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Abstract: Objective assessment of the motor evaluation test for Parkinson’s disease (PD) diagnosis is
an open issue both for clinical and technical experts since it could improve current clinical practice
with benefits both for patients and healthcare systems. In this work, a wearable system composed
of four inertial devices (two SensHand and two SensFoot), and related processing algorithms for
extracting parameters from limbs motion was tested on 40 healthy subjects and 40 PD patients.
Seventy-eight and 96 kinematic parameters were measured from lower and upper limbs, respectively.
Statistical and correlation analysis allowed to define four datasets that were used to train and test
five supervised learning classifiers. Excellent discrimination between the two groups was obtained
with all the classifiers (average accuracy ranging from 0.936 to 0.960) and all the datasets (average
accuracy ranging from 0.953 to 0.966), over three conditions that included parameters derived from
lower, upper or all limbs. The best performances (accuracy = 1.00) were obtained when classifying
all the limbs with linear support vector machine (SVM) or gaussian SVM. Even if further studies
should be done, the current results are strongly promising to improve this system as a support tool
for clinicians in objectifying PD diagnosis and monitoring.

Keywords: decision support system; motion analysis; motor assessment; Parkinson’s disease
diagnosis; signal processing; supervised learning; wearable inertial devices

1. Introduction

Worldwide Parkinson’s disease (PD) is the second most common neurodegenerative disorder.
It is caused by both genetic and environmental factors and no definitive therapy is currently available
to cure it. PD symptoms become evident when dopamine in the forebrain reaches a critical deficiency,
i.e., when the death of cells that produce dopamine transmitters exceeds 60% [1]. The global burden
of PD in the society is well-documented [2]; it is estimated that currently over 6 million people are
affected by this pathology, which has an increasing prevalence rate, as is expected to reach about
9 million people by 2030 [3]. The numerous impairments characterizing PD include both motor [1]
and non-motor [4] symptoms that are very disabling for patients. Therefore, quality of life (QoL) of
persons with PD is hugely affected by the pathology development [5], that, besides, leads to increased
caregivers’ burden. Moreover, the excessive burden can direct caregivers to burnout with consequently
premature institutionalization of the PD patient [6]. Also, the costs related to the pathology, measured
as direct, indirect and intangible costs, have a strong economic impact on patients, caregivers and
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national health systems [7,8]. The slowdown of the disease progression rate could allow a significant
saving of money, producing economic benefits both to citizen and healthcare systems. Since costs
are directly correlated to the severity of the disease (i.e., low costs for mild patients, high costs for
advanced patients) [7], the opportunity to detect PD in an early phase is crucial to provide optimal
treatment and improve patients QoL [9], while misdiagnosis or late diagnosis can cause delays in
applying the most appropriate treatment to the patients.

Although the Movement Disorders Society (MDS) recently updated the diagnostic criteria for
PD [10,11], introducing also the non-motor symptoms as additional diagnostic features and dealing
with the prodromal phase of the pathology, these revised criteria are still scarcely employed among
clinicians [12].

Thus, currently, PD diagnosis is mainly based on clinical criteria and neurological examination of
the patients (or suspected patients) administering them the MDS−Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) [13]. In particular, Section III of the MDS-UPDRS is dedicated to investigating
and assessing the motor capabilities of the patient according to the execution of standardized tasks.
In practice, the neurologist asks the patient to carry out specific motor tasks that mainly involve upper
and lower limbs and observes him/her. For each task, a score ranging from 0 (no motor signs) to 4
(severe motor sings) is assigned by the neurologist and the sum over all the tasks returns the evaluation
of the patient. Well-known problems are related to this type of assessment; first of all, the evaluation
strongly depends on the patient’s status at the moment of the examination [14] and furthermore, it is
also biased by the subjectivity of the clinical expert that assesses the patient, thus the evaluation can be
affected by high inter-rater variability [15].

Considering the lack of objective assessment of patients’ motion capabilities when evaluated during
clinical examinations, many attempts were made in the last decade to introduce novel technologies in
clinical practice to provide neurologists with reliable tools for objectively measuring motor impairments
in PD patients. The importance and potential of wearable systems and machine learning algorithms to
develop useful decision support systems for improving the assessment of motor symptoms related to
PD have been investigated and proved in several studies [3,16,17]. Nonetheless, an effective application
of technological systems in day-to-day practice for supporting PD diagnosis and monitoring has not
been achieved yet.

From the literature review, it is apparent that many studies have investigated and pursued the
use of wearable sensor devices, together with machine learning techniques, for different applications,
including indoor navigation [18], activity recognition [19] and objective assessment of PD motor
symptoms [3,15,16]. Concerning PD evaluation, limited datasets and issues about acceptance, usability,
reliability, and accuracy of the technological solutions represent the main limitations of most of those
works. Moreover, most of the studies focused on a single symptom (e.g., tremor, bradykinesia),
or analysed a single task, with a prevalence of gait analysis [15,16].

Finally, in the last three years, more attention has also been given to the analysis of the movement
of the upper limbs. For example, Garza Rodriguez et al. [20] analysed in depth the pronation-supination
movement of the hands, using a fuzzy inference system to process the information obtained from
eight features for calculating a score between 0–4 to be compared to the UPDRS. The results showed
good agreement with evaluations provided by neurologists. However, the system was only able
to record data from the wrists, appearing inadequate for the fine motor assessment of fingers that
typically are examined for PD evaluations. Differently, Bobic et al. [21] proposed a decision support
system based on the analysis of the finger tapping exercise only. Five parameters were extracted from
this task and correlation with the clinical assessment provided by the neurologist was investigated.
The system achieved a good agreement with neurologists’ diagnosis, but the dataset used included
small groups (i.e., less than 20 people per group). Moreover, the device is not presented, thus it is
difficult to understand if it could be robust, reliable, and available for use in clinical practice. The same
group [22] already published prior results about the objective measurement of kinematic parameters
from finger-tapping exercise comparing measurements from the wearable sensor to those obtained from
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a gold standard optical system. Good results were obtained using two different algorithms (named
AL-R and AL-C) reporting a root mean square error (RMSE) less than 4◦ (3.16◦ AL-R, 3.98◦ AL-C) and
an interclass correlation coefficient (ICC) between 0.972 (AL-R) and 0.980 (AL-C). Nonetheless, also in
this paper, it is not clear if the device could be available for real use. Finally, Van den Noort et al. [23]
also proposed a system, called Power Glove, to quantify the hand motor symptoms, proposing a set
of exercises and numerous parameters to measure. However, this was just a proof of concept that
enrolled 4 PD patients only, thus statistical validity is not achievable. Furthermore, looking at the
images, the system seems a prototype with low technological readiness level (TRL) [24], and further
studies about its development are not available to the best of our knowledge.

Also, analysis of foot-tapping by using wearable inertial sensors is not receiving much attention
in the last three years, which is unexpected since lower limbs tasks like toe-tapping and leg agility are
included in the MDS-UPDRS III.

Only very recently the idea that using a fusion of data coming from both upper and lower limbs
could improve the accuracy in PD motor states estimation is arising accomplished by encouraging
preliminary results [25–28].

In this context, this work aims at proposing a wearable system composed of four inertial devices
for upper and lower limbs analysis and custom-made algorithms able to extract a wide number of
parameters to objectively characterize the motor performance of investigated people. A preliminary
version of this work was published in [26], where a small number of patients was considered and minor
investigations with machine learning techniques were implemented. Differently, this paper shows
in detail how to process the raw inertial data acquired to calculate many features that can support
the neurologist in a decision-making process for objective diagnosis and assessment of Parkinson’s
disease. The idea is to overcome the traditional evaluation of single symptoms or impairments
(i.e., bradykinesia, tremor, dyskinesias) in favour of an integrated assessment of the people motor
capabilities. For this achievement, the use of techniques of artificial intelligence able to aggregate,
interpret and classify the big amount of information acquired by the inertial devices is unavoidable.
Appropriate machine learning algorithms can provide an overview of the examined subjects, however,
allowing to the neurologist the possibility, if needed, to retrieve information about a single exercise
or a single parameter. In this paper, the application of several machine learning approaches over
eighty subjects wants to represent proof of how the numerous extracted features are important and
reliable for identifying motor impairments caused by PD. Therefore, this work wants to focus on
the processing algorithms of the data obtained from the wearable inertial sensors to characterize the
motor performances of subjects undergoing the motor evaluation protocol. The paper points out the
computation of many parameters from spatio-temporal and frequency domains that surely can improve
the visual examination of the neurologist, providing additional information that cannot be caught
during the traditional evaluation motor test. In this context, the system could improve the PD diagnosis
thanks to the numerous, accurate, and useful information provided. Moreover, the opportunity to
have this information while doing the clinical exam and record it allows creating a sort of database
for each patient. Therefore, the clinician can have an objective assessment of reference for the next
examinations. In this sense, the system could be used also for monitoring disease progression.

2. Materials and Methods

2.1. Participants

Eighty people were enrolled for this study: 40 healthy control subjects (HC) (34 males, six females,
mean age ± standard deviation [SD] 65.6 ± 2.6 years old), and 40 PD patients affected by Parkinson’s
Disease (PD) (25 males, 15 females, mean age ± SD 66.4 ± 9.1 years old). The PD patients were mild
to mid, according to the clinical assessment based MDS-UPDRS III and Hoehn & Yahr (HY) scales
(mean MDS-UPDRS III ± SD score: 15.1 ± 7.7; mean HY ± SD score: 1.9 ± 0.7; mean L-dopa equivalent
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dose ± SD: 463.7 ± 313.3 mg), with a prevalence of the disease almost equally distributed (13 unilateral
right, 12 unilateral left, and 15 bilateral). The two cohorts were matched in age.

The design of the study agrees with the Declaration of Helsinki, and the experimental protocol
was approved by the Ethical Committee of Massa and Carrara Local Health Institution (No. 311,
18/11/2010). Informed written consent was obtained from all individual participants included in
the study. Subjects that manifested impairments or diseases, other than PD, that could affect motor
performance during daily activities (e.g., orthopaedic injuries, neurological disorders) were excluded
from the study. Further, all measurements on PD patients were acquired in a clinically defined ON-state.

2.2. Instruments

A system composed of four wearable devices based on inertial measurement units (IMUs) was used
to collect and objectively analyse the motor performance of the subjects involved in the experimental
test. The devices were developed and patented by the Assistive Robotics Lab of The BioRobotics
Institute of Scuola Superiore Sant’Anna by Cavallo et al. [29].

The system is low-cost, low-power, non-invasive, small, lightweight, wireless and easy to use.
Both the devices are supplied by rechargeable LiPo batteries and they enable to collect data with 100 Hz
sampling frequency. Two SensHand devices were used for the motion analysis of the upper limbs [30].
Each SensHand is composed of four modules, each of them equipped with an iNEMO-M1 board with
dedicated STM32F103RE microcontrollers (ARM 32-bit Cortex™-M3 CPU, STMicroelectronics, Agrate
Brianza, Monza and Brianza, Italy) and based on MEMS sensors that include 3-axis digital gyroscope
L3G4200D (user-selectable angular rate full-scale of 250/500/2000 deg/s, finally set on 2000 deg/s,
ST Microelectronics, Italy) and a ST Microelectronics 6-axis geomagnetic module LSM303DLHC
(dynamically user-selectable full-scale acceleration range of 2/4/8/16 g and a magnetic field full-scale of
1.3/1.9/2.5/4.0/4.7/5.6/8.1 gauss, finally set on 8 g and 4.7 gauss, respectively). The module placed on
the wrist acts as the coordinator of the system and it is equipped also with a Parani™-ESD210 (Sena
Technologies, Inc., Irvine, CA, USA) Bluetooth serial device for wireless communication towards a
control station. The other modules are placed on the distal phalanges of the thumb, index and middle
fingers, included in silicon finger stalls printed with different sizes to be adapted for each subject.
Modules coordination and data synchronisation are implemented through the controller area network
(CAN-bus) standard (Figure 1a).
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For the analysis of the lower limbs, instead, two SensFoot devices were adopted [31]. Each SensFoot
consists of an IMU integrated into the iNEMO-M1 board based on MEMS sensors (L3G4200D 3-axis
gyroscope set on 2000 deg/s, and LSM303DLHC 6-axis geomagnetic module set on 8 g and 4.7 gauss)
and a STM32F103RE ARM-based 32-bit microcontroller (ST Microelectronics). The system is integrated
with a SPBT2632C2A Bluetooth module (v.3.0, STMicroelectronics) which wirelessly transmits data
acquired to a remote personal computer for offline analysis. The device is placed on the dorsum of the
subject’s foot within a Velcro strap to ensure no movements occur between foot and sensor (Figure 1b).

Both the SensFoot devices and the coordinators of SensHand are included in a plastic cover
realized using a 3D printing technique. Data are collected on a PC through a custom-made interface
developed in Visual Studio, C# language.

2.3. Experimental Protocol

The experimental protocol to assess the motor performance of the subjects was derived from the
tasks described in Section 3 of the MDS-UPDRS. Eleven exercises were proposed in this work, and they
included tasks for upper limbs, lower limbs, and a task, i.e., the gait, during which the four limbs
were simultaneously analysed. In addition to the standard tasks, two further tapping exercises were
proposed for the analysis of the lower limb motor abilities.

Before starting the experimental session, each subject was asked to observe the correct execution of
each exercise as explained and showed by the clinical staff who administered the test. A brief training
to repeat all the movements was required for each subject to ensure that everyone had understood how
to correctly perform the exercises. During the experimentation, the clinician indicated the exercises
to be carried out, from time to time, before acquiring them, but no information was provided to the
subjects while they were performed the tasks.

A specific initial fixed position was established for each exercise to allow 3 seconds of static
acquisition, to have a baseline for each trial; then a beep from the PC indicated to start the exercise.
All the exercises lasted 10 s, except for the gait and rotation that finished when the subjects had covered
the required distance or angle, respectively. At the end of the exercises, further 3 s of static acquisition
were recorded.

For all the upper and lower limb tasks, except for rotation, the subjects assumed a comfortable
sitting posture (i.e., right angles at the hip, between trunk and thighs, and at the knees, between thighs
and shins); differently, they stayed standing with the arms at their sides for the gait and rotation
exercises. Subjects performed each exercise twice, to have two acquisitions from both the right and the
left sides. For comparison between groups, the average values of the two acquisitions were considered.
In the following sub-paragraphs, all the exercises are explained in detail and a video to clarify how the
tasks are performed is available as Supplementary Materials.

2.3.1. Upper Limb Tasks

• Thumb–Forefinger Tapping (THFF): the subject kept the hand fixed on the desk so that the
plane between the thumb and forefinger joined was parallel to the table. In the starting position,
the thumb and the forefinger were in contact, then the subject tapped the forefinger against the
thumb as quickly and widely as possible (MDS-UPDRS 3.4—Finger tapping)

• Hand Opening/Closing (OPCL): the subject flexed the arm that was fixed on the table at the elbow,
keeping the palm in front of him/herself. Starting from a fist position, the subject had to alternately
open and close the hand, holding the forearm and the wrist fixed as quickly and widely as possible
(MDS-UPDRS 3.5—Hand movements).

• Hand Pronation/Supination (PSUP): the subject put the arm outstretched in front of himself, with the
wrist stable and the hand in prone position. The pronosupination movements had to be performed
in parallel to the floor as quickly and widely as possible (MDS-UPDRS 3.6—Pronation-supination
movements of hands).
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• Hand Resting Tremor (HRST): the subject put the hand on the table in the prone position.
This position has kept for the duration of the exercise, with the hand fully relaxed, without
contrasting the potential tremor. Additionally, as a distracting task to get evidence on the potential
tremor, they were asked to count backwards (MDS-UPDRS 3.17—Hand rest tremor amplitude).

• Hand Postural Tremor (POST): the subject put the arm outstretched in front of himself, with the
wrist stable, the hand in the prone position and the fingers outstretched for all the time
(MDS-UPDRS 3.15—Postural tremor of hands).

2.3.2. Lower Limb Tasks

• Toe Tapping Heel Pin (TTHP): the subject tapped the toe on the floor always keeping the heel in
contact with the ground, as quickly and widely as possible (MDS-UPDRS 3.7—Toe Tapping).

• Leg Agility (HEHE): the subject tapped the heel on the floor always keeping the forefoot raised
from the ground, as quickly and widely as possible (MDS-UPDRS 3.8—Leg agility).

• Heel Tapping Toe Pin (HTTP): the subject tapped the heel on the floor always keeping the toe in
contact with the ground, as quickly and widely as possible.

• Heel-Toe Tapping (HETO): the subject tapped alternatively the heel and the toe on the floor,
as quickly and widely as possible.

• Rotation (ROTA): the subject turned once in the clockwise direction for 360◦, then the rotation has
repeated in the anticlockwise direction (part of MDS-UPDRS 3.10—Gait).

2.3.3. Full Task

• Gait (GTAF + GTAH): the subject started the gait with the right foot, walking 15 m linearly
until reached the finish line. The subject had to walk most naturally, at the preferred velocity.
Both walking (GTAF) and arms swinging (GTAH) are simultaneously acquired and analysed (part
of MDS-UPDRS 3.10—Gait).

Therefore, the protocol included movement tasks (e.g., ROTA, GTAF, GTAH), many of which are
repetitive exercises (i.e., THFF, OPCL, PSUP, TTHP, HTTP, HETO, HEHE), and tremor tasks (i.e., HRST,
POST). The full list of the abbreviations used in this paper is reported in Appendix A, Table A1.

2.4. Signal Processing

The motor data recorded with SensFoot and SensHand were stored on a PC during the
acquisitions and offline processed by using Matlab®R2019b (The MathWorks, Inc., Natick, MA,
USA). Accelerometers and gyroscopes provided triaxial accelerations and triaxial angular rates,
respectively, that were processed to measure kinematic parameters.

2.4.1. Pre-Processing

Movement Tasks

For all movement tasks (i.e., all exercises excluded HRST and POST), a fourth-order low-pass
digital Butterworth filter was applied (the cut-off frequency is equal to 5 Hz) to acceleration and
angular rate data to remove high-frequency noise and tremor frequency bands [32], typically identified
between 3.5–7.5 Hz [33]. The choice for a 5-Hz cut-off frequency represents a trade-off between
removing pathological tremor while preserving significant information from the acquired signals.
Indeed, a cut-off frequency of less than 5 Hz could delete useful information when the exercise is
executed particularly fast. On the other hand, a cut-off frequency higher than 5 Hz could maintain
tremor noise together with the useful signal when Parkinsonian tremor occurs. Differently, for gait,
the cut-off frequency was fixed to 3 Hz, since the cadence during a free walking in this sample is
typically around 1Hz.
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Tremor Tasks

For HRST and POST, which aimed at investigating tremor, 15 Hz and 20 Hz as cut-off frequency
were respectively chosen. A further fourth-order high-pass digital Butterworth filter was applied
(cut-off frequency equals to 0.5 Hz) for removing the continuous component of the signal.

2.4.2. Segmentation and Events Detection

For each movement exercise, the most informative signals were identified for processing.
For example, for THFF, the angular velocity of the index finger that was orthogonal to the plane where
the tapping movement occurred was selected (i.e.,ωy). Differently, for PSUP the angular velocity of the
wrist that was aligned with the forearm was selected (i.e.,ωx). Concerning the foot-tapping exercises
(i.e., TTHP, HTTP, HETO) the angular velocity orthogonal to the movement was chosen (i.e.,ωy). Also,
the GTAF was analysed in the sagittal plane (i.e., considering ax, az,ωy), which is the direction of the
motion, while ROTA was referred to the vertical axis z.

Then, the selected signals were segmented, identifying characteristic times that delimit typical
patterns in the signal according to the type of task. For example, for repetitive exercises for which
angular velocities were selected as representative of the movements (i.e., THFF, OPCL, PSUP, TTHP,
HTTP, HETO), three characteristic times were defined (i.e., when the action starts, when the movement
reaches the maximum amplitude, and when the action ends), thus the movements were divided into
two phases: the opening and the closing phase. Differently, for gait analysis the typical gait cycle
phases were identified according to [34], identifying four characteristic times (i.e., when the foot starts
to move, when the toe-off from the ground, when the heel strikes the ground and when the foot is
completely flat) and the related static and swing phases. Different thresholds were set among the
different exercises to segment the inertial signals. Indeed, fine and coarse tasks are characterized by
different dynamics, with different execution velocity and different movement amplitude. Therefore,
all tasks cannot be analyzed in the same way and different threshold values have appeared necessary.

Movement Tasks

• THFF

Tstart: it is the start of the tapping when the forefinger tip moves away from the thumb finger.
It is assumed that this transition occurs whenωy(t) ≥ THTF, where THTF = 15◦/s is a threshold of the
angular velocity to identify the beginning of the movement.

TTF: the maximum amplitude of the movement has been reached and forefinger and thumb are at
the maximum distance. This transition occurs whenωy(t) < 0◦/s and the angular velocity changes its
direction (i.e., from clockwise to anticlockwise).

Tend: the movement is completed, and the forefinger tip contacts the thumb again. This transition
occurs when ωy(t) ≥ THTFv, where THTFv = −3◦/s is an empiric threshold of the angular velocity to
identify the index is stable again.

• OPCL

Tstart: it is the start of the movement when the fingers move away from the palm. It is assumed
that this transition occurs when ωy(t) ≥ THOC, where THOC = 30◦/s is a threshold of the angular
velocity to identify the beginning of the movement.

TOC: the maximum amplitude of the movement has been reached and the hand is completely open.
This transition occurs whenωy(t) < 0◦/s, the angular velocity changes its direction (i.e., from clockwise
to anticlockwise direction) and the hand starts to be closed.

Tend: the movement is completed, and the hand is fully closed in a fist. This transition occurs
when ωy(t) ≥ THOCv, where THOCv = −3◦/s is an empiric threshold of the angular velocity to identify
the fingers are stable.
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• PSUP

Tstart: it is the start of the movement when the forearm starts to rotate. It is assumed that this
transition occurs when ωx(t) ≥ THPS for the right side (or ωx(t) ≤ −THPS for the left hand), where
THPS = 50◦/s is a threshold of the angular velocity coaxial to the forearm to identify the beginning of
the movement.

TPS: the maximum amplitude of the movement has been reached and supination is completed.
This transition occurs whenωx(t) < 0◦/s for the right side (orωx(t) > 0◦/s, for the left hand), the angular
velocity changes its direction (i.e., from clockwise to anticlockwise direction or vice versa) and forearm
starts the pronation movement.

Tend: the movement is completed, with forearm and hand prone. This transition occurs when
ωx(t) ≥ THPSv for the right side (or ωx(t) ≤ −THPSv for the left hand), where THPSv = −5◦/s is an
empiric threshold of the angular velocity to identify the forearm is stable.

• GTAH

Tstart: it is the start of the movement when the arm starts to swing. It is assumed that this transition
occurs whenωz(t) ≥ THGT, orωz(t) ≤ −THGT, according to the case in which the first movement of the
arm is a forward or backward motion, respectively, for the right arm, or the contrary for the left arm.
THGT = 10◦/s is a threshold of the angular velocity orthogonal to the arm that identifies the beginning
of the movement.

Tfront: the arm has reached the maximum distance from the frontal plane of the body in the
forward direction. This transition occurs when ωz(t) ≤ 2◦/s for the right arm (or ωz(t) ≥ −2◦/s for
the left side), and the angular velocity changes its direction (i.e., from clockwise to anticlockwise or
vice versa).

Tback: the arm has reached the maximum distance from the frontal plane of the body in a backward
direction. This transition occurs whenωz(t) ≥ −2◦/s for the right arm (orωz(t) ≤ 2◦/s for the left side),
and the angular velocity changes its direction (i.e., from anticlockwise to clockwise or vice versa).

• GTAF

Tstart: it is the start of walking when the heel moves away from the ground. It is assumed that this
transition occurs whenωy(t) < −THHO, where THHO = 50◦/s is a threshold of the angular velocity to
identify the raising of the heel from the ground.

TTO: only the toe gets in touch with the ground. This transition occurs whenωy(t) > 0◦/s, the toe
is going to be off from the ground (i.e., toe-off time), and the angular velocity changes its direction (i.e.,
from anticlockwise to clockwise).

THS: the heel gets in touch again with the ground (i.e., heel-strike time). This transition occurs
whenωy(t) < 0◦/s and the angular velocity changes its direction (i.e., from clockwise to anticlockwise).

Tend: the movement is completed, and the foot is totally lying on the floor. This transition occurs
when ωy(t) > −THFF, where THFF = 3◦/s is an empiric threshold of the angular velocity to identify the
foot flat phase, i.e., when the foot is stable on the ground.

• ROTA

Tstart: it is the start of the movement when the foot was raised from the ground and the rotation
starts. It is assumed that this transition occurs when ωz(t) ≤ −THRO when the rotation is in the
clockwise direction (i.e., rotating on the right foot), or for ωz(t) ≥ THRO when the rotation is in the
anticlockwise direction (i.e., rotating on the left foot). THRO = 50◦/s is a threshold of the angular
velocity approximately coaxial to the vertical axis of the body.

Tend: the movement is completed, and the foot is totally lying on the floor. This transition occurs
when ωz(t) ≥ −THROv for the clockwise rotation (or ωz(t) ≤ THROv for the anticlockwise rotation),
where THROv = 5◦/s is an empiric threshold of the angular velocity to identify the forearm is stable.
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• TTHP

Tstart: it is the start of the tapping when the toe moves away from the ground. It is assumed that
this transition occurs when ωy(t) > THTO, where THTO = 10◦/s is a threshold of the angular velocity to
identify the raising of the toe.

THS: only the heel gets in touch with the ground, and the toe reaches the highest position from
the floor. This transition occurs whenωy(t) < 0◦/s and the angular velocity changes its direction (i.e.,
from clockwise to anticlockwise).

Tend: the movement is completed, and the foot is totally lying on the floor. This transition occurs
when ωy(t) > −THFF, where THFF = 3◦/s is an empiric threshold of the angular velocity to identify the
foot flat phase.

• HTTP

Tstart: it is the start of the tapping when the heel moves away from the ground. It is assumed that
this transition occurs when ωy(t) < −THHO, where THHO = 10◦/s is a threshold of the angular velocity
to identify the raising of the heel.

TTO: only the toe gets in touch with the ground, and the heel reaches the highest position from
the floor. This transition occurs whenωy(t) > 0◦/s and the angular velocity changes its direction (i.e.,
from anticlockwise to clockwise).

Tend: the movement is completed, and the foot is totally lying on the floor. This transition occurs
whenωy(t) < THFF, where THFF = 3◦/s is an empiric threshold of the angular velocity to identify the
foot flat phase.

• HETO

Tstart: it is the start of the tapping. Since the first tap can be done with the toe or with the heel
(as the user prefers), it is assumed that this transition can occur when ωy(t) > THTO (i.e., toe-off case),
or ωy(t) < −THHO (i.e., heel-off case), where THTO = THHO = 20◦/s is a threshold for the angular
velocity to identify the beginning of the movement.

THS: only the heel gets in touch with the ground, and the toe reaches the highest position from
the floor. This transition occurs whenωy(t) < 0◦/s and the angular velocity changes its direction (i.e.,
from clockwise to anticlockwise).

TTO: only the toe gets in touch with the ground, and the heel reaches the highest position from
the floor. This transition occurs when ωy(t) > 0◦/s and the angular velocity changes its direction again
(i.e., from anticlockwise to clockwise).

• HEHE

Tstart: it is the start of the tapping when the toe moves away from the ground. It is assumed that
this transition occurs when ωy(t) > THTO, where THTO = 10◦/s is a threshold of the angular velocity to
identify the raising of the toe.

THE: only the heel gets in touch with the ground.
Tend: the movement is completed, and the foot is totally lying on the floor. This transition occurs

when ωy(t) > −THFF, where THFF = 3◦/s is an empiric threshold of the angular velocity to identify the
foot flat phase.

Tremor Tasks

Since HRST and POST tasks consisted of a static acquisition, characteristic times were not
searched. Only Tstart, 3 seconds after the beginning of the acquisition, and Tend after 10 s from the start,
were identified.
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2.4.3. Feature Extraction

Movement Tasks

Angular rates, selected and segmented during the previous step, were integrated to calculate
the amplitude of the movements using the trapezoidal rule, with sub-intervals of integration equal
to 100 ms, which is the inverse of the sensor-sampling rate. Linear drift correction was applied step
by step to avoid cumulative effects, according to the theory of the zero velocity update (ZUPT) [35]
(Figure 2). Thus, the correction at each step (e.g., each finger tapping, each step while walking) allow
restraining the accumulation of error.Sensors 2020, 20, x FOR PEER REVIEW 10 of 27 
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Figure 2. Example of a signal from THFF exercise. Upper panel: Signal Segmentation of the
dominant angular velocity with identification of the characteristic times (Tstart, TTF, Tend). Lower Panel:
Angular Excursion obtained from the integration of the angular velocity with and without the linear
drift correction.

Based on the characteristic times, the following features were computed for TTHP, HTTP, THFF,
OPCL, PSUP, GTAH:

• Number of movements:
Taps = number of (Tend), (1)

• Mean frequency:

Freq =


∑Taps−1

i−1 (Tend(i + 1) − Tend(i))

Taps− 1


−1

(2)
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• Mean of the maximum movement amplitude (i.e., the maximum angle reached by the toe in the
TTHP, maximum angle reached by the heel during HTTP, the maximum angular distance between
finger and thumb in THFF, the maximum opening of the hand in OPCL, maximum excursion in
supination movement in PSUP, the maximum swing of the arm in GTAH) over all the task:

Exc =

∑Taps−1
i=2 Exc(i)

(Taps− 2)
, (3)

where: 
Exc(i) = max

[∫ j
Tstart

ωy(t)dt−
∼

θ( j)
]
, for TTHP, HTTP, THFF, OPCL

Exc(i) = max
[∫ j

Tstart
ωx(t)dt−

∼

θ( j)
]
, for PSUP

Exc(i) = max
[∫ j

Tstart
ωz(t)dt−

∼

θ( j)
]
, for GTAH

, (4)

with:
∼

θ( j) =
[

j− Tstart

Tend − Tstart

]
·θ(Tend). (5)

• Integral of the magnitude of the total acceleration vector (IAV), which is related to the estimated
energy expenditure [36]:

IAV =

∫ Tend

Tstart

√
a2

x + a2
y + a2

z dt. (6)

• Variability in frequency overall movements:

CV f req = 100%·
max

[
f j
]
−min

[
f j
]

max
[

f j
] , where j = 1, . . . , Taps (7)

with:
f j =

1
Tend( j + 1) − Tend( j)

. (8)

• Variability in amplitude overall movements:

CVexc = 100%·
max

[
Excj

]
−min

[
Excj

]
max

[
Excj

] , where j = 1, . . . , Taps (9)

• Mean of opening (or supination, or frontward) velocity overall movements (for TTHF, OPCL,
PSUP, GTAH only):

ωo =
∑Taps−1

i=2 ωo(i)
(Taps−2) , whereωo = mean

[
ωy(j)

]
, with j = TStart, . . . , TTF(or TOC) for THFF, OPCL

ωs =
∑Taps−1

i=2 ωs(i)
(Taps−2) , whereωs = mean[ωx(j)], with j = TStart, . . . , TPS for PSUP

ωf =
∑Taps−1

i=2 ωf(i)
(Taps−2) , whereωf = mean[ωz(j)], with j = TStart, . . . , Tfront for GTAH

. (10)

• Mean of closing (or pronation, or backward) velocity over all movements (for TTHF, OPCL, PSUP,
GTAH only):

ωc =
∑Taps−1

i=2 ωc(i)
(Taps−2) , whereωc = mean

[
ωy(j)

]
, with j = (TTF/OC + 1), . . . , Tend for THFF, OPCL

ωp =
∑Taps−1

i=2 ωp(i)
(Taps−2) , whereωp = mean[ωx(j)], with j = (TPS + 1), . . . , Tend for PSUP

ωb =
∑Taps−1

i=2 ωb(i)
(Taps−2) , whereωb = mean[ωz(j)], with j = (Tfront + 1), . . . , Tend for GTAH

. (11)
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The first and the last movements are excluded from the computation of the average amplitude and
velocity of the movements. This choice is based on an extensive analysis of the used signal database,
where it appears clearly that the first movement is often different from the others, often showing higher
amplitude and velocity. On the other hand, the last movement is excluded as well because sometimes
it appears incomplete, or highly reduced in amplitude when the subject receives the input of stopping
the task and suddenly close the movement.

For the HETO task, some variations were considered for the computation of the parameters,
as follows:

• Number of tapping movements:

Taps = min[number(THS); number(TTO)], (12)

• Mean frequency of the toe-tapping:

FreqT =


∑Taps−1

i=2 (TTO(i + 1) − TTO(i))

Taps− 2


−1

(13)

• Mean frequency of the heel tapping:

FreqH =


∑Taps−1

i=2 (THS(i + 1) − THS(i))

Taps− 2


−1

(14)

• Mean frequency of the heel-toe tapping:

FreqHT =


(∑Taps−1

i=2 (THS(i+1)−TTO(i))
Taps−2

)−1

if THS(1) > TTO(1)(∑Taps−1
i=2 (TTO(i+1)−THS(i))

Taps−2

)−1

if THS(1) < TTO(1)
(15)

• Mean of the maximum toe movement amplitude (i.e., the maximum angle from the ground
reached by the toe) over all the taps:

ExcT =

∑Taps−1
i=2 ExcT(i)

(Taps− 2)
, (16)

where:

ExcT(i) = max
[∫ THS

TTO

ωy(t)dt
]
, (17)

• Mean of the maximum heel movement amplitude (i.e., the maximum angle from the ground
reached by the heel) over all the taps:

ExcH =

∑Taps−1
i=2 ExcH(i)

(Taps− 2)
, (18)

where:

ExcH(i) = max
[∫ TTO

THS

ωy(t)dt
]

(19)

• Variability in frequency overall movements as in Equation (7), where f is FreqHT.
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• Variability in toe amplitude overall movements as in Equation (9), where Exc is ExcT.
• Variability in heel amplitude overall movements as in Equation (9), where Exc is ExcH.
• The IAV parameter was computed in the same manner of Equation (6).

For GTAF the following features were computed:

• Gait Time to cover 15 meters:

GT_Time = Tend(end) − Tstart(1). (20)

• Number of strides during 15 meters walking:

GT_Strd = number(Tend). (21)

• Mean Gait Frequency:
GT_Freq = GT_Strd/GT_Time (22)

• Mean Stride Time:

GT_StrdT =
1

GT_Strd− 1
·

GT_Strd−1∑
i=1

THS(i + 1) − THS(i) (23)

• Mean Swing Time:

GT_SWT =
1

GT_Strd
·

GT_Strd∑
i=1

THS(i) − TTO(i) (24)

• Mean Stance Time:

GT_STT =
1

GT_Strd
·

GT_Strd∑
i=1

GT_StrdT(i) −GT_SWT(i) (25)

• Mean Relative Stance:

GT_RS =
100%

GT_Strd
·

GT_Strd∑
i=1

GT_STT(i)
GT_StrdT(i)

(26)

• Mean of the maximum dorsiflexion angular excursion of the foot over all the strides:

GT_Ang =
1

GT_Strd− 2
·

GT_Strd−1∑
i=2

max(θ(i)) −min(θ(i)) (27)

where:

θ(i) =
∫ Tend

Tstart

ωy(t)dt + θinit, (28)

with: 
θinit(i = 1) = 1

M ·
Tstart∑

k=Tstart−M
tan−1(ax, az), where M = 10

θinit(i > 1) = 1
N ·

Tstart(i+1)∑
k=Tend(i)

tan−1(ax, az), where N = Tstart(i + 1) − Tend(i)
(29)

For ROTA the following features were computed:
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• Rotation Time to cover 360 degrees:

RO_Time = Tend(end) − Tstart(1). (30)

• Number of strides during 15 meters walking:

RO_Strd = number(Tend). (31)

• Mean Gait Frequency:
RO_Freq = RO_Strd/RO_Time (32)

• Total Stance Time:

RO_STT =
RO_Strd−1∑

i=1

T_Start(i + 1) − T_end(i) (33)

• Total Relative Stance:

RO_RS =
100%·RO_STT

RO_Time
(34)

Tremor Tasks

For HRST, POST, and HEHE, the analysis was performed in the frequency domain only. The Matlab
function FFT that implemented the Fast Fourier Transform was applied to accelerometer and gyroscope
signals, to obtain the Discrete Fourier Transform (DFT):

X(i) =
N∑

j=1

X( j)ω( j−1)(k−1)
N (35)

Then, Power Spectral Density (PSD) was computed as:

Pxx(ω) =
1

2π

∞∑
m=−∞

Rxx(m)e−jωm (36)

This equation, which is expressed as normalized frequency, can be written as a function of the
physical frequency through the relation: ω = 2πf /fs, where fs is the sampling frequency:

Pxx(ω) =
1
fs

∞∑
m=−∞

Rxx(m)e−
j2πmf

fs (37)

Then, the average power of the signal in a certain frequency band [ω1,ω2] with 0 ≤ω1 ≤ω2 ≤ π
is calculated as:

P[ω1,ω2] =
1
fs

∫ ω2

ω1
Pxx(ω)dω (38)

Starting from these formulae, specific Matlab functions were applied both to accelerometer and
gyroscope signals to measure:

• Average power in PSD: it is the mean value of the power of the signal calculated through the PSD.
• Fundamental frequency: it is the frequency corresponding to the peak of the power.
• Maximum peak in PSD: it is the maximum value in the PSD of the acceleration signal, and it

represents the peak of the power (for HEHE only)
• Percentage power of the signal in frequency band [3.5–7.5] Hz, which is typically associated with

Parkinsonian tremor.



Sensors 2020, 20, 2630 15 of 27

• Percentage power of the signal in frequency band [8–12] Hz, which is typically associated with
physiological tremor (for POST only).

• The estimated energy expenditure, as IAV parameter, was computed in the same manner of
Equation (6).

The complete list of parameters measured for each exercise is reported in Table 1 for lower limbs
and in Table 2 for upper limbs. Parameters measured from the lower limbs were used to identify the
FEET condition, while the parameters derived from the upper limbs constituted the HANDS condition.
Then, all parameters were considered in the FULL condition.

Table 1. List of parameters measured for each task (lower limbs) both for the right and left sides.

Exercise

Parameter TTHP HTTP HETO HEHE ROTA GTAF

Number of movements TT_Taps HH_Taps HT_Taps RO_Strd GT_Strd

Frequency TT_Freq HH_Freq
HT_FreqT
HT_FreqH

HT_FreqHT
HE_Freq RO_Freq GT_Freq

Max. Amplitude TT_Exc HH_Exc HT_ExcT
HT_ExcH GT_Ang

Frequency Variability TT_CVfreq HH_CVfreq HT_CVfreq

Amplitude Variability TT_CVexc HH_CVexc HT_CVexcT
HT_CVexcH

Time RO_Time GT_Time
Stride Time GT_StrdT
Swing Time GT_SWT
Stance Time RO_STT GT_STT

Relative Stance RO_RS GT_RS
Average Power HE_Power

Peak Power HE_Peak
IAV TT_IAV HH_IAV HT_IAV HE_IAV

Table 2. List of parameters measured for each task (upper limbs) both for the right and left sides.

Exercise

Parameter THFF OPCL PSUP HRST 1 POST 1 GTAH

Number of movements TF_Taps OC_Taps PS_Taps GT_Taps

Frequency TF_Freq OC_Freq PS_Freq RT_FreqA
RT_FreqG

PT_FreqA
PT_FreqG GT_HFreq

Max. Amplitude TF_Exc OC_Exc PS_Exc GT_Exc
Opening Velocity TF_ωo OC_ωo PS_ωs GT_ωf
Closing Velocity TF_ωc OC_ωc PS_ωp GT_ωb

Frequency Variability TF_CVfreq OC_CVfreq PS_CVfreq GT_CVfreq
Amplitude Variability TF_CVexc OC_CVexc PS_CVexc GT_CVexc

Average Power RT_PwrA
RT_PwrG

PT_PwrA
PT_PwrG

% Power [3.5–7.5] Hz RT_Perc1A
RT_Perc1G

PT_Perc1A
PT_Perc1G

% Power [8–12] Hz PT_Perc2A
PT_Perc2G

IAV TF_IAV OC_IAV PS_IAV RT_IAV PT_IAV GT_IAV
1 In HRST and POST tasks, A is referred to parameters measured from acceleration data; G is referred to parameters
measured from the gyroscope.

2.5. Data Analysis

The parameters reported in Tables 1 and 2 were measured for all the subjects, both for left and
right side, then the possibility to distinguish the different groups of people involved in this study
according to their motor performance was investigated. Particularly, 40 HC subjects versus 40 PD
patients were analysed using binary classification.

Normality of data distribution was verified for each parameter applying the Kolmogorov– Smirnov
test. Parameters calculated for the right side and left side were assessed separately because of the
unilaterality that characterises the onset of the pathology. Since data from all extracted features were
nonparametrically distributed, the nonparametric statistic tests were used. Statistical significance of
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each parameter was investigated by using the Wilcoxon rank-sum test for comparing two groups
(i.e., HC vs. PD). The significance level was set at 5% (i.e., p-value < 0.05) and parameters resulted as
significant were included in the post significance dataset (PS dataset). Because of the great number of
comparisons, the Bonferroni correction was applied, controlling the familywise error rate (FWER) to
avoid including features that can be significant by chance. Features from PS that remained significant
after the Bonferroni correction were included in the PS_B dataset. However, both the solutions (i.e.,
including all the significant features after the Mann-Whitney test, and selecting only the significant
features after the Bonferroni correction) were considered for the following steps of analysis.

2.5.1. Feature Selection Process

A correlation analysis based on the Spearman’s correlation coefficients was implemented to reduce
the feature space because of the great number of parameters included in the analysis. Both sides for
upper and lower limbs were evaluated separately to identify parameters highly correlated with others.
The cut-off correlation coefficient was set up at rho = 0.85 (and related p-value < 0.05), according to the
methodology applied also in previous related works [26,30,31], and only the most significant parameter
was maintained when two or more parameters resulted strongly correlated. Parameters from the
PS dataset that resulted uncorrelated after the Spearman’s test were included in the post correlation
dataset (PC dataset). Analogously, uncorrelated features from the PS_B dataset were included in
the PC_B dataset. The dimensionality reduction is generally applied to avoid overfitting during the
classification process.

2.5.2. Classification

The ability of the selected features to correctly distinguish between HC and PD was evaluated
applying supervised learning classifiers. In particular, support vector machine (SVM) with different
kernel functions, random forest (RF), and naïve Bayes (NB) were trained and tested to implement
the classification.

Support Vector Machine

SVM is particularly suitable when the data must be classified into two classes, by finding the best
decision surface, called hyperplane, that separates all data points of one class from those of the other
class. The best hyperplane is characterised by the largest margin between the two groups, and the
support vectors are the closest elements to it. The function that generates the hyperplane depends
on the choice of the kernel in the SVM model [37]. Types of kernels that can be implemented are
linear, quadratic, Gaussian and polynomial. Main advantages of using SVM are that this technique has
high predictive accuracy while tending not to overfit data and it is relatively easy to interpret. When
applying SVM, there is need of time to generate the training model; once the model has been trained,
the training data can be discarded if limited memory is available and the test is very fast.

The good generalization performance and the ability to provide good results when analysing a
large set of attributes suggested that this technique could be suitable for our application. The SVM
developed in this work implemented three different kernels: linear (SVM_L), Gaussian (SVM_G) and a
third-order polynomial (SVM_P) kernel.

Random Forest

RF is an ensemble learning algorithm based on multiple decision trees constituting the forest.
Each tree provides a binary decision and the majority vote over all the trees identifies the assignment
of a new observation vector to a class. Main advantages of RF are that it is robust to noise and outliers
and it has good performance even with large datasets. RF is based on a random step in the process of
creating the trees and selecting a splitting feature [38]. Generally, default parameterization leads to
excellent performance, thus the parametrization is quite simple [39]. Disadvantages of RF are that
generating the model can take a lot of memory and the classification tends to overfit.
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In this work, the package for MatLab [40] based on the Breiman et al. algorithm [38] was used to
implement the RF classifier.

Naïve Bayes

NB are probabilistic learning algorithms, based on Bayes’ Theorem. They calculate the probability
of each category for a given sample and then output the category with the highest probability. NB arises
on the strong assumption of conditional independence of the features (i.e., independence of all attributes
according to the value of the class variable) [41], thus NB performance can decrease when a high
correlation between two or more features is found. Main advantages of NB are the ability to work well
also with small datasets for training the model, and the quick training phase. Moreover, being simple,
it does not tend to overfit data. On the other hand, when the dataset grows up in size and variance, the
performance of NB decreases.

The parameters used to optimize the classifiers were automatically obtained from dedicated
Matlab functions. For SVM the function fitcecoc was used activating the option about the
‘HyperparameterOptimizationOptions’. Analogously, for NB the function fitcnb was used activating the
option about the ‘HyperparameterOptimizationOptions’. Differently, for RF the number of trees was
varied using a base two exponential rate with the exponent from 1 to 12 [42] and the optimal number
of trees was chosen according to a trade-off between the area under the curve (AUC) calculated from
the receiver operating characteristic (ROC) and the corresponding processing time.

Multiple comparisons were evaluated in this work. In particular, 5 different classifications were
implemented, and relative confusion matrices were calculated considering: (i) all the significant
features (i.e., after the Mann-Whitney test, PS dataset); (ii) the corrected (i.e., after the Bonferroni
correction) significant features (PS_B dataset); (iii) the significant uncorrelated (i.e., after the Spearman
correlation) features (PC dataset); (iv) the corrected significant uncorrelated features (PC_B dataset).
Furthermore, the motor performances of the subjects were assessed under three conditions, considering:
(i) the parameters related to the lower limbs only (FEET); (ii) the parameters related to the upper limbs
only (HANDS); (iii) all the parameters (FULL).

To minimize overfitting, the cross-validation model was implemented, evaluating the classifiers
when predicting unseen datasets that were not used for training the system. 10-folds cross-validation
was chosen, so that, each classifier was tested ten times and the average values were provided for
evaluation metrics. Practically, the dataset of 80 subjects was randomly divided into 10 folds of eight
subjects each. At each time, nine folds were used for training the model, and an unseen fold was used
for testing it. Repeating the process 10 times, each fold was used for testing the system when not
included for training. Confusion matrices reporting the results of classification were saved.

Finally, standard evaluation metrics were used to calculate the performance of the classifiers.
True Positive (TP), False Positive (FP), True Negative (TP), and False Negative (FN) values were
computed from the obtained confusion matrices. Then sensitivity or recall (i.e., percentage of cases
that are correctly identified as true), specificity (i.e., percentage of cases that are correctly identified as
false), precision (i.e., percentage of cases correctly identified as true concerning all predicted as true),
accuracy (i.e., percentage of cases that are correctly identified over all subjects), and F-measure (i.e., a
weighted average of the specificity and sensitivity) were obtained.

3. Results

In this section, results obtained from the multiple comparisons using the five supervised classifiers
on four datasets (i.e., PS, PS_B, PC, and PC_B) evaluated over three conditions (FEET, HANDS and
FULL) were reported in detail.

3.1. Feature Selection

Thirty-nine parameters were measured from the lower limbs for each side (i.e., a total of
78 parameters for the FEET condition), while 48 parameters were obtained from each side of the
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upper limbs (i.e., 96 parameters in total for the HANDS condition). Therefore, the FULL condition
was composed of 87 features per side, which are overall 174. Since the parameters resulted in a
non-parametric distribution, they were reported in Tables 3 and 4 as median values and interquartile
ranges (IQR) both for HC and PD. Moreover, that tables highlighted also what parameters were selected
in each of the 4 defined datasets: PS, PS_B, PC, PC_B.

Table 3. Median and interquartile range (IQR) values for parameters extracted from lower limbs for
both HC and PD. Significance of parameters in the four datasets (PS, PS_B, PC, PC_B) is marked.

Left Right Significance

Parameter
HC

Median
(IQR)

PD
Median
(IQR)

HC
Median
(IQR)

PD
Median
(IQR)

PS PS_B PC PC_B

TT_Taps 33.0 (11.2) 29.0 (9.0) 38.5 (9.2) 31.0 (9.0) X X X X
TT_Freq 3.29 (1.17) 2.89 (0.92) 3.93 (0.95) 3.11 (0.98) X X
TT_Exc 10.4 (5.3) 7.7 (5.8) 7.2 (5.4) 7.6 (5.4)

TT_CVfreq 41.3 (25.4) 48.3 (23.6) 39.8 (18.1) 38.7 (22.8)
TT_Cvexc 60.3 (35.1) 70.1 (27.4) 65.0 (23.5) 64.1 (27.4)
TT_IAV 108.6 (4.2) 99.0 (17.7) 111.5 (4.5) 101.2 (20.7) X X X X

HH_Taps 38.0 (7.2) 31.7 (8.2) 40.0 (8.0) 32.2 (10.2) X X X X
HH_Freq 3.79 (0.74) 3.16 (0.94) 4.02 (0.79) 3.22 (1.06) X X
HH_Exc 10.3 (6.6) 5.3 (8.8) 8.8 (6.3) 6.2 (5.8) X X

HH_Cvfreq 53.0 (13.0) 56.8 (20.6) 54.8 (18.3) 54.5 (27.1)
HH_Cvexc 80.6 (15.7) 85.7 (21.0)) 84.4 (18.9) 82.6 (26.4)
HH_IAV 110.6 (4.1) 106.3 (8.9) 112.2 (3.9) 106.6 (9.3) X X X X

HT_Taps 14.5 (3.5) 13.7 (3.2) 15.7 (4.0) 13.5 (3.5) X X X X
HT_FreqT 1.50 (0.37) 1.43 (0.32) 1.64 (0.46) 1.40 (0.36) X X
HT_FreqH 1.51 (0.37) 1.44 (0.31) 1.64 (0.46) 1.41 (0.36) X X

HT_FreqHT 3.17 (0.70) 2.97 (0.76) 3.35 (0.81) 2.76 (0.93) X X
HT_ExcT 36.6 (7.7) 21.4 (13.7) 32.0 (10.9) 20.1 (9.7) X X X X
HT_ExcH 36.3 (8.3) 22.4 (12.6) 31.7 (11.4) 20.6 (9.3) X X

HT_Cvfreq 40.8 (30.2) 61.5 (26.9) 41.3 (31.6) 53.1 (31.1) X X X X
HT_CvexcT 52.6 (48.2) 71.9 (38.4) 49.2 (44.8) 44.8 (39.9) X X
HT_CvexcH 55.6 (45.8) 70.3 (41.5) 56.0 (50.0) 66.5 (32.9) X

HT_IAV 101.4 (4.9) 96.1 (14.7) 103.6 (3.9) 96.2 (14.0) X X X X

HE_Power 81.9 (32.4) 6.1 (16.6) 82.8 (37.5) 7.2 (12.5) X X X X
HE_Peak 111.1 (80.1)) 127.8 (92.5) 13.2 (28.4) 13.3 (23.6) X X
HE_Freq 3.86 (0.69) 3.59 (0.83) 4.30 (0.93) 3.83 (0.76) X X X X
HE_IAV 140.5 (26.4) 104.5 (11.8) 141.4 (25.8) 102.6 (11.2) X X

GT_Time 11.2 (1.9) 13.4 (2.2) 11.9 (2.1) 13.7 (3.1) X X X X
GT_Strd 11.0 (1.8) 12.5 (2.3) 11.0 (1.8) 12.8 (3.0) X X X X
GT_Freq 0.95 (0.09) 0.94 (0.06) 0.96 (0.10) 0.94 (0.11)
GT_StrdT 1.07 (0.11) 1.09 (0.07) 1.06 (0.11) 1.08 (0.13)
GT_SWT 0.33 (0.03) 0.32 (0.03) 0.32 (0.03) 0.33 (0.03)
GT_STT 0.74 (0.09) 0.76 (0.07) 0.75 (0.09) 0.77 (0.10)
GT_RS 69.1 (1.7) 69.7 (1.9) 70.4 (2.4) 70.2 (2.1) X X

GT_Ang 92.1 (9.8) 75.1 (14.0) 76.9 (11.0) 68.9 (13.4) X X X X

RO_Time 2.5 (0.6) 2.3 (1.0) 3.7 (1.7) 3.7 (1.7) X X X X
RO_Strd 3.0 (1.0) 3.0 (0.5) 4.5 (1.2) 4.5 (1.5) X X X X
RO_Freq 1.39 (0.29) 1.34 (0.40) 1.20 (0.33) 1.25 (0.35) X X
RO_STT 1.07 (0.48) 1.01 (0.67) 1.65 (1.23) 1.76 (1.30) X X
RO_RS 44.1 (11.3) 44.4 (13.6) 48.6 (14.5) 48.7 (11.9) X



Sensors 2020, 20, 2630 19 of 27

Table 4. Median and Interquartile Range (IQR) values for parameters extracted from upper limbs for
both HC and PD. Significance of parameters in the four datasets (PS, PS_B, PC, PC_B) is marked.

Left Right Significance

Parameter
HC

Median
(IQR)

PD
Median
(IQR)

HC
Median
(IQR)

PD
Median
(IQR)

PS PS_B PC PC_B

PS_Taps 23.0 (7.5) 16.0 (10.7) 23.8 (9.8) 15.5 (9.0) X X X X
PS_Freq 2.36 (0.75) 1.62 (1.07) 2.37 (1.09) 1.50 (0.95) X X
PS_Exc 157.1 (39.7) 107.1 (44.5) 149.6 (36.8) 122.8 (41.9) X X X X
PS_ωp 641.5 (139.9) 349.5 (193.2) 647.4 (163.5) 334.2 (218.7) X X
PS_ωs 715.2 (233.2) 338.5 (206.8) 695.1 (215.5) 324.9 (196.9) X X X X

PS_CVfreq 24.5 (16.3) 24.3 (22.1) 23.2 (12.9) 21.7 (17.9)
PS_CVexc 24.2 (31.4) 27.1 (37.0) 22.1 (15.8) 29.6 (26.7)

PS_IAV 155.8 (55.5) 109.7 (11.0) 150.6 (53.4) 107.5 (16.5) X X

OC_Taps 34.0 (6.8) 21.5 (15.5) 36.0 (9.8) 21.5 (13.3) X X X X
OC_Freq 3.39 (0.68) 2.10 (1.50) 3.58 (1.00) 2.14 (1.32) X X
OC_Exc 104.3 (44.1) 116.4 (77.5) 89.7 (50.7) 103.3 (73.3)
OC_ωo 597.3 (211.6) 458.5 (326.9) 554.5 (215.6) 433.3 (268.0) X
OC_ωc 706.5 (249.9) 435.5 (420.0) 637.8 (257.1) 464.8 (361.9) X X X X

OC_CVfreq 23.4 (12.3) 30.1 (28.4) 25.4 (14.0) 26.1 (24.9) X X
OC_CVexc 44.8 (26.4) 50.6 (34.2) 56.6 (23.3) 41.7 (35.9)

OC_IAV 258.5 (81.8) 144.7 (97.8) 241.7 (66.7) 136.2 (90.3) X X X X

TF_Taps 44.3 (11.5) 29.3 (16.5) 46.5 (12.0) 31.5 (17.5) X X X X
TF_Freq 4.45 (1.20) 2.94 (1.71) 4.69 (1.21) 3.17 (1.76) X X
TF_Exc 23.6 (21.5) 24.5 (25.9) 15.9 (17.9) 20.9 (26.6)
TF_ωo 169.6 (119.6) 110.9 (104.3) 117.0 (104.1) 109.1 (114.6)
TF_ωc 201.8 (138.2) 119.5 (135.8) 144.4 (123.2) 127.3 (132.7) X X

TF_CVfreq 26.3 (19.1) 41.3 (37.9) 24.8 (22.5) 49.1 (35.3) X X X X
TF_CVexc 73.9 (23.7) 75.0 (42.9) 82.1 (21.7) 83.7 (32.4)

TF_IAV 147.7 (31.7) 114.0 (39.7) 129.3 (27.6) 112.3 (26.6) X X X X

GT_Taps 12.8 (1.5) 13.0 (2.5) 12.5 (1.8) 13.8 (3.5) X X X X
GT_HFreq 0.96 (0.12) 0.97 (0.13) 0.96 (0.10) 0.97 (0.18)

GT_Exc 73.7 (38.1) 41.4 (42.0) 74.3 (35.7) 38.8 (29.6) X X
GT_ωf 77.8 (40.6) 45.8 (44.2) 64.3 (39.6) 31.0 (30.7) X X
GT_ωb 55.4 (24.9) 49.6 (27.0) 43.4 (31.9) 58.9 (27.4) X X

GT_CVfreq 13.3 (8.8) 21.7 (50.4) 11.8 (16.7) 29.3 (46.0) X X
GT_CVexc 41.3 (21.7) 24.1 (26.3) 38.1 (19.7) 18.3 (17.3) X X X X

GT_IAV 135.7 (25.3) 142.4 (16.9) 127.0 (15.1) 143.5 (29.3) X X X X

RT_PwrA 0.0013
(0.0005)

0.0018
(0.0009)

0.0017
(0.0005)

0.0019
(0.0009) X X

RT_FreqA 6.42 (3.78) 6.57 (3.98) 6.84 (4.17) 5.79 (3.22)
RT_Perc1A 29.3 (4.8) 31.0 (4.0) 29.4 (6.5) 31.3 (7.4) X X

RT_IAV 97.7 (2.2) 103.3 (8.7) 98.7 (3.8) 103.6 (5.3) X X
RT_PwrG 0.052 (0.604) 0.675 (0.459) 0.048 (0.572) 0.749 (1.084) X X X X
RT_FreqG 5.42 (2.61) 4.93 (2.12) 5.23 (3.13) 5.28 (2.62)
RT_Perc1G 32.6 (8.2) 38.2 (14.1) 32.5 (7.0) 37.1 (18.1) X X

PT_PwrA 0.017 (0.015) 0.022 (0.031) 0.015 (0.012) 0.019 (0.026)
PT_FreqA 7.59 (4.03) 7.62 (2.40) 8.30 (1.88) 7.40 (2.25) X X
PT_Perc1A 17.3 (8.5) 30.7 (16.0) 22.7 (10.8) 28.9 (19.0) X X X X
PT_Perc2A 36.4 (11.8) 30.6 (11.5) 35.0 (11.9) 28.6 (17.7) X X
PT_PwrG 1.39 (0.29) 1.34 (0.40) 1.20 (0.33) 1.25 (0.35) X X
PT_FreqG 5.59 (5.18) 5.84 (3.23) 7.15 (3.76) 5.76 (3.44)

PT_IAV 100.1 (2.6) 103.4 (7.2) 99.6 (3.4) 101.6 (9.1) X X X X
PT_Perc1G 25.0 (11.7) 33.7 (20.5) 22.3 (7.3) 31.7 (20.5) X X X X
PT_Perc2G 27.0 (10.5) 22.7 (15.1) 30.5 (15.2) 23.8 (20.8) X X

In PS dataset, the parameters selected per side were: 30 for FEET, 36 for HANDS, and 66 for FULL.
Erasing the highly correlated parameters according to Spearman’s coefficients, the parameters resulted
per side in PC dataset were: 18 for FEET, 28 for HANDS, 46 for FULL.
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When applying the Bonferroni correction to reduce the FWER, the number of parameters included
in the datasets decreased because the threshold on the p-value strongly decreased as well. However,
a sizeable number of features per side remained: 25 for FEET, 23 for HANDS, and 48 for FULL in the
PS_B dataset; 15 for FEET, 16 for HANDS, and 31 for FULL in the PC_B dataset.

It is worth noting that all the exercises contribute with at least one parameter to compose
each dataset.

3.2. Classification Results

The four datasets (i.e., PS, PS_B, PC, PC_B) were used as input under the three conditions (i.e.,
FEET, HANDS, FULL) to train and test 5 different supervised learning methods to classify the subjects
involved in this study according to their motor performance. The complete results derived from the
evaluation metrics formulas are reported in Tables 5 and 6.

Table 5. Classification Results for Post-Significance and Post-Correlation datasets.

PS PC

FEET RF SVM_L SVM_G SVM_P NB RF SVM_L SVM_G SVM_P NB

Recall 0.900 0.900 0.850 0.900 0.850 0.925 0.925 0.950 0.900 0.850
Specificity 0.950 0.900 1.000 0.900 1.000 0.950 0.900 0.925 0.975 1.000
Accuracy 0.925 0.900 0.925 0.900 0.925 0.938 0.913 0.938 0.938 0.925
Precision 0.947 0.900 1.000 0.900 1.000 0.949 0.902 0.927 0.973 1.000

F_measure 0.923 0.900 0.919 0.900 0.930 0.937 0.914 0.938 0.939 0.930

HANDS

Recall 0.975 0.975 0.975 0.975 0.975 0.975 0.975 1.000 0.950 0.950
Specificity 0.975 1.000 1.000 0.975 0.900 1.000 0.975 0.975 0.925 0.900
Accuracy 0.975 0.988 0.988 0.975 0.938 0.988 0.975 0.988 0.938 0.925
Precision 0.975 0.988 1.000 0.975 0.907 1.000 0.975 0.976 0.927 0.905

F_measure 0.975 0.987 0.987 0.975 0.939 0.987 0.975 0.988 0.938 0.926

FULL

Recall 0.975 0.975 0.975 0.950 0.900 0.950 0.925 1.000 0.950 0.925
Specificity 1.000 1.000 1.000 1.000 0.950 1.000 1.000 1.000 1.000 0.925
Accuracy 0.975 0.988 0.988 0.975 0.925 0.975 0.963 1.000 0.975 0.925
Precision 1.000 1.000 1.000 1.000 0.947 1.000 1.000 1.000 1.000 0.925

F_measure 0.976 0.987 0.987 0.976 0.926 0.976 0.961 1.000 0.976 0.925

Table 6. Classification Results for Post-Significance and Post-Correlation datasets after
Bonferroni correction.

PS_B PC_B

FEET RF SVM_L SVM_G SVM_P NB RF SVM_L SVM_G SVM_P NB

Recall 0.925 0.900 0.900 0.975 0.850 0.900 0.950 0.900 0.950 0.850
Specificity 0.950 1.000 1.000 0.925 1.000 0.950 0.950 0.950 0.975 1.000
Accuracy 0.938 0.950 0.950 0.950 0.925 0.925 0.950 0.925 0.963 0.925
Precision 0.949 1.000 1.000 0.929 1.000 0.947 0.950 0.947 0.974 1.000

F_measure 0.937 0.947 0.947 0.951 0.930 0.923 0.950 0.923 0.963 0.930

HANDS

Recall 0.850 0.950 0.950 0.925 0.950 0.925 0.900 0.925 0.900 0.975
Specificity 0.975 0.975 0.975 1.000 0.975 1.000 0.950 0.975 1.000 0.975
Accuracy 0.913 0.963 0.963 0.963 0.963 0.963 0.925 0.950 0.950 0.975
Precision 0.971 0.963 0.974 1.000 0.974 1.000 0.926 0.974 1.000 0.975

F_measure 0.907 0.962 0.962 0.964 0.963 0.961 0.923 0.949 0.952 0.975

FULL

Recall 0.950 1.000 0.975 0.975 0.950 0.950 0.975 0.975 0.950 0.925
Specificity 0.975 1.000 1.000 1.000 0.975 1.000 1.000 1.000 1.000 0.925
Accuracy 0.988 1.000 0.988 0.988 0.963 0.975 0.988 0.988 0.975 0.925
Precision 0.974 1.000 1.000 0.974 0.974 1.000 1.000 1.000 1.000 0.925

F_measure 0.988 1.000 0.987 0.988 0.963 0.976 0.987 0.987 0.976 0.925
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All the classifiers showed excellent ability in distinguishing the two groups according to the motor
performance analysis. Generally, results obtained under the FULL condition are better than those
achieved when considering FEET and HANDS separately. In particular, FEET obtained the lowest
results. Considering the accuracy index (see Figure 3), the worst case was represented by SVM_L and
SVM_P using the PS dataset under the FEET condition. Nonetheless they both obtained accuracy
equals to 0.900. The best cases, indeed, were achieved under the FULL condition by SVM_L tested on
the PS_B dataset, and by SVM_G applied to the PC dataset with accuracies equal to 1.00.Sensors 2020, 20, x FOR PEER REVIEW 21 of 27 
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Overall, the SVM_G reached the best performances in classifying HC and PD; however, minimum
differences were found, on average, applying all the classifiers to all the datasets. Indeed, the average
accuracy ranged from 0.936 for the NB to 0.966 for SVM_G. Also, analysing the four datasets, the average
accuracy measured using all the classifiers was included between 0.953 for PS, PC, and PC_B and 0.960
for PS_B.

Such small differences in the accuracy index could be due to the specific dataset used in this work,
even if 80 people can represent a sizeable sample for identifying significant parameters able to identify
motor impairments caused by Parkinson’s disease.

4. Discussion

In this work, a wearable inertial sensor system, composed of the SensFoot and SensHand devices
for motion analysis of lower and upper limbs is used aiming at quantifying and objectifying the
traditional clinical evaluation of PD patients motor capabilities. The system, equipped with dedicated
processing algorithms, was developed to provide a reliable and useful tool for the neurologist when
assessing patients, or suspected patients, for PD, as well as for monitoring the motion performance
of the patients throughout the development of the pathology. Many kinematic parameters were
extracted from the inertial data acquired on 40 healthy subjects and 40 PD patients while performing a
motor evaluation test. Statistical significance of the measured parameters was calculated with and
without the Bonferroni correction; then dimensionality reduction of the dataset was implemented
according to the results of the Spearman’s correlation. Finally, multiple comparisons among different
supervised learning classifiers (i.e., RF, SVM_L, SVM_G, SVM_P, NB) were trained and tested on the
four identified datasets (i.e., PS, PS_B, PC, PS_B) over three conditions (i.e., FEET, HANDS, FULL) to
prove the consistency of the extracted selected features in identifying motor impairments caused by
the Parkinsonian condition.

This work detailed the techniques of signal processing applied to the raw data acquired from the
inertial sensors to extract a big number of kinematic parameters able to finely characterize the motor
performance of a person when performing the specific tasks required for PD diagnosis evaluation
and monitoring. An exhaustive protocol has been proposed in this study to provide a comprehensive
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characterization of the subjects motor skills, overcoming the idea, often found in the literature,
of focusing on a single symptom, e.g., the tremor [33], or on a single exercise [20–22].

Since we aim at deploying this wearable system in clinical practice, the analysis of a reduced set
of exercises could be insufficient both to correctly identify the pathology and to accurately characterize
the patient condition. Indeed, PD has a typical asymmetric onset, with wide variability in clinical
expression, as well as in the progression of somatic symptom, thus each subject should be investigated
in each limb. This is the main reason that led us to consider separately the parameters derived from the
right and the left side during the analysis. This approach allows to include surely the most affected side
(together with the contralateral side), which is particularly important in this study where many patients
are in the initial stages of the disease (average HY = 1.9), showing unilateral symptoms. Therefore,
the total number of parameters measured for each subject involved in this study is 174.

Regarding the signal processing for the feature extraction, it is worth to note that the first and
the last movements of each trial are excluded from the computation of the average amplitude of the
movements (see Equations (3), (16), (18) and (27)). This choice is based on an extensive analysis of the
used signal database, where it appears clearly that the first movement is often different from the others,
showing often higher amplitude. On the other hand, the last movement is excluded as well because
sometimes it appears incomplete, or highly reduced in amplitude when the subject receives the input
of stopping the task and suddenly close the movement. These considerations were discussed together
with the neurologist and clinical staff, those agreed with this choice. Indeed, even if the guidelines to
assign the MDS-UPDRS score in tasks 3.4–3.8 talk about the analysis of ten repetitive movements, it is
hard for the naked eye to catch and mentally analyse the different repetitions as distinct movements
from the beginning. Therefore, generally, the score is assigned based on the overall evaluation of
the task, because it is difficult to discriminate the single repetitions by visual inspection. For this
reason, we also thought to acquire each task for 10 s, instead of 10 repetitions, aiming at obtaining
more stable results.

Kinematic parameters obtained with the processing algorithms explained in detail in this work
seem to be highly discriminant within our scope. Also considering the Bonferroni correction, which
is notoriously very conservative and selective, a sizeable number of features resulted statistically
significant. Similarly, the correlation analysis did not remove many parameters, because most of
them are independent of each other. Finally, each dataset (i.e., PS, PS_B, PC, PC_B) is composed of
one or more parameters from all the exercises included in the experimental protocol (Tables 3 and 4).
Therefore, the use of a large set of exercises and extracted parameters is not redundant but allow to
acquire complementary information about the motor capabilities of a subject.

Interestingly, looking at the results obtained with the supervised learning techniques, there was
not a classifier that outperformed the others (see Figure 3, Tables 5 and 6). NB appeared as the slightly
worse technique probably because of its characteristic of not working very well with big datasets;
however, the results achieved by NB are widely satisfactory (the average accuracy over the four
datasets equals 0.936). On the other hand, there was not a dataset among the four analysed that
clearly resulted more significant than the others, with the average accuracy ranging from 0.953 for
PS, PC, and PC_B to 0.960 for PS_B. This could be a proof of consistency for the extracted features;
thus, they can represent a good pool of parameters (most of which are statistically significant) to
correctly identify and quantify PD motor symptoms in a subject who was tested with SensHand and
SensFoot. Furthermore, results obtained when investigating the FULL condition are generally better
than those obtained when separately analysing FEET and HANDS, according to the results obtained
on a reduced dataset in our previous work [26]. This is an additional demonstration that the use of the
proposed comprehensive protocol is unavoidable to achieve the best performance in the classification
of motor capabilities. Particularly, we found two best cases, the SVM_L applied to the PS_B dataset,
and the SVM_G applied to the PC dataset, for whose perfect discrimination between the two groups
was achieved, with sensitivity, specificity, accuracy, precision and F-measure equal to 1 in the FULL
condition. In the end, there is not a significant difference in classifiers performance if using all the
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significant features of PS, which is the largest dataset, or if applying both the Bonferroni correction
and correlation analysis to reduce the number of features as much as possible without losing relevant
information (i.e., PC_B). The choice could be done according, for example, to the computational power
and time available for the analysis. However, it is premature to define which is the best classifier
and which is the best dataset to use and further extended studies should be carried out to allow
generalization of the model. The threshold value chosen for the correlation analysis (i.e., rho = 0.85),
for instance, even if quite high, has been already used in the literature [43–45] and, in this work,
it has been selected also in a clinical perspective. Indeed, it allows maintaining much information
from the original dataset, which is important in this work because the parameters are related to
motor impairments characterizing PD. Hence, removing many features could lead to removing useful
information for the motor evaluation as well. As in near future steps, the experimental dataset will be
enlarged, it could be possible to have a definitive panoramic of the parameters that are worthy to be
included or not and the threshold could be differently set, using also lower thresholds that can further
reduce the dataset, favouring the simplification of the model and its generalization.

The focus of the present work, indeed, is the wearable system, composed of four inertial devices
and processing algorithms, that we would propose for supporting the neurologist in the clinical
assessment of motion for PD diagnosis and monitoring. The SensHand and SensFoot devices are
prototypes that already reached TRL = 7, that means “system prototype demonstration in operational
environment”, a preliminary validation of their accuracy respect to an optoelectronic gold-standard
system was already performed [46] (e.g., for finger tapping task was obtained an average RMSE
value equals to 2.12◦, with an agreement between the two systems measured in terms of coefficient of
determination equals to 0.987), and next steps will be carried out soon to obtain the certification of the
system as a medical device.

Technically, the main challenges are to further improve the wearability of the system and
automatize the processing algorithms for obtaining a system that could be easily used by specialized
clinicians, general practitioners and, also, PD patients. The opportunity to use such a system at home,
indeed, could positively impact on PD management, with benefits both for patients and healthcare
systems, promoting home-monitoring through the empowerment of the patients and their caregivers.
For the clinical application, we would overcome the assessment with the traditional MDS-UPDRS,
which has low granularity, ranging from 0 to 4 for each task, so that the same score can be assigned to
subjects with different problems [21]. Therefore, we propose to move towards a continuous scale that,
merging the information derived from the extracted parameters by using machine learning techniques,
could identify a status point for each patient and its evolution over the time. The main limitation of
this work is that normative data are urgently needed to reach the achievement we aim to, thus we
are working to enlarge the dataset of healthy controls and patients with different PD severity, to find
reference values that clinically should validate our method. Another open challenge can be the use
of SensHand and SensFoot to investigate the clinical assessment not only in PD patients but also in
subjects with other forms of Parkinsonism, to enhance the assessment of differential diagnosis.

5. Conclusions

This work aimed at providing a wearable system, composed of inertial devices and processing
algorithms, that could be a support for neurologists in the quantitative and objective assessment of
motor performance for PD diagnosis and monitoring. Many kinematic parameters have been extracted
during a motor evaluation protocol over 40 healthy subjects and 40 PD patients from upper and lower
limbs, and the related algorithms were presented in detail. Statistical analysis and dimensionality
reduction allowed to obtain four different datasets that were tested with five supervised learning
methods to evaluate the accuracy of the system in distinguishing between healthy and patients.
Three conditions were tested using parameters from lower, upper and all limbs. Excellent results were
obtained with all the classifiers (average accuracy ranging from 0.936 for NB to 0.966 for SVM_G) and
all the datasets (average accuracy ranging from 0.953 for PS, PC and PC_B to 0.960 for PS_B) over the
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three conditions, while best performances were achieved by linear SVM on PS_B dataset and Gaussian
SVM on PC dataset (accuracy equal to 1.00) when analysing the FULL condition. The promising
results confirm the need to use a wide set of exercises and parameters to have a complete motor
assessment of the subjects. The idea is to develop an accurate and reliable system that could be easily
applied in clinical practice to improve the diagnosis and management of Parkinson’s disease, to be
used not only in hospital by professionals but also at home by empowered patients. Future works
will focus on enlarging the dataset to reach normative data for clinical validation, including also
subjects with Parkinsonism, and to improve the wearability of the system and the automation of the
processing algorithms.
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Appendix A

The list of the main abbreviations used in the manuscript are reported in Table A1.

Table A1. List of Abbreviations.

Abbreviation Description

PD Parkinson’s Disease
HC Healthy subjects of control
QoL Quality of Life
MDS Movement Disorder Society

UPDRS Unified Parkinson’s Disease Rating Scale
HY Hoehn & Yahr
TRL Technological Readiness Level
IMU Inertial Measurement Unit

ZUPT Zero Velocity Update
THFF Thumb Forefinger Tapping
OPCL Hand Opening/Closing
PSUP Hand Pronation/Supination
HRST Hand Resting Tremor
POST Hand Postural Tremor
TTHP Toe Tapping Heel Pin
HEHE Leg Agility
HTTP Heel Tapping Toe Pin
HETO Heel-Toe Tapping
ROTA Rotation
GTAF Gait
GTAH Arms swing while walking

PS dataset Dataset Post Significance
PS_B dataset Dataset Post Significance with Bonferroni Correction
PC dataset Dataset PS and Post Correlation

PC_B dataset Dataset PS and Post Correlation with Bonferroni Correction
SVM Support Vector Machine

SVM_P Support Vector Machine with Polynomial kernel
SVM_L Support Vector Machine with Linear kernel
SVM_G Support Vector Machine with Gaussian kernel

RF Random Forest
NB Naïve Bayes

FEET Condition including parameters from lower limbs only
HANDS Condition including parameters from upper limbs only

FULL Condition including all the measured parameters
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