DMT. Pseu-

doatrophy is a good example of how some DMTs can initially affect water distribution. Alter-

nately, fingolimod has prominent effects on astrocytes, since they express S1P1 receptors.[57]

However, over a longer period of observation time, the interactions among various substrates

involved in injury or repair probably reach homeostasis and the net effect is plateau, progres-

sion, or continual repair. Furthermore, injury may not have its full effects at the time of occur-

rence. Prior bouts of inflammation may produce substantial injury, which may not be fully

realized until months later as various cells degenerate at different rates, debris is removed, and

Fig 3. Correlation between PBVC and the change in total gray (A) and white (B) matter volume.

https://doi.org/10.1371/journal.pone.0209326.g003

Table 3. Univariate and multivariate regression analysis showing the influence of various disease characteristics on brain volume loss (PBVC).

Univariate analysis

Variable Coefficient 95% CI p-value R2

Age 0.049 0.048, 0.096 0.048 0.200

Race -0.346 -1.46, 0.769 0.523 0.023

Disease duration -0.006 -0.014, 0.002 0.147 0.113

Treatment duration -0.018 -0.057, 0.020 0.334 0.052

Treatment possession (%)� 0.007 -0.023, 0.037 0.640 0.012

Baseline T2 lesion volume -0.026 -0.061, 0.008 0.123 0.127

Multivariate analysis (age, disease duration, baseline T2 lesion volume)

Age 0.062 0.017, 0.106 0.010 0.455

�Time on natalizumab / total disease duration.

https://doi.org/10.1371/journal.pone.0209326.t003
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scarring sets in. Hence, the effects of a particular drug on atrophy may not be fully attributed

to that agent due to this carry over effect from prior injury. In terms of MRI analysis of brain

volume loss, it is best to set the baseline scan 6–9 months after a relapse, contrast activity, and

start of therapy.

Whole or fractionated volumetric changes in patients treated with natalizumab over a lon-

ger time period have been previously described. In a subset of patients continuously treated

with natalizumab (n = 13), PBVC over a 5-year period was 3.9%; a subset that had non-contin-

uous natalizumab treatment (n = 27), the brain loss was 5%.[58] Both of these subgroups did

not have any significant change in their T1 and T2 lesion volume or EDSS over time. Similarly,

others have reported a 3% PBVC over a 3-year treatment period with natalizumab treatment.

[59] In shorter follow up studies with natalizumab, PBVC has been reported to be reduced by

2.5% (over 18 months, most significant in the first 6 months), and by 1.5% (over 1.5 years).[60,

61]

In other studies examining brain segmentation, gray matter fraction reduction was greatest

in the first year (-1.28%) but not statistically significant in the second or third year [55]. The

white mater fraction was greatest in the first year (-0.9%) and in the second year (-0.6%), but

not statistically significant in the third year. The thalamic volume was significantly reduced in

the first and second year but not in the third year. However, the cerebellar gray matter volume

loss was seen during all 3 years. The study also showed that physical disability (EDSS) was

worse in patients who had lower baseline gray matter fraction and thalamic volume and a

greater degree of volume loss at follow-up. Although this study used different methodologies

and results are somewhat different than herein, one of the consistencies is that there is still dis-

ease progression in terms of gray matter loss over time despite treatment with natalizumab.

Another study showed that whole brain volume loss (PBVC) progresses over two years in

patients who have contrast enhancing lesions at baseline, showing the influence of baseline

inflammation on volume loss for at least two years. [62] A key difference between these studies

[55, 62] versus herein is that 47–63% of the patients had contrast-enhancing lesions at baseline,

whereas here “stable “patients were studied. Hence, the assessment in earlier studies may be

skewed towards stabilization of inflammation by natalizumab rather than preventing the indo-

lent neurodegeneration of the disease, a question raised by the present study.

There are studies that have shown dissimilar findings. A retrospective, one-year study

(n = 20) showed no change in whole brain or gray matter volume during natalizumab treat-

ment.[63] A two-year, prospective study (n = 35) showed a significant decrease in cortical atro-

phy and cortical lesion accumulation during natalizumab treatment.[64] A main explanation

for these discordant results is likely to be trial design/observation period and cohort differ-

ences, such as age, race, disease duration, prior inflammatory activity, and baseline disease

burden.

There are some limitations of the study, the main one being a retrospective study in a small

cohort of patients. The clinical measures were not blinded. Brain MRI assessments were made

based on available data and not selected a priori. Yearly rate of atrophy was not ascertained

due to the availability of MRI data. EDSS was measured, but not the more relevant cognitive

disability, which is important when examining gray matter changes. Also, a longitudinal, com-

parative group was not included, such as age/sex matched healthy controls.

Despite these limitations, a salient and consistent finding of this study is that whole brain

volume loss over a longer time period is primarily due to gray matter loss, and it continues at a

substantial rate even though these patients remain stable physically and per conventional MRI

measures. This study also highlights the importance of conducting long-term follow up of

patients to capture the neurodegenerative aspect of the disease, particularly as it intersects with

brain volume loss due to aging. Clinical trials with longer periods of observation are needed to
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assess many of these deficiencies, and must include separate examination of gray and white

matter. Longer, prospective studies examining a larger sample size and appropriate controls

would also clarify the variation in results seen among smaller studies. This study also opens the

door for future studies that could employ more sensitive techniques to study neurodegenera-

tion over time such as MTR, DTI, or MRS, and T1 relaxation maps. Also, gray matter changes

need to be correlated with cognitive function over a longer time period, an important long-

term disability outcome that has been sparsely studied.
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