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Plant phenotyping by imaging allows automated analysis of plants for various morphological and physiological traits. In this work,
we developed a low-cost RGB imaging phenotyping lab (LCP lab) for low-throughput imaging and analysis using affordable imaging
equipment and freely available software. LCP lab comprising RGB imaging and analysis pipeline is set up and demonstrated with
early vigour analysis in wheat. Using this lab, a few hundred pots can be photographed in a day and the pots are tracked with QR
codes. The software pipeline for both imaging and analysis is built from freely available software. The LCP lab was evaluated for
early vigour analysis of five wheat cultivars. A high coefficient of determination (𝑅2 0.94) was obtained between the dry weight and
the projected leaf area of 20-day-old wheat plants and 𝑅2 of 0.9 for the relative growth rate between 10 and 20 days of plant growth.
Detailed description for setting up such a lab is provided together with custom scripts built for imaging and analysis.The LCP lab is
an affordable alternative for analysis of cereal crops when access to a high-throughput phenotyping facility is unavailable or when
the experiments require growing plants in highly controlled climate chambers. The protocols described in this work are useful for
building affordable imaging system for small-scale research projects and for education.

1. Introduction

Phenotypingmorphological and physiological traits of plants
is one of the most laborious tasks in plant breeding and
thus automated high-throughput plant phenotyping (HTP)
facilitates measurement of such traits. Visible light (RGB)
imaging facilitates measurement of plant’s morphological
traits such as biomass, height, width, color, number of leaves,
and roots to estimate plant growth rate, health, nutrition
status, drought stress, water-use efficiency, nutrient-use effi-
ciency, and early vigour [1–4]. 3D imaging can additionally
measure traits such as leaf angle and leaf area which affect
photosynthesis efficiency of the plants [5–7]. Hyperspectral,
thermal, near-infrared (NIR), and fluorescent imaging are
useful for detecting abiotic and biotic stresses [8–12]. While
RGB imaging is a common feature in most facilities, some
also offer fluorescence, thermal, NIR, or UV imaging. 3D
imaging is popular and is available at bigger facilities such
as Agrobios Plant Scanalyzer (APS) facility in Italy and The

Plant Accelerator-Australian Plant Phenomics Facility. Sev-
eral freely available software programs are available for image
analysis [13] such as HTPheno [14], PlantCV [3], Easy Leaf
Area [15], Integrated Analysis Platform [16], ImageHarvest
[17], and Canopeo [18].

Whole plant biomass and growth rate at the seedling
stage are traits that correlate well with early vigour and can
be estimated by HTP in cereal crops. Higher early vigour is
associated with higher water-use efficiency [19], nitrogen and
phosphate uptake [20, 21], and weed competition [22]. 3D
imaging with a NIR camera was used to measure early vigour
traits such as leaf length and width and tillering in wheat [5].
Thus, HTP can aid in the evaluation of plants for early vigour
based on plant biomass and growth rate both in the controlled
conditions [17, 20, 23–26] and in the field [4, 26–28].

Major limiting factors for HTP in the controlled con-
ditions are access to an imaging facility or the costs for
establishing one. Thus, such facilities are established with
the aim of providing phenotyping as a service and when
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Figure 1: Photography setup for low-cost imaging lab. (a) Sample is placed on a rotating disc and is evenly light by two studio strobes. Images
are taken with a side-view and a top-view digital camera. (b) QR code on the pot is read by a webcam. All three cameras are tethered to a
computer. (c) An exemplified image.

a high-throughput and continuous use of the facility is
anticipated. A low-cost phenotyping facility could be a viable
alternative when (i) access to a high-throughput facility
is unavailable, (ii) phenotyping occasionally for small-scale
projects, and (iii) phenotyping is done in climate chambers
with constrained spaces. Several custom made affordable
imaging systems have been developed for studying drought
stress in wheat [29] biotic stress andmagnesium deficiency in
common beans [30], cold tolerance in pea [31], and biomass
in sorghum [32]. A review of various imaging systems and the
studied traits was recently published [1]. To be cost-effective,
sustainable, and time efficient, a low-cost phenotyping system
must produce reproducible results with a reasonable amount
of manual labor for setting up, running, and management of
the system.

In this work, we have set up a low-cost RGB imaging
phenotyping lab that includes automated plant tracking using
QR code, imaging, and image analysis. The instructions for
setting up a low-cost imaging lab and the data analysis
pipeline are described.This system is demonstratedwith early
vigour analysis in wheat.

2. Materials and Methods

2.1. Setting Up an Imaging Studio. The low-cost phenotyping
lab (LCP lab) consists of two studio strobes (Visico ELFIN

VL-200 Plus) with an effect of 200W each and color tem-
perature of 5600K. The two strobes are fitted with softboxes
(50 × 70 cm) on light stands and placed one on each side of
the plant at an angle of 45∘ illuminating both the plant and
the background.The strobes contain integratedwireless radio
receivers and the images are triggered with a wireless radio
transmitter (V801TX, Visico, China) connected to a camera.
The white background (1.5 × 2.5m; FotoBestway Co., Ltd.)
is hung on a telescopic boom placed on two light stands one
on each side. Blue markers are pasted on the background to
aid in framing of the images. Imaging is performed with two
entry-level digital single lens reflex (DSLR) cameras (Canon
1300D, Canon, USA) and the 18–55mm kit lens. The side-
view camera is mounted on a tripod, while the top-view
camera is mounted on a SpaceArm (Tristar). The distance
between the side and the top-view camera and the pot is 1.5m.
A pot is placed on a rotating disc of diameter 38 cm (Snudda,
IKEA) which is spray painted to white. Optionally, the pot
can also be placed on a rotating turntable of similar diameter.
For reading the QR code from the pot, a webcam (Logitech
International S.A., USA) is placed 20 cm away from the pot.
All three cameras are connected to a computer and tethered
(Figure 1).

Pots can be tagged with QR code containing desired
metadata such as the cultivar name, replicate number, and
treatment. QR code is generated with Bytescout Barcode
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Figure 2: Pipeline for imaging and data processing. QR codes are generated with ByteScoute and printed with a custom R script. Tethered
imaging is done with digiCamControl with custom XML script for time-lapse imaging and QR code capture with bcWebCam. Image
processing and analysis are done with HTPheno, PlantCV, and Easy Leaf Area software.

generator (https://www.bytescout.com) and printed on self-
adhesive labels using a custom R script (Supplementary File
1). Once a pot is placed on a rotating disc, the QR code is read
by the webcam placed in front of the pot and operated by the
software bcWebCam (http://www.bcwebcam.de). The infor-
mation read from the QR code is automatically transferred
from bcWebCam to the tethering software digiCamControl
(http://www.digicamcontrol.com) (Figure 2). The two DSLR
cameras are tethered to digiCamControl which takes a series
of three images using a custom XML script (Supplementary
file 2) such that the first image is taken by the side-view
camera followed by a one-second wait and a second image
by the top-view camera followed by a six-second wait to
manually rotate the disc with pot by 90∘ and a third image is
taken again by the side-view camera.This imaging series is set
in a loop in theXML scriptwhich can trigger the cameras for a
designated number of times. Side-view images are taken with
the camera with optimum settings (focal length of 43mm,
ISO 400, F-Stop f/10, and exposure time of 1/100 seconds),
while the top-view images are taken with slightly different
settings (focal length of 43mm, ISO 400, F-Stop f/11, and
exposure time of 1/60 seconds).

It is important to evenly light the plants and the back-
ground to avoid shadows caused by uneven lighting. Strong
shadows were avoided in the images and were controlled by
adjusting camera settings and exposure. Oversaturation of
the images was avoided by referring to the histograms. Upon
optimizing lighting, camera settings, and camera distance,
custom white balance was obtained by photographing just
the background. All images were thereafter captured with the
custom white balance to avoid variation in the white balance
and light intensity in the images. The images were stored
directly to the computer and are of resolution 72 dpi, size 1920
× 1280 pixels in JPEG format, and the files are namedwith the
data read from the QR code.The pots were black in color and
did not interfere with image processing.

2.2. Image Processing. Images are first manually inspected
to remove those that are improperly lit, plants being out of

frame or blurred. Finally, only plants with all three images
are retained for further analysis. Thereafter, the images are
processed with the software HTPheno [14], PlantCV [3], or
Easy Leaf Area [15] on a laptop with a dual-core i7 Intel
processor and 16GB RAM. Optimization of image analysis
parameters was carried out for each software program. For
HTPheno, the object classes for the side and top-view were
background, pot, stickers, and the plant. Thereafter, for each
object, the corresponding image coordinates were assigned
separately for the top and the side-view. The color ranges for
the four objects were assigned with HTPcalib. The PlantCV
analysis pipeline was built as described previously [3]. Briefly,
(i) conversion of RGB images to HSV color space, (ii) isola-
tion and thresholding the saturation channel, (iii) conversion
of RGB to LAB color space and isolation and thresholding
of the blue-yellow channel, (iii) joining the saturation and
the blue-yellow channels to mask the RGB image followed
by extraction and thresholding of green-magenta and blue-
yellow channels, and (iv) joining saturation and blue-yellow
channels, masking the previously masked image and object
identification. For Easy Leaf Area, parameters were leaf
minimum green RGB value: 23; G/R: 1.0; G/B: 1.01; scale
minimum red RGB value: 33; scale red ratio: 1.0; processing
speed: 2.0; minimum leaf pixel: 300.

2.3. Plant Material for the Case Study. Five winter wheat
cultivars Stigg, Kranich, Nelson, Nimbus, and Target were
chosen for early vigour evaluation as these are popular
varieties for commercial cultivation. The seeds were germi-
nated for two days on a moist filter paper in Petri dishes.
Germinated seeds were sown in plastic pots (0.4 l) filled with
peat substrate Blomjord Exclusive (Emmaljunga Torvmull
AB, Sweden). One seed per pot of each genotype was sown
in ten replications for each time point. Plants were grown
at 20∘C in a greenhouse with 16 h photoperiod and light
intensity of 250 𝜇molm2 s−1. All pots were soaked in equal
quantity of water every three days. Seedling images were
taken at 10 and 20 days upon sowing. The plants were

https://www.bytescout.com
http://www.bcwebcam.de/
http://www.digicamcontrol.com/
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Table 1: Summary of results from the three software programs. Coefficient of determination (𝑅2) obtained from simple linear regression from
projected leaf area (PA) from each software programs and the dry weight of the plants. 𝑅2 of relative growth rate is obtained by regression of
dry weight RGR (RGRDW) and the projected area RGR (RGRPA).

10 days 20 days 𝑅2 of relative growth rate
HTPheno 0.90 0.94 0.90
PlantCV 0.88 0.91 0.89
EasyLeafArea 0.81 0.91 0.86

photographed from two side views and one top view. For each
timepoint, the first images were taken by including a ruler to
adjust for any changes in the camera distance.The conversion
from pixels to centimeter was performed separately for 10
and 20 days timepoint and for two centimeter distance, it
was 51 pixels for the side view and 53 pixels for the top view
for the two timepoints, respectively. For dry weight analysis,
after imaging, the shoots were cut and wrapped in aluminum
foil then dried at 100∘C for 48 h and weighed. Images were
manually filtered out to remove those with plants out of
frame. From the 10-day timepoint, no images were removed
but at the 20-day timepoint, one plant sample each fromStigg,
Target, and Nimbus and two plant samples from Nelson had
to be removed due to plants being out of frame in the top view.
Thus, for the 10-day timepoint, there were 10 replicates each,
while there were 8 replicates for the 20-day timepoint.

2.4. Statistical Analysis. Relative growth rate for each plant
based on the dry weight (RGRDW) [23, 33] was estimated
with (1), where 𝑊

1
and 𝑊

2
are dry weights of each plant at

timepoints 𝑡
1
(10 days) and 𝑡

2
(20 days), respectively.

RGRDW =
ln (𝑊
2
/𝑊
1
)

𝑡
2
− 𝑡
1

. (1)

Projected leaf area (PA) is defined by (2), where PA is the
projected leaf area obtained from each image and 𝑛 is the
number of angles photographed for a given plant

PA =
𝑛=3

∑
1

pa. (2)

Relative growth rate for each plant based on the projected leaf
area (PA) was estimated with (3) where PA

1
and PA

2
are the

projected areas of plants at timepoints 𝑡
1
(10 days) and 𝑡

2
(20

days), respectively.
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1
)
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3. Results

The aim of this work was to build a RGB imaging based
phenotyping system that is affordable and portable for low-
throughput imaging. LCP lab integrates three cameras, two
for imaging and one for reading the QR code (Figure 1). The
measurements obtained from the three software programs
vary and thus the selection of the software depends on the
overall goal of the experiment. HTPheno generates plant

height, width, and projected shoot area from the side-
view images and 𝑥-extent, 𝑦-extent, diameter, and projected
shoot area from the top-view images. PlantCV generates
over 30 different measurements. Easy Leaf Area estimates
the projected leaf area in both side- and top-view images.
Measurements from the side and top views can be integrated
prior to further analysis.

3.1. Case Study: Early Vigour Analysis in Wheat. To estimate
the accuracy of imaging with the LCP lab, early vigour
analysis was evaluated from 10–20-day-old wheat plants from
five cultivars. Images were analyzed with three different
software programs HTPheno, plantCV, and Easy Leaf Area.
The parameters were adjusted for each software program to
maximize the leaf area detection and minimize the detection
of other non-plant objects in the images. The three software
programs evaluated here have led to an output consisting of a
text file with the measurements and images marked with the
identified plant regions (Figure 3).

Analysis of variance (ANOVA) from the dry weight data
showed that the effect of the genotype (cultivars) on the early
vigourwas significant (𝑝 < 0.001) and that therewas a signifi-
cant difference in themeanweight between Stigg andKranich
and Stigg and Nimbus at both timepoints (Tukey’s HSD
adjusted 𝑝 < 0.05) (Figures 4(a) and 4(c)). ANOVA from
HTPheno projected leaf area (PA) showed that the effect of
the genotype on the early vigour was significant (𝑝 < 0.001)
and based on the projected leaf area (PA) from HTPheno
results, Stigg had significantly different early vigour com-
pared to Kranich and Nimbus at all timepoints (Tukey’s HSD
adjusted 𝑝 < 0.05) (Figures 4(b) and 4(d)).

A simple linear regression was calculated to estimate
the coefficient of determination between the measured dry
weights and the projected leaf area (PA) for each plant
(Table 1). Results fromHTPheno had the highest𝑅2 at 20-day
timepoint. Overall, all three software programs had higher𝑅2
at 20 days compared to the 10-day timepoint. To evaluate if
imaging of all three angles is required, 𝑅2 was obtained for
dry weight and images obtained from each of the angles sepa-
rately or combinations of any two angles (Table 2).The results
show that across all timepoints, higher 𝑅2 is obtained from
images from all three angles.

Relative growth rate estimated from dry weight (RGRDW)
and HTPheno projected area (RGRPA) suggests that the
cultivar Target has significantly different growth rate (Tukey’s
HSD 𝑝 < 0.05) from cultivar Nimbus (Figures 5(a) and 5(b)).
A significant regression equation was obtained (𝑝 < 0.001)
between the dry weight and HTPheno projected leaf area.
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Figure 3: Side- and top-view images of cultivar Nelson at three timepoints after sowing. Images are (a) unprocessed or processed by software
(b) HTPheno, (c) plantCV, or (d) Easy Leaf Area.

Table 2: Results from HTPheno software for images from different combinations of angles and coefficient of determination (𝑅2) obtained
from simple linear regression between the projected leaf area (PA) and the dry weight of the plants.

10 days 20 days
Side 1 0.76 0.85
Side 2 0.80 0.83
Top 0.42 0.72
Side 1 + side 2 0.88 0.89
Side 1 + top 0.77 0.91
Side 1 + side 2 + top 0.90 0.94

Based on overall growth at 20 days and the relative growth
rate analysis, it can be suggested that Stigg has the most
growth and higher relative growth rate compared to Nimbus.

4. Discussion

Measurement accuracy and reproducibility are the key factors
for the evaluation of a phenotyping pipeline. The highest
coefficient of determination (𝑅2 = 0.94) obtained in thiswork
was with images from 20-day-old plants analyzed with the
HTPheno pipeline (Table 1) and for the relative growth rate,

𝑅2 of 0.9 was obtained for dryweight andHTPheno projected
leaf area. However, results from plantCV were only slightly
lower. PlantCV offers several customizations, takes relatively
less time for analysis, and can be a suitable alternative to
HTPheno for larger data sets. In a previous study, pheno-
typing pipeline consisting of a commercial imaging system
Scanalyzer 3D (LemnaTec GmbH, Aachen, Germany) and an
open source analysis pipeline IAP was used to photograph
maize plants and obtained 𝑅2 of 0.84 and 0.94 with the dry
and fresh weight, respectively, with RGB imaging [16]. In
another study, 373 rice genotypes were photographed with
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Figure 4: Mean dry weight and mean area of the plants from five cultivars. (a, c) Mean dry weights plants from five cultivars. (b, d) Mean
projected leaf area of plants from five cultivars. (a-b) 10 days (𝑛 = 10); and (c-d) 20 days (𝑛 = 8) after sowing. Cultivars are sorted based on
the mean growth at 20 days. Statistically significant differences (Tukey’s HSD adjusted 𝑝 < 0.05) in the means are denoted by different letters
above the bars. Error bars are standard error.

Scanalyzer 3D system and analyzed with the open source
ImageHarvest analysis pipeline and obtained 𝑅2 of 0.93 with
the shoot dry weight, while with the commercial data analysis
pipeline LemnaGrid, 𝑅2 of 0.94 was obtained [17]. Imaging
of 320 wheat plants with a Scanalyzer 3D system and analysis
with LemnaTec 3D Image Analyzer was done and obtained
𝑅2 of 0.96 with a linear model [34]. 3D imaging of rapeseed
with PlantEye F300 developed by Phenospex (Heerlen, the
Netherlands) resulted in𝑅2 of 0.97 with shoot dry weight and
3D leaf area [35]. In the current study, lower 𝑅2 at the earlier
timepoint can be attributed to technical errors or lower plant
to background ratio due to the smaller size of the plants. Focal
distance can be adjusted to increase the plant to background
ratio but a correction for the field of view needs to be done
prior to comparing data from different timepoints [3].

Out of the three software programs tested here, EasyLea-
fArea is the easiest to set up and has a graphical user interface
and a few parameters to be adjusted. It also detects a red
object with known dimensions in an image to estimate abso-
lute measurements of the leaf area automatically. PlantCV
requires additional dependencies but the installation is well
documented. It does not have a graphical user interface and
some knowledge of programming is essential to optimize
the program for images taken with a new setup. PlantCV
also allows detection of objects with known dimensions
and a set of computer code can be written to estimate the
absolute measurements by including objects with known
dimensions. HTPheno is a plugin for the software ImageJ
[36]. Optimization of HTPheno for a new set of images is
slightly tedious as the color profiles for the plants need to
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Figure 5: Relative growth rate of the plants from five cultivars based on (a) dry weight and (b) projected leaf area (PA) from HTPheno.
Statistically significant differences (Tukey’s HSD adjusted 𝑝 < 0.05) in the means are denoted by different letters above the bars. Error bars
are standard error. (c) Simple linear regression between RGRDW from dry weight and RGRPA from the projected leaf area from HTPheno.

be manually identified. However, based on this work, the
results produced from HTPheno were the best among the
three (Table 1). HTPheno also allows estimation of absolute
measurements; however, unlike the previous two software
programs, in HTPheno, the pixel to centimeter conversion
needs to be manually entered. All three software programs
are very well documented. Although, in this work, HTPheno
performed the best, further optimization of all three software
parameters is possible which may improve the results in
future studies.

Major advantage of the LCP lab is that it requires just
around 10–12m2 of working space. The software digiCam-
Control supports a range of cameras and although we have
used an entry-level DSLR camera Canon 1300D (∼350 USD),
the total cost can be further reduced with an in-expensive
consumer camera model such as Nikon Coolpix S5300
(∼ 200USD) supported by the digiCamControl. The studio
equipment used in this work is easily available worldwide or

can be replaced with the equivalent equipment from other
brands. More cameras can be added such as those modified
for taking Normalized Difference Vegetative Index (NDVI)
pictures. In this work, we used a manual rotating disc, but
a semi-automated or a fully automated and programmable
rotating base can also be installed for further automation of
imaging. Pots were tracked with QR codes and read with a
webcam and the metadata is stored in the image filename.
This enables automated file naming and classification that
simplifies the whole image processing. For the presented case
study, QR codes were not used but are described here for ease
of implementation in building new imaging systems of this
kind.

There are several commercial or custom made HTP
facilities available featuring RGB, thermal, infrared, or flu-
orescence imaging as reviewed earlier [1, 11]. These state-
of-the-art HTP facilities are capable of imaging hundreds
of plants day and night. In some facilities, plant watering
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and imaging are fully automated through pot weighing
and conveyor belts, thus requiring minimal manual labour.
These facilities are however expensive to install and maintain
requiring considerable investment and resources. Also, these
HTP facilities, although they can be modular, still require
much bigger working space area mainly for the conveyor belt
and are not portable. The proposed LCP lab here although
lacks many of the key features available in the large-scale
systems, the results obtained in this work suggest that a low-
cost system can be a viable option in cases where large-scale
facilities are not accessible. The smaller size and portability
allow the LCP lab to be installed in smaller walk-in growth
chambers which enables imaging plants grown in highly
controlled growth conditions. It could also be useful for low-
throughput phenotyping projects and/or education.

5. Conclusions

We have developed a low-cost RGB imaging phenotyping lab
which integrates both imaging and analysis and the detailed
description for setting up such a system is provided. LCP lab
is a reliable and sustainable option for performing imaging
based analysis of morphological traits in cereal crops. LCP
lab offers flexibility with the choice of the imaging equipment
and the analysis pipeline. It could be a suitable alternative for
performing small-scale phenotyping projects or for smaller
laboratories or academic institutions with limited resources.
Having access to a high-end high-throughput phenotyping
facility is still a bottleneck, and thus, a low-cost portable
system can help circumvent such limitations.
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