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Abstract: The family of aquaporins (AQPs), membrane water channels, consists of diverse types
of proteins that are mainly permeable to water; some are also permeable to small solutes, such
as glycerol and urea. They have been identified in a wide range of organisms, from microbes to
vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and
their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes
have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that
astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved
in this regulation have been investigated intensively, in particular regulation of the permeability
and expression patterns of different AQP types in astrocytes. Three aquaporin types have been
described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to
review their isoforms, subcellular localization, permeability regulation, and expression patterns in
the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions,
but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state.

Keywords: astrocyte; glia; aquaporin (AQP); aquaporin isoforms; orthogonal arrays of particles
(OAPs); brain edema

1. Water Homeostasis, Brain Edema, and Astrocytes

Water homeostasis in the central nervous system (CNS) is tightly regulated, as even minute
changes in extracellular volume affect ion concentrations and, consequently, neuronal excitability [1].
Dysregulated distribution of water in the neural tissue often occurs in brain tumors, brain abscess,
meningitis, stroke, and neurotrauma, when brain edema forms and often worsens the outcome of these
disorders [2,3]. As the brain is encapsulated within the cranium, it has very limited space for volume
enlargement during brain edema. Therefore, mechanisms for efficient and quick redistribution of water
within the brain parenchyma are essential for normal neuronal function. Such mechanisms are still
largely unclear and, therefore, the possibilities for medical intervention when brain edema develops are
limited. Vasogenic edema, which is amenable to treatment, results mainly from increased permeability
of the blood–brain barrier [4], whereas cytotoxic edema results from cellular swelling, mainly caused
by failure of energy metabolism [3]. Although cell swelling can be, at least in part, attenuated by
adrenergic stimulation [5], currently there appears to be no efficient treatment for this event.

Astrocytes are the only cells in the CNS that undergo rapid changes in volume [6–8]. These cells
populate the gray and white matter of the CNS and are, arguably, the most heterogeneous (in form
and function) type of glia [9,10]. Astrocytes can be broadly defined as primary homeostatic cells
of the brain responsible for a wide variety of functions that include, for example, regulation of
synaptogenesis, synaptic maturation, neurotransmitter homeostasis, brain microcirculation, brain
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metabolism, and control over the formation and maintenance of the blood–brain barrier [8,11–23].
All of these processes depend, to a large extent, on the mechanisms by which astrocytes communicate
with the surrounding cells. These include plasma membrane channels, receptors, transporters,
and mechanisms that mediate the exchange of molecules by exo- and endocytotic processes [24–30].
Exo- and endocytotic processes involve vesicles, from which signaling molecules are released in the
extracellular space, or membrane channels, such as aquaporins (AQPs), that are integrated in the
plasma membrane. Both exo- and endocytotic vesicles are mobile in the cytoplasm [31,32] and their
mobility is altered under pathologic conditions [33,34].

Non-neuronal cells, which include astrocytes, outnumber neurons in some areas in the CNS,
such as the neocortex [35]. Astrocytic abundance in these areas and their anatomical occupancy
of non-overlapping territories between other glial cells, neurons, and endothelial cells of the
vasculature [11,13–15,36,37], places them ideally to enhance transport of molecules across the brain
parenchyma, including the transport of water. In addition to extensive research on astrocytes in several
fields, such as ion and pH homeostasis, metabolic support to neurons, and modulation of synaptic
strength, their role in the regulation of brain water homeostasis is also a topic of interest. Namely,
in astrocytes, specialized membrane proteins have been identified that allow fast transmembrane flux
of water [38–40].

2. Aquaporin Types and Their Isoforms in Astrocytes

AQPs have been identified in multiple mammalian tissues as well as in invertebrates, plants,
and microbes [41]. As their name suggests, APQs are proteins that are specialized in water transport
across the plasma membrane of cells, although they are also involved in several other functions [39].
The plasma membrane, per se, is permeable to water molecules, which pass between the intracellular
and extracellular space. However, such passive transport is slow, highlighting the need for specialized
transmembrane water channels, AQPs, which allow several orders of magnitude higher rates of
facilitated transmembrane water flux in the direction of greater osmolality. All AQPs are small
hydrophobic proteins, composed of six non-polar bilayer-spanning domains, interconnected by loops
A to E (this general description of AQPs structure is evident in the schematic representation of AQP4
depicted in the Figure 1). According to the hourglass model, the conserved loops B and E are essential
for the water pore [39,42–44]. To date, 13 AQP types have been characterized in mammalian cells; three
types, AQP1, AQP4, and AQP9, have been confirmed in the CNS [45]. They differ in their permeability
properties (Table 1) and have different distribution patterns. AQP1 and AQP4 are categorized as “pure”
aquaporins, water channels primarily only permeable to water, whereas AQP9 is an aquaglyceroporin,
permeable to water and to small solutes, such as glycerol and urea [45]. AQP1 was the first AQP
discovered in the CNS, identified in the epithelium of the choroid plexus and later also in human
astrocytes [46,47]. The most abundant AQP in the mammalian brain is AQP4, which is predominantly
localized in astrocytes that are in direct contact with capillaries and pia. AQP4 is not confined solely to
astrocytes; it has also been found in subpopulations of ependymal cells [40]. The distribution of AQP9
in the brain is unique; it has been identified in ependymal cells lining the ventricles and in tanycytes of
the mediobasal hypothalamus. AQP9 is also present in astrocytes, in endothelial cells of pial vessels,
and almost exclusively in catecholaminergic neurons [48–50].

The strategic anatomical position of astrocytes with regard to water transport is, therefore,
mirrored in the fact that all three CNS AQPs are expressed in these cells. We review these AQP
types and their isoforms in respect of their expression patterns, intracellular localization, permeability
regulation, and their role in normal physiological and pathological conditions.
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Figure 1. Aquaporin 4 (AQP4) isoforms differ in structure. (A) The proposed hourglass model of 
AQP4. Loops B and E contain NPA motifs (Asn-Pro-Ala), which form an aqueous pore in the 
membrane bilayer; and (B) schematic representations of the AQP4 channel and its isoforms.  
(i) AQP4a, AQP4c, and AQP4e have six bilayer-spanning domains (1–6) and five interconnecting 
loops (A–E); (ii) AQP4b, AQP4d, AQP4f isoforms lack helices 4 and 5 together with their 
interconnecting loop D; and (iii) AQP4-Δ isoform lacks the final part of helix 5 and loop E. 

Table 1. Aquaporin (AQP) types in astrocytes. 

AQP Type AQP Isoforms 
Permeability 

to Water 
Permeability to Small Solutes (i.e., 
Glycerol, Urea, Monocarboxylates) 

Ability to Form OAPs in 
the Plasma Membrane 

AQP1 AQP1 Yes No No 

AQP4 

AQP4a (M1) Yes No Only together with AQP4c 
AQP4c (M23) Yes No Yes 

AQP4e Yes No Only together with AQP4c 
AQP4b ? No N/A 
AQP4d ? No N/A 
AQP4f ? No N/A 

AQP9 

AQP9 ~32 kDa (is 
AQP9 ~30 kDa its 
splicing isoform?) 

Yes Yes No 

AQP9 ~25 kDa Yes Yes No 
?, not yet definitely determined; N/A, not applicable; OAPs, orthogonal arrays of particles. 

  

Figure 1. Aquaporin 4 (AQP4) isoforms differ in structure. (A) The proposed hourglass model of AQP4.
Loops B and E contain NPA motifs (Asn-Pro-Ala), which form an aqueous pore in the membrane bilayer;
and (B) schematic representations of the AQP4 channel and its isoforms. (i) AQP4a, AQP4c, and AQP4e
have six bilayer-spanning domains (1–6) and five interconnecting loops (A–E); (ii) AQP4b, AQP4d,
AQP4f isoforms lack helices 4 and 5 together with their interconnecting loop D; and (iii) AQP4-∆
isoform lacks the final part of helix 5 and loop E.

Table 1. Aquaporin (AQP) types in astrocytes.

AQP Type AQP Isoforms Permeability
to Water

Permeability to Small Solutes (i.e.,
Glycerol, Urea, Monocarboxylates)

Ability to Form OAPs in
the Plasma Membrane

AQP1 AQP1 Yes No No

AQP4

AQP4a (M1) Yes No Only together with AQP4c
AQP4c (M23) Yes No Yes

AQP4e Yes No Only together with AQP4c
AQP4b ? No N/A
AQP4d ? No N/A
AQP4f ? No N/A

AQP9

AQP9 ~32 kDa
(is AQP9 ~30

kDa its splicing
isoform?)

Yes Yes No

AQP9 ~25 kDa Yes Yes No

?, not yet definitely determined; N/A, not applicable; OAPs, orthogonal arrays of particles.
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2.1. Aquaporin 1

2.1.1. Aquaporin 1 (AQP1) in the Central Nervous System (CNS): Expression in Physiological and
Pathological Conditions

The AQP1 channel is primarily a water pore to facilitate transmembrane transport of water
molecules driven by osmotic gradients [51]. AQP1 was the first AQP to be identified, initially found
in erythrocytes and renal tubules [38,52–54]. Its expression was also confirmed in other tissues as
shown in Table 2. In the CNS, AQP1 was first detected in rat choroid plexus epithelial cells where
it is restricted to their apical microvilli [55]. Its distribution in the choroid plexus epithelium (CPE)
implied a role in the secretion of cerebrospinal fluid (CSF) into ventricles, which was subsequently
confirmed [51,55–58].

Table 2. The expression of AQP1 in different cells.

Cell Type Reference

Erythrocytes [53]

Renal epithelial cells [53]

Endothelial cells (except central nervous system (CNS)) [55]

Epithelial cells of the choroid plexus [55,59]

Epithelial cells of the iris, ciliary body, lens, trachea, kidney, colonic crypt, sweat glands,
pancreatic acini, gallbladder epithelium, placental syncytial trophoblast cells [55,59]

Sensory nerve fibers in the dorsal horn of the spinal cord and the trigeminal sensory ganglia [60,61]

Reactive astrocytes (human CNS) in Alzheimer disease, Creutzfeldt–Jakob disease, multiple
sclerosis, and in ischemic lesions [47,62]

Astrocytes (non-human primate CNS, a subpopulation of white matter astrocytes in Macaca
fascicularis) [63]

Schwann cells (Macaca fascicularis CNS) [63]

Trigeminal nerve fibers (Macaca fascicularis CNS) [63]

Neurons on the surface of the pial blood vessels (Macaca fascicularis CNS) [63]

Vascular smooth muscle cells [64]

In addition to the CPE, the expression of AQP1 was also confirmed in CNS astrocytes.
However, in human astrocytes, its expression is mainly restricted to neuropathologic conditions,
e.g., multiple sclerosis (MS), Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral
sclerosis [47,62,65]. AQP1 in astrocytes has been detected in astrocytomas in subarachnoid hemorrhage
tissue, in Creutzfeldt–Jakob disease (CJD), in bovine and murine spongiform encephalopathy, and in a
rat epilepsy model [66–70]. Initially, no AQP1 was found in the healthy human neocortex [66], but it
was later reported that a minor population of astrocytes expresses AQP1 in a neurologically normal
brain [47].

In human astrocytes, the expression of AQP1 is almost exclusively restricted to pathologic CNS
tissue, but it has been detected in a healthy non-human primate brain of the Macaca fascicularis
monkey [63]. Therefore, in at least some primates, astrocytic AQP1 plays an important role in the
regulation of water homeostasis in the CNS in non-pathological brain. This role remains to be
further elucidated.

What do we know about the intracellular distribution of AQP1 in astrocytes? In cultured human
astrocytes, AQP1 was found co-expressed with AQP4 [47]. The detailed intracellular distribution of
AQP1 remains to be thoroughly addressed, but it appears that its localization in cultured astrocytes
is not exclusive to the plasma membrane; it is also present in the cytoplasm and likely in the
nuclear membrane [47,69]. Its abundant intra-astrocyte distribution in cultured cells may be, in part,
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the consequence of the in vitro conditions, which differ from those in intact tissue, as was observed
also for AQP4 [71,72].

However, variable intracellular distribution in astrocytomas has also been described. In low-grade
astrocytomas, AQP1 immunoreactivity was present mostly in the plasma membrane, whereas
in high-grade astrocytomas, massively-upregulated AQP1 was also distributed throughout the
cytoplasm [70]. In addition to the variable intra-astrocytic distribution of AQP1, the expression of AQP1
also varies among different types of astrocytes, as was shown in intact CNS tissue. High expression
of AQP1 was detected in highly-branched fibrillary astrocytes, whereas expression was low in
poorly-branched protoplasmic and hypertrophic astrocytes. For example, this pattern was observed in
MS and AD brain [47,62]. In both cases, AQP1 expression was observed in highly-branched fibrillary
astrocytes positioned around blood vessels and neurons in tissue showing degenerative changes.
In the MS brain, such astrocytes were present in chronic active demyelinating lesions and in the AD
brain, they were in close proximity to β-amyloid plaques. Reactive astrocytes in pathological brain
parenchyma can express AQP1, AQP4, or both, as was demonstrated in the tissue section of the motor
cortex in a patient with PD [62]. In addition, in AD brain, increased expression of AQP1 in astrocytes
has been observed only in the early stages of AD [65,69]. Therefore, the expression of AQP1 in human
pathological CNS astrocytes appears to be spatially and temporally regulated.

The upregulation of AQP1 may have a pivotal role in the maintenance of water homeostasis in
the CNS under pathologic conditions; however, detailed mechanisms remain to be elucidated [70].

2.1.2. Water Permeability of AQP1

Most of the data on the regulation of AQP1 water permeability comes from studies on Xenopus
oocytes; AQP1 regulation in astrocytes remains to be determined. In general, water permeability
through AQP1 may be regulated at several levels. One of them is phosphorylation. AQP1 has four
potential phosphorylation sites that can be phosphorylated by protein kinase A (PKA), protein kinase
C (PKC), and calmodulin-dependent kinase II (CKII). These phosphorylation sites are conserved in
humans, rats, and mice [73]. Several contradictory results have been reported regarding the effect of
AQP1 phosphorylation on water permeability in Xenopus oocytes. Phosphorylation of AQP1 by PKA
and PKC was reported to increase water channel permeability in Xenopus oocytes [74,75], but others
reported that phosphorylation by PKA or PKC did not affect water permeability of aquaporins 1–5 [76].
In addition to kinases, atrial natriuretic peptide (ANP) and arginine vasopressin (AVP) have also been
shown to modulate water permeability of AQP1 in transfected Xenopus oocytes. AVP has been shown
to increase and ANP to decrease membrane water permeability [77].

Water permeability of AQP1-expressing cells may also be related to AQP1 redistribution to the
plasma membrane. Such cAMP-dependent redistribution of AQP1 has been demonstrated in Xenopus
oocytes [74]. Similarly, in rat cholangiocytes, increased insertion of AQP1 in the apical membrane
triggered by microtubule-dependent secretin was observed [78]. In addition to short-term regulation,
long-term regulation of AQP1 water permeability is also important [73]. Both aspects of regulation in
astrocytes are still unclear.

2.2. Aquaporin 4

2.2.1. AQP4 in the CNS: Expression in Physiological Conditions

AQP4 was first cloned from rat lung and then identified in different tissues (Table 3) [79,80]. It is
predominantly expressed in the brain, where it is also the most abundant water channel [39,40,42].
A subpopulation of ependymal cells lining the ventricles also expresses AQP4, but the principal
site of AQP4 expression in the CNS is astrocytes [40,80–82]. The highest levels of AQP4 expression
were recorded in astrocytes along the subarachnoid space, ventricles, blood vessels, and in areas
for osmosensation and regulation of body water balance, including the supraoptic nucleus and
subfornical organ [40]. Particularly enriched expression of AQP4 occurs in astrocytes in contact
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with capillaries and pia, indicating that this AQP4 expression is associated with brain–blood or
brain–liquor interfaces [40,63]. In addition, AQP4 is also found on astrocytic processes around synapses.
Astrocytes enwrapping distinct types of synapses express different amounts of AQP4, i.e., strong
immunoreactivity was found in the glial processes in contact with parallel fiber synapses on Purkinje
cell dendritic spines, whereas in other synapses astrocyte processes were modestly labeled [40,83,84].

Table 3. The expression of AQP4 in different cells.

Cell Type Reference

Astrocytes (brain and spinal cord) [42,79,80,85]
A subpopulation of brain ependymal cells [40,80,81,85]
Retina, iris, ciliary body [79,81,82]
Lung epithelial cells [79,81]
Renal basolateral plasma membrane of collecting duct principal cells, renal papillary vasa recta [79,81]
Colon (villus) epithelial cells [81]
Stomach parietal cells [80]
Excretory tubules of salivary and lacrimal glands [80]
Auditory epithelium of the organ of Corti [86,87]
Skeletal muscle; the sarcolemma of fast-twitch fibers [80,88]

2.2.2. Intracellular Distribution of AQP4

In general, the intracellular distribution of AQP4 in astrocytes is distinctly polarized,
predominantly concentrated in the plasma membrane of glial processes close to or in direct contact
with blood vessels, the ependymal layer, and pia [40,85]. However, in distinct osmosensory areas, glial
processes show little or no polarization of AQP4 distribution [40]. A similar observation was described
for rat and mouse astrocyte cultures, where immunolabeling of AQP4 revealed an intracellular and
plasma membrane pattern [71,72]. The strong intracellular pattern observed in cultured murine
astrocytes may also be a consequence of the extracellular milieu that is altered in comparison with that
in intact tissue. By different experimental manipulation, localization of AQP4 in the plasma membrane
significantly increased in stellation-induced rat astrocytes [71] and in astrocytes plated on a basement
membrane matrix consisting mainly of laminin [72].

Several AQP4 isoforms are recognized in astrocytes (AQP4a–f; Table 4), but the description of
AQP4 intracellular distribution is more complex [42,89,90]. The intracellular localization of individual
AQP4 isoforms is well described for the two most studied isoforms, AQP4a (M1) and AQP4c (M23),
but it is still poorly investigated for other isoforms. Briefly, to date, seven isoforms of AQP4 water
channel have been described; AQP4a–f, which were all detected in astrocytes, and AQP4-∆ [89,91].
The first two AQP4 isoforms to be described in humans, rats, and mice are AQP4a (M1) and AQP4c
(M23), which are alternative transcripts from two different initiating methionine sites [42,79,90,92,93].
In rat CNS, the shorter AQP4c (M23; 32 kDa) isoform was shown to be more abundant than the longer
AQP4a (M1; 34 kDa) isoform [90,94].

Table 4. AQP4 isoforms.

AQP4
Isoforms Cell Type Intracellular Localization Reference

AQP4a (M1) Astrocytes PM [85,90,95]
AQP4c (M23) Astrocytes, skeletal muscle, kidney PM [85,90,95]
AQP4e (Mz) Astrocytes (rat), organ of Corti (rat) PM, intracellular vesicles, GA, EC [72,89,96]
AQP4b Astrocytes (rat) GA [89]
AQP4d Astrocytes (rat) GA, EC [72,89]
AQP4f Astrocytes (rat) GA [89]
AQP4-∆ Skeletal muscle ER, faintly in the PM [91]

PM, plasma membrane; ER, endoplasmic reticulum; EC, late endosomal compartments; GA, Golgi apparatus.
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A thorough mapping of the rat AQP4 gene revealed four additional isoforms besides the two
classic isoforms: AQP4a (M1) and AQP4c (M23) [89]. Hence, a new uniform terminology was proposed.
M1 and M23 were renamed as AQP4a and AQP4c, respectively, and additional isoforms were named
AQP4b, AQP4d, AQP4e (also termed Mz isoform [96]), and AQP4f [89]. The AQP4e-sized (36 kDa)
isoform was later confirmed in mice, pigs, and humans [97]. Plasma membrane water-permeable
isoforms AQP4a, AQP4c, and AQP4e are basic isoforms, whereas AQP4b, AQP4d, and AQP4f are their
alternative splicing variants [89]. The latter three isoforms have so far been shown to be intracellular,
and, based on their structure, it is hypothesized that they are unlikely to transport water. All three
isoforms lack exon 2, which is why they have only four transmembrane helices; the other three isoforms
all have all six (Figure 1). They lack helices 4 and 5 together with their interconnecting loop D, which is
one of the stabilizing factors of AQP4. When transfected into Xenopus oocytes, they failed to enhance
water permeability through their plasma membrane [89]. However, this is not entirely surprising,
given their likely intracellular localization.

Different AQP4 isoforms have distinct localization at the subcellular level. AQP4a (M1) and
AQP4c (M23) are predominantly localized at the plasma membrane of perivascular endfeet regions of
astrocytes. Although, in addition to their strong distribution in the plasma membrane, intracellular
localization was also observed in cultured astrocytes [85,90,95]. Localization of AQP4e in the plasma
membrane has already been confirmed in rat brain lysates, Xenopus oocytes, HeLa cell lines, human
malignant glioblastoma cell lines, and in primary cultured rat astrocytes [72,89,96,98]. The abundance
of its expression in the plasma membrane of astrocytes appears to be dynamic, affected by the
osmolality of the extracellular milieu [72]. In addition to the plasma membrane, internal AQP4e
localization has also been observed in HeLa cell lines, as well as cultured rat astrocytes, consistent
with the recycling of AQP4 [72,89,99]. Intracellularly, the AQP4e isoform was found in the Golgi
apparatus (GA) and in late endosomal degradation compartments [72]. Moreover, it was also observed
in highly dynamic vesicles, the mobility of which was impaired in a model of reactive gliosis and
at high levels of intracellular concentration of calcium ions. In hypo-osmotic conditions, mimicking
cell edema, the mobility of vesicles carrying the AQP4e isoform changed in different intervals after
hypo-osmotic stimulation and was inversely correlated with the abundance of AQP4 at the plasma
membrane. Decreased mobility overlapped with increased plasma membrane localization [72].

AQP4b, AQP4d, and AQP4f isoforms remained situated intracellularly when expressed in Xenopus
oocytes and in HeLa cells and all of them were shown to colocalize with GA and showed a broader
cytoplasmic distribution [89]. In cultured astrocytes, AQP4d was also detected intracellularly in GA
and in late endosomal degradation compartments [72]. To understand the role of the intracellular AQP4
isoforms in astrocytes, especially those newly detected, there is a need to systematically investigate
their subcellular localization and function.

In addition to AQP4b, AQP4d, and AQP4f, another intracellular AQP4 isoform was described
in skeletal muscle. This is alternatively spliced transcript named AQP4-∆4 that lacks exon 4.
AQP4-∆4 lacks the final part of transmembrane helix 5 and loop E, which contains the second
asparagine-proline-alanine (NPA) motif essential for the formation of the structural domain for water
permeation in the aquaporin monomeric channel (Figure 1). NPA motifs form the loops connecting
helices 2 and 3, and 5 and 6, on the opposite sides of the membrane bilayer [42,91,100,101]. AQP4-∆4
shows no water transport properties in HeLa cells and was shown to reside in the ER, although a minor
amount of AQP4-∆4 was detected at the plasma membrane. AQP4-∆4 was proposed to downregulate
the expression and activity of AQP4, which likely originates from a dominant-negative effect caused
by heterodimerization between AQP4 and AQP4-∆4 [91]. Similar to the intracellular AQP4 isoforms,
several other aquaporins are localized in intracellular membrane compartments, such as AQP2, AQP6,
AQP8, AQP10, and AQP11 [102–107].
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2.2.3. Orthogonal Arrays of Particles

A unique property of the AQP4 water channel is the formation of higher-order structures in
the plasma membrane. First, monomers assemble into tetramers, which then aggregate into larger
structures called orthogonal arrays of particles (OAPs) [108]. OAPs have been identified in several
mammalian tissues and have been named in line with their appearance (orthogonal lattices) when
visualized by freeze-fracture electron microscopy [109]. OAPs of AQP4 have been observed in
astrocytes, trachea, sarcolemma, gastric parietal cells, kidney principal cells, ciliary body, and the
intestine [80]. In the CNS, extensive OAPs are found in perivascular astrocyte endfeet and in astrocyte
processes of the glia limitans beneath the pia [85,94,110]. Here, AQP4 tetramers (4–6 nm in size) are
mostly (>90%) present as OAPs [94]. OAPs in astrocytes are formed from at least two AQP4 isoforms,
AQP4a (M1) and AQP4c (M23). Although AQP4c (M23) has the intrinsic ability to form OAPs alone
through specific intermolecular N terminus interactions, AQP4a (M1) can form OAPs only when
expressed together with AQP4c (M23). OAPs assembled from AQP4a and AQP4c together are smaller
than OAPs composed of AQP4c alone, showing that these two isoforms have opposing effects on OAP
size [94,110–113].

In addition to AQP4a (M1) and AQP4c (M23), the AQP4e (Mz) isoform has also been proposed to
assemble into OAPs, but only together with AQP4c (M23), similar to the AQP4a (M1) isoform [96,98].
There is a possibility that, in the tissue, OAPs contain all three plasma membrane water permeant
isoforms, AQP4a (M1), AQP4c (M23), and AQP4e (Mz), as observed in brain lysates and in the
transfected U87MG (human glioblastoma-astrocytoma) cell line [96,98]. The properties of AQP4e
assembly into OAPs and the function of AQP4e in OAPs remain to be established, as well as the role
of OAPs themselves. Several hypotheses have been proposed regarding the role of OAPs, including
acceleration of water transport across the astrocyte plasma membrane, adhesive functions, clearance
of macromolecules from brain interstitium, and optimizing gas exchange between blood and the
brain [108,114,115]. However, none of these roles has been unequivocally confirmed.

2.2.4. AQP4 Water Permeability Regulation in Astrocytes

Knowledge on the water permeability of AQP4 in astrocytes is scarce. In general, it is hypothesized
that water permeability through AQP4 channels can be regulated at several levels. In brief, these are
phosphorylation of the channel, expression and density of AQP4 channels at the plasma membrane,
the rate of AQP4-laden vesicle delivery to the plasma membrane, and aggregation of AQP4 into OAPs.

AQP4 has several potential phosphorylation sites [73], which makes the regulation of water
permeability by phosphorylation plausible. However, in cultured rat astrocytes, AQP4 failed to be
phosphorylated by PKA and not all of the phosphorylation sites affect water permeability, as was
shown in the case of Ser111 [71,116,117]. On the other hand, activation of PKC has been shown to
phosphorylate Ser180 of AQP4, which resulted in reduced water permeability and inhibition of cell
migration in a glioma cell line [118]. In cultured rat astrocytes, PKC also decreased AQP4 mRNA and
protein expression, probably through signal transduction [119].

Another factor that can affect water permeability through AQP4 in astrocytes is the abundance
of AQP4 expression at the plasma membrane. Fast changes in the expression of AQP4 in the plasma
membrane can be regulated by translocation of the channel to/from the plasma membrane via
membrane-bound vesicles of the existing cellular AQP4 pool [72]. However, the possible redistribution
of the AQP4 channel to/from or inside the plasma membrane has not been addressed in the tissue,
where most of the AQP4 signal is observed at the plasma membrane. Changes in the expression
levels of AQP4 in the plasma membrane were observed under several pathological conditions.
These changes may in part involve deregulation in vesicle traffic, as in astrocytes from an AD mouse
model [120]. Altered expression levels of AQP4 in pathological conditions are reviewed in detail in the
following section.

It is also hypothesized that the formation of OAPs in the plasma membrane can affect water
permeability of the astrocyte plasma membrane. This could be achieved through differential assembly
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of OAPs in a post-Golgi phase governed by different expression levels of the isoforms that are also tissue
specific [94,115,121–124]. In addition, other factors regulating short-term OAP assembly/modifications
need to be addressed.

2.2.5. Altered Expression of Astrocytic AQP4 in Pathologic Conditions

Under several pathologic conditions, alterations in the subcellular distribution of AQP4 and its
expression levels have been reported in astrocytes. The abundance of AQP4 in the plasma membrane
has been observed to either decrease or increase, and it may be linked to altered expression of the AQP4
gene or to complementary proteins. For example, an extensive decrease in the abundance of AQP4
channels in the plasma membrane was detected in the perivascular plasma membrane of astrocytes in
the hippocampal area of patients with epilepsy. This decrease was attributed to decreased expression of
the AQP4 anchoring protein, even though AQP4 mRNA expression increased in the same reactivated
astrocytes [125,126]. Apparent discrepancies have been noted in several reports on AQP4 expression
in the plasma membrane of patients with AD. The reasons for the observed decreases or increases in
AQP4 in the plasma membrane remain to be clarified; however, they may arise due to samples from
different stages of the disease and from different brain regions. Nonetheless, increased expression of
AQP4 was observed in patients with AD with or without cerebral amyloid angiopathy (CAA), where
extensive AQP4 immunoreactivity was seen around blood vessels in the CSF and brain interfaces [127].
Similarly, increased AQP4 expression was detected in cortical sections of temporal lobes of patients
with AD, where AQP4 immunostaining was more intense around larger vessels or capillaries affected
by CAA and it varied depending on the severity of CAA. Increased AQP4 expression was detected
around senile plaques, where it was increased during early β-amyloid (Aβ) peptide deposits and was
downregulated in the later stage of Aβ plaque formation [128]. On the other hand, no differences in
the level of AQP4 expression were reported after Western blotting of the frontal cortex samples from
patients with AD, although glial fibrillary acidic protein labeling revealed moderate astrogliosis [65,69].
Changes in the expression of AQP4 in the plasma membrane was also screened in a mouse model
of AD, where an increased concentration of AQP4 was observed in astrocytic processes in synaptic
regions and a decrease in AQP4 abundance in astrocyte endfeet membranes, specifically at sites of
perivascular Aβ deposits [129]. Increased expression levels of AQP4 were also reported in the brain
of patients with CJD, in particular in the cytoplasm of protoplasmic and fibrillary astrocytes in the
cerebral cortex and white matter, respectively [69]. AQP4 immunoreactivity in astrocytes was also
more abundant in brain from patients with MS, especially at the periphery of plaques [130].

In addition to neurodegenerative diseases, astrocytic AQP4 expression was upregulated in human
tissue in several other pathologic conditions, such as edematous brain tumors and surrounding tissue,
after subarachnoid hemorrhage, and in peritumoral tissue and ischemia [66,131,132]. The expression
of AQP4 was increased in the astrocytic processes, but in certain examples, polarization on astrocytic
endfeet was lost [66].

Taken together, an extensive decrease of AQP4 expression in epilepsy patients likely results in
perturbed water and ion homeostasis, leading to an increased propensity for seizures and cognitive
decline [129]. Upregulated plasma membrane expression of AQP4 is hypothesized to facilitate the
transport of water through blood vessel walls, as well as pial and ependymal surface of the brain and
contribute to the development of brain edema [125,126].

2.3. Aquaglyceroporin 9

2.3.1. AQP9 in the CNS: Expression in Physiological Conditions

AQP9 is an aquaglyceroporin and is the least studied AQP in astrocytes. Like all aquaporins,
it is permeable to water but also to small solutes. When expressed in Xenopus oocytes, human
AQP9 was found to be permeable to a variety of structurally-unrelated solutes, including polyols
(glycerol, mannitol, sorbitol), purines (adenine), pyrimidines (uracil and the chemotherapeutic agent
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5-fluorouracil), and urea analogs (thiourea) [133–135]. In general, the expression of AQP9 has been
identified in different cell types, including astrocytes (Table 5).

In mouse brain astrocytes, expression of AQP9 was observed in the processes bordering the
subarachnoid space and ventricles, in the white matter, hippocampus, hypothalamus, and lateral
septum [48]. In addition, in the adult rat brain, astrocytes expressing AQP9 were detected in the
white matter and gray matter [49]. AQP9 was also detected in the astrocytes of a non-human primate
brain [63]. As in rodent species, AQP9 mRNA and protein were detected in other CNS cells [63].
Reports of human expression of AQP9 are scarce and are limited mainly to pathological tissue, such as
astrocytomas [136,137].

Table 5. The expression of AQP9 in different cell types.

Cell Type Reference

Spinal cord and brain:
Astrocytes, ependymal cells lining the ventricles and tanycytes, catecholaminergic neurons,
endothelial cells of pial vessels, Bergmann glia

[49,50,138]

Hepatocytes [50,139]

Testis Leydig cells [50]

Epididymis stereocilia [50]

Spleen leukocytes [50]

2.3.2. Intracellular Distribution of AQP9

Several AQP9 isoforms have been identified to date. For example, in astrocytes and in a
subpopulation of neurons (dopaminergic neurons in the substantia nigra and ventral tegmental
area) isolated from rat brain, two AQP9 isoforms have been identified: ~25 and ~30 kDa isoforms.
The ~30 kDa isoform is expressed in the plasma membrane and may correspond to the liver isoform
(~32 kDa) or is possibly even a splicing variant. On the other hand, the ~25 kDa isoform (obtained by
alternative splicing) is expressed in mitochondria and is highly enriched in the inner mitochondrial
membrane of astrocytes. Its major role could be the transport of lactic acid into the mitochondria,
which would benefit cells in ischemic conditions [140].

In general, AQP9 immunostaining in astrocytes was observed in their cell bodies, in processes
directed toward blood vessels, and in perivascular endfeet; so it differs from AQP4 polarized
immunolabeling [49,63]. In contrast, AQP9 forms only tetramers in cellular membranes and not
higher-order complexes like AQP4 [98].

2.3.3. The Role of AQP9 in the CNS

Several functions of AQP9 in the CNS have been considered. AQP9 permeability to diverse
molecules implies its role in diverse processes, such as water homeostasis and energy metabolism.
Among several hypotheses, it was suggested that AQP9 may facilitate clearance of lactate and glycerol
from the extracellular space, as is the case in cerebral ischemia [48]. Given that it is localized in the glia
limitans and tanycytes, it may also contribute to water flow in CSF between the brain parenchyma and
subarachnoid space [49]. Considering that AQP9 facilitates glycerol diffusion, as reported recently, it is
probably also involved in energy metabolism in the CNS. Silencing of AQP9 in cultured astrocytes
induced a decrease in glycerol uptake and triggered changes in astrocyte energy metabolism by
increasing the glucose uptake [141]. Further investigation is needed to elucidate the processes regulated
by AQP9 in the CNS in detail.

2.3.4. Permeability Regulation and Expression of AQP9 in Pathological Conditions

As in the case of AQP1 and AQP4, AQP9 can be regulated through phosphorylation, although
only a few studies have investigated this. Experiments in cultured rat astrocytes suggest that signal
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transduction via PKC may decrease plasma membrane expression of AQP9 through PKC activation,
and increase expression of AQP9 through the PKA-dependent increase of dbcAMP [116,119].

In addition, rendered plasma membrane expression of AQP9 was reported to be influenced by
changes in mRNA expression. For example, an increase in mRNA and protein expression of AQP9 has
been measured in human astrocytic tumors (reaching higher values in high-grade tumors) compared
with normal brain tissue [136]. Overexpression of AQP9 was also detected in mouse astrocytes in
peri-infarct areas after focal transient ischemia [48].

Short- and long-term permeability regulation of AQP9 in astrocytes remains to be elucidated.
Changes in the permeability regulation and expression of AQP9 are hypothesized to play a role

in the regulation of postischemia edema and in the clearance of lactate from the damaged tissue, as
well as in the malignant progression of brain astrocytic tumors [48,130].

3. Conclusions

Three different AQP types have been identified in astrocytes. The most abundant among them
is AQP4, which is also the most studied AQP type in the brain. Its expression has been confirmed in
human and non-human mammalian brain astrocytes in physiological and pathological conditions.
Despite its recognized general role in the regulation of brain water homeostasis, several issues
remain to be elucidated, especially in light of newly-described isoforms, their roles, and permeability
regulation. In addition to water permeability through the plasma membrane, AQP4 may be implicated
in various other roles, such as cell adhesion, gas exchange, and possibly other roles, especially if we
consider the growing body of data on different isoforms. Although AQP1 and AQP9 are expressed in
physiologically normal tissue of non-human mammalian brains, it appears that, in human astrocytes,
they are expressed mainly in pathological conditions. AQP9 is the least studied of all AQP types in
astrocytes; its localization in human brain has been unambiguously confirmed only in astrocytomas
so far. Variations in astrocytic expression patterns of different AQP types and their permeability
properties suggest that they have different roles in maintaining brain homeostasis that need to be
elucidated from the perspective of efficient pharmacological manipulation.
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